利用spss的专家建模器实现arima模型及时间序列分析 ppt课件

合集下载

spss(时间序列分析)

spss(时间序列分析)
第一页,共70页。
• 横截面数据也常称为变量的一个简单随机样本,也即假设每个数据 都是来自于总体分布的一个取值,且它们之间是相互独立的(独立 同分布)。
• 而时间序列的最大特点是观测值并不独立。时间序列的一个目的
是用变量过去的观测值来预测同一变量的未来值。 • 下面看一个时间序列的数据例子。 • 例1. 某企业从1990年1月到2002年12月的月销售数据(单位:百
三、指数平滑模型
• 时间序列分析的一个简单和常用的预测模型叫做指数平滑
(exponential smoothing)模型。
• 指数平滑只能用于纯粹时间序列的情况,而不能用于含有独立变量 时间序列的因果关系的研究。
• 指数平滑的原理为:利用过去观测值的加权平均来预测未来的 观测值(这个过程称为平滑),且离现在越近的观测值要给以越重
Seanal adjusted series SA
Seas factors SF
YEAR
图3 销售数据的季节因素分离
第十七页,共70页。
120
可以看出,逐月的销
100 售额大致沿一个指数
80 曲线呈增长趋势。
60

40
20
0
-20 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
3. saf_1:季节因素(seasonal factor) ,记为{SFt }; 4. stc_1:去掉季节及随机扰动后的趋势及循环因素(trend-
cycle series),记为{TCt }。
第十五页,共70页。
• 这些分解出来的序列或成分与原有时间序列 之间有如下的简单和差关系:

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

差分平稳
• 对原序列作一阶差分消除趋势,再作4步差分消除季节效 应的影响,差分后序列的时序图如下
白噪声检验
延迟阶数 6 12 18
2统计量 43.84 51.71 54.48
P值 <0.0001 <0.0001 <0.0001
差分后序列自相关图
差分后序列偏自相关图
模型拟合
• 定阶
– ARIMA((1,4),(1,4),0)
【例】1964年——1999年中国纱年产量序列 蕴含着一个近似线性的递增趋势。对该序 列进行一阶差分运算
xt xt xt1
考察差分运算对该序列线性趋势信息的提取 作用
差分前后时序图
• 原序列时序图
• 差分后序列时序图

• 尝试提取1950年——1999年北京市民用车 辆拥有量序列的确定性信息
P值 0.0178 0.1060 0.1344
拟合ARMA模型
• 偏自相关图
建模
• 定阶
– ARIMA(0,1,1)
• 参数估计
(1 B)xt 4.99661 (1 0.70766 B) t
Var(t ) 56.48763
• 模型检验
– 模型显著 – 参数显著
例续:对中国农业实际国民收入指数序列做 为期10年的预测
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
6 12 18 结果
2统 计量
P值
4.50 0.2120
9.42 0.4002
20.58 0.1507
模型显著
待估 参数
2统 计量
P值
1 -4.66 <0.0001
12 23.03 <0.0001 1 -6.81 <0.0001

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
• 假设序列如下
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析

N
束 N

差分 运算
拟合
ARMA 模型

以数学建模竞赛为例基于SPSS建立ARIMA模型

以数学建模竞赛为例基于SPSS建立ARIMA模型

以数学建模竞赛为例基于SPSS建立ARIMA模型一、引言二、题目描述假设某市某项产品的月销售数据如下(单位:件):月份销售量1 2002 2203 2104 2405 2506 2607 2708 2809 29010 30011 32012 330请建立ARIMA模型预测未来3个月的销售量。

三、建立ARIMA模型1. 数据处理在SPSS软件中导入上述数据,然后对数据进行时间序列图的绘制和基本统计分析。

通过时间序列图可以观察到数据是否存在趋势和季节性,基本统计分析可以得到数据的均值、标准差等关键统计量。

2. 差分运算由于ARIMA模型对原始数据的平稳性要求比较高,因此在建立模型之前需要进行差分运算以确保数据的平稳性。

在SPSS软件中,可以使用“Transform”菜单中的“Difference”功能对数据进行一阶差分或二阶差分操作。

在这个例子中,我们选择进行一阶差分操作。

3. 自相关和偏自相关图在差分运算之后,需要使用自相关和偏自相关图来确定ARIMA模型的p和q值。

在SPSS软件中,可以使用“Analyze”菜单中的“Forecasting”功能来生成自相关和偏自相关图,并根据图形来判断p和q的取值。

4. 建立ARIMA模型在确定了差分次数、p和q的取值之后,可以使用“Analyze”菜单中的“Forecasting”功能来建立ARIMA模型。

在输入模型参数的时候,需要根据之前的分析结果来设定差分次数、自回归阶数和移动平均阶数。

四、结果分析通过以上步骤,我们成功地建立了ARIMA模型并进行了未来3个月销售量的预测。

预测结果显示未来3个月销售量分别为340、350和360件。

我们还对模型的拟合效果进行了检验,结果表明模型的残差序列符合白噪声特性,预测结果较为可靠。

五、总结本文以一次数学建模竞赛题目为例,介绍了如何使用SPSS软件建立ARIMA模型进行时间序列分析和预测。

通过差分运算、自相关和偏自相关分析、模型建立和诊断以及预测分析等步骤,我们成功地对未来3个月销售量进行了预测。

【IBM-SPSS课件】时间序列分析

【IBM-SPSS课件】时间序列分析

▪ 圖23-10所示給出了模型擬合的八個擬合優度指 標,以及這些指標的均值、最小值、最大值及 百分位數。其中平穩的R方值為0.418。
▪ 圖23-11所示為模型的擬合統計量和Ljung-BoxQ 統計量。平穩的R方值為0.418 。Ljung-BoxQ統 計量值為 18.537,顯著水準為0.293。
▪ 例23.2:利用1992年初~2002年底共11年彩電 出口量(單位:“臺”)的月度數據,見例23.2
sav.
▪ 操作步驟如下:
▪ (1)單擊“數據”|“定義日期”命令,彈出圖 23-2所示的對話框,打開“定義日期”,在“ 個案為”選項中選擇“年份、月份”,然後在 “第一個個案為”中的“年”和“月份”輸入 數據開始的具體的年份1992和月份1,單擊“確 定”按鈕,完成時間變數的定義。
▪ 時間序列預處理的主要方法:
▪ 對缺失數據的處理和對數據的變換處理。主要包括 序列的平穩化處理和序列的平滑處理等。SPSS提 供了8種平穩處理的方法:差分、季節差分、中心 移動平均、先前移動平均、運行中位數、累計求和 、滯後、提前。
▪ 例23.1:描述了中國某城市女士服裝從1993年到 2002十年的出口總額及外匯儲備情況,資料庫見 例23.1.sav。研究如何創建時間序列數據。
▪ 1.操作步驟
▪ (1)單擊“數據”|“定義日期”命令,彈出圖 23-2所示的對話框,在“個案為”選項中選擇 “年份、月份”,然後在“第一個個案為”中 的“年”和“月份”輸入數據開始的具體的年 份1993和月份1,單擊“確定”,完成時間變數 的定義。
▪ (2)單擊“轉換”|“創建時間序列”命令,彈 出圖23-3所示的對話框,將sum變數選入“變數 -新名稱”列表中。在函數子菜單中選擇“季節 差分”選項。

Arima模型在SPSS中的操作

Arima模型在SPSS中的操作

Arima模型在SPSS中的操作ARIMA是自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。

ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。

为了避免过度训练拟合,这些参数的取值都很小。

p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。

d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。

q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。

ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。

用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates 2画序列图来观察数值变化,菜单为Graph-sequence /Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。

ARIMA模型-[SPSSPython]

ARIMA模型-[SPSSPython]

ARIMA模型-[SPSSPython] 简介: ARIMA模型:(英语:Autoregressive Integrated Moving Average model),差分整合移动平均⾃回归模型,⼜称整合移动平均⾃回归模型(移动也可称作滑动),是时间序列预测分析⽅法之⼀。

AR是“⾃回归”,p为⾃回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。

由于毕业论⽂要涉及到时间序列的数据(商品的销量)进⾏建模与分析,主要是对时间序列的数据进⾏预测,在对数据进⾏简单的散点图观察时,发现数据具有季节性,也就是说:数据波动呈现着周期性,并且前⾯的数据会对后⾯的数据产⽣影响,这也符合商品的销量随时间波动的影响。

于是选择了ARIMA模型,那为什么不选择AR模型、MA模型、ARMA模型 于是,通过这篇博客,你将学到: (1)通过SPSS操作ARIMA模型 (2)运⽤python进⾏⽩噪声数据判断 (3)为什么差分,怎么定阶 PS:在博客结尾,会附录上Python进⾏ARIMA模型求解的代码。

为什么会使⽤SPSS? 由于真⾹定理,在SPSS⾥有ARIMA、AR、MA模型的各种操作;还包括异常值处理,差分,⽩噪声数据判断,以及定阶。

⼀种很⽅便⼜不⽤编程还可以避免改代码是不是很爽… ARIMA模型的步骤 好啦,使⽤ARIMA模型的原因: 在过去的数据对今天的数据具有⼀定的影响,如果过去的数据没有对如今的数据有影响时,不适合运⽤ARIMA模型进⾏时间序列的预测。

使⽤ARIMA进⾏建模的步骤: 简单来说,运⽤ARIMA模型进⾏建模时,主要的步骤可以分成以下三步: (1)获取原始数据,进⾏数据预处理。

(缺失值填补、异常值替换) (2)对预处理后的数据进⾏平稳性判断。

如果不是平稳的数据,则要对数据进⾏差分运算。

(3)将平稳的数据进⾏⽩噪声检验;如果不是⽩噪声数据,则说明数据之间仍然有关联,需要进⾏ARIMA(p,d,q)重新定阶:p、q。

以数学建模竞赛为例基于SPSS建立ARIMA模型

以数学建模竞赛为例基于SPSS建立ARIMA模型

以数学建模竞赛为例基于SPSS建立ARIMA模型ARIMA模型是一种经典的时间序列分析方法,可用于分析和预测时间序列数据的趋势和周期性。

它结合了自回归(AR),差分(I)和移动平均(MA)三种技术,适用于非平稳时间序列数据的分析和预测。

在本文中,我们将以数学建模竞赛中的一个具体问题为例,介绍如何使用SPSS软件建立ARIMA模型,并进行数学建模分析,以解决问题。

问题描述假设某个城市的人口数量从1990年开始统计至今,我们需要通过已知的人口数量数据,建立一个模型来预测未来该城市的人口增长趋势。

数据处理我们需要收集并整理相关的人口数量数据。

通常,这些数据可以从政府或统计局的公开数据中获得。

假设我们已经获得了从1990年到2020年的人口数量数据,接下来我们将使用SPSS软件对这些数据进行分析和建模。

数据分析在SPSS软件中,我们首先需要导入已经收集好的人口数量数据,并进行数据的观察和初步分析。

通过查看数据的趋势和波动性,我们可以初步判断是否属于时间序列数据,并对数据进行初步的处理和分析。

接下来,我们可以使用SPSS软件中的时间序列分析功能,对数据进行进一步分析。

我们可以使用ARIMA模型来分析数据的趋势和周期性,并预测未来的发展趋势。

具体步骤如下:1. 导入数据:在SPSS软件中,选择导入数据,并选择已经整理好的人口数量数据文件进行导入。

2. 检验数据:通过查看数据的时间序列图和自相关性图,初步判断数据是否具有自相关性和趋势性,以确定是否适合使用ARIMA模型进行分析。

3. 拟合模型:选择合适的ARIMA模型,对数据进行拟合和参数估计,以确定数据的自相关性、差分阶数和移动平均阶数等参数。

4. 检验模型:对拟合的ARIMA模型进行残差检验和模型诊断,判断模型的拟合效果和预测精度。

5. 预测未来:通过拟合好的ARIMA模型,可以对未来的人口数量进行预测,得出未来的人口增长趋势和波动范围。

模型建立根据我们所收集到的人口数量数据,我们可以按照上述步骤在SPSS软件中建立ARIMA 模型,以预测未来该城市的人口数量。

SPSS的时间序列分析ppt课件

SPSS的时间序列分析ppt课件
·自相关函数图和偏自相关函数图〔ACF&PACF〕
所谓自相关是指序列与其本身经过某些阶数滞后构成的序列之间存 在某种程度的相关性。对自相关的测度往往采用自协方差函数和自相关 函数。偏自相关函数是在其他序列给定情况下的两序列条件相关性的度 量函数。
自相关函数图和偏自相关函数图将时间序列各阶滞后的自相关和偏 自相关函数值以及在一定置信程度下的置信区间直观的展现出来。
各统计量在不同序列之间不应有显著差别。假设差
值大于检验值,那么以为序列具有非平稳性。
• 11.3.4 时间序列的图形化察看和检验的根本操作 • 11.3.4.1 绘制序列图的根本操作 • 〔1〕选择菜单Graph→Sequence。
〔2〕将需绘图的序列变量选入Variables框中。
〔3〕在Time Axis Labels框中指定横轴〔时间轴〕标志变量。该标志 变量默许的是日期型变量。
那么概率空间〔W,F,P〕上随机过程{y〔t〕,t∈T}称为平稳过
程。具有时间上的平稳不变性。实际当中是非常困难甚至是不能够的。

宽平稳:宽平稳是指随机过程的均值函数、方差函数均为常数,自协方 差函数仅是时间间隔的函数。如二阶宽平稳随机过程定义为:E〔yt〕
= E〔yt+h〕为常数,且对 t,t+h∈T都使协方差E[yt- E〔yt〕
第十章
SPSS的时间序列分析
11.1 时间序列分析概述
• 11.1.1时间序列的相关概念

通常研讨时间序列问题时会涉及到以下记号和概念:
• 1.目的集T

目的集T可了解为时间t的取值范围。
• 2.采样间隔△t

采样间隔△t可了解为时间序列中相邻两个数的时间间隔。
• 3.平稳随机过程和平稳时间序列

利用spss的专家建模器实现arima模型及时间序列分析 ppt课件

利用spss的专家建模器实现arima模型及时间序列分析 ppt课件

第二步,数据的导入,可以是excel文件,也可以直接复制粘贴过来。这 里以excel的源文件为例。 文件——打开 ;界面如下
打开后的界面如下:
第三步:用时间序列分析
分析——预测——创建模型 界面如下,提示的定义日期可以根据数据的日期格式定义, 不定义也可
第四步:选择变量,将要分析预测的变量转入因变量,自变 量可有可无。
预测值
利用利用spss170spss170的的专家建模器专家建模器专家建模器专家建模器实现的的专家建模器专家建模器专家建模器专家建模器实现时间序列分析时间序列分析时间序列分析时间序列分析实现实现第一步
利用 spss17.0
的 专家建模器 实现 ······
时间序列分析
第一步:打开spss17.0的主程序。 打开后的界面如下:
第八步:保存选项 在预测值处画勾,并将‘预测值(p)’改为‘预测值’
第九步:选项栏,点击第二个选项,如果定义了日期,则日期处填写想 要预测日期的最后一个日期;如果没有定义日期,定。
结果:如图所示 数据集处:
输出查看器:
输出查看器
此处仅选x1进行分析,放到因变量的栏里 如下图:
第五步:可以在界面的中间找到条件选项点开:
点开条件选项,可以选择模型类别,默认的为‘所有模型’, 此处以arima模型为例。
在条件选项下还可以选择对离群值的设置。
第六步:设置统计量,注意要在显示预测值的空白处画勾,
第七步:设置图表 建议在拟合值出画勾。这样可以鲜明看到拟合值与预测值的比较

Arima模型在SPSS中的操作

Arima模型在SPSS中的操作

Arima模型在SPSS中的操作ARIMA是自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。

ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。

为了避免过度训练拟合,这些参数的取值都很小。

p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。

d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。

q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。

ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。

用SPSS来做ARIMA大概有这些步骤:1定义日期,确定季节性的周期,菜单为Data-Define dates 2画序列图来观察数值变化,菜单为Graph-sequence /Time Series - autoregressive3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几5然后看是否需要做去除长期趋势的差分,确定p与sp6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。

spss课件23

spss课件23


图23-16所示为指数平滑模型的拟合图,指数平 滑模型的拟合图波动情况为出口量序列数据整 体上呈线性上升趋势,拟合值和观测值在整个 区间中几乎重合,因此可以说指数平滑模型对 出口量的拟合情况良好。通过拟合值和观测值 ,可得某城市的彩电出口量在前7年波动较为平 缓,后4年波动较为剧烈,且呈上升趋势。

以时间为自变量建模输出结果:模型拟合值为 :模型拟合统计量,平稳R 方9.546E-17。模型 统计量:Ljung-Box Q(18):27.292,P值 =0.074。

普通多重回归输出结果:图23-24所示为普通多 重回归的拟合图。
THE
END

1.操作步骤 (1)单击“数据”|“定义日期”命令,弹出图 23-2所示的对话框,在“个案为”选项中选择 “年份、月份”,然后在“第一个个案为”中 的“年”和“月份”输入数据开始的具体的年 份1993和月份1,单击“确定”,完成时间变量 的定义。

(2)单击“转换”|“创建时间序列”命令,弹 出图23-3所示的对话框,将sum变量选入“变量 -新名称”列表中。在函数子菜单中选择“季节 差分”选项。 (3)单击“确定”按钮运行,输出结果。
IBM-SPSS
第23章 时间序列分析

时间序列数据特点。
(1)趋势性:
(2)季节性: (3)周期性: 对时间序列数据分析最常用的方法有: 指数平滑法 自回归法 ARIMA法 季节分解法等。

时间序列是系统中某一变量的观测值按时间顺序(时
间间隔相同)排列成一个数值序列,展示研究对象在


2.实验结果及分析 图23-4所示给出了对“sum”序列进行平稳化处 理的结果,平稳化处理的新序列名称为 “sum_1”,该序列有12个缺失值,有效个案 为108个,平稳处理的方法是季节差分方法,函 数的名称为SDIFF(sum,1,12)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结果:如图所示 数据集处:
输出查看器:
输出查看器
预测值Leabharlann 第四步:选择变量,将要分析预测的变量转入因变量,自变 量可有可无。
此处仅选x1进行分析,放到因变量的栏里 如下图:
第五步:可以在界面的中间找到条件选项点开:
点开条件选项,可以选择模型类别,默认的为‘所有模型’, 此处以arima模型为例。
在条件选项下还可以选择对离群值的设置。
第六步:设置统计量,注意要在显示预测值的空白处画勾,
第七步:设置图表 建议在拟合值出画勾。这样可以鲜明看到拟合值与预测值的比较
第八步:保存选项 在预测值处画勾,并将‘预测值(p)’改为‘预测值’
第九步:选项栏,点击第二个选项,如果定义了日期,则日期处填写想 要预测日期的最后一个日期;如果没有定义日期,则看已知数据的个数, 加上自己要预测的个数,键入即可。 最后点击确定。
利用 spss17.0
的 专家建模器 实现 ······
时间序列分析
第一步:打开spss17.0的主程序。 打开后的界面如下:
第二步,数据的导入,可以是excel文件,也可以直接复制粘贴过来。这 里以excel的源文件为例。 文件——打开 ;界面如下
打开后的界面如下:
第三步:用时间序列分析
分析——预测——创建模型 界面如下,提示的定义日期可以根据数据的日期格式定义, 不定义也可
相关文档
最新文档