第三章《动量和角动量》习题

合集下载

06动量与角动量二解答

06动量与角动量二解答
4i + 4 j = M aC a = 2 m/s
F ex = ∑ maC = M aC ∑
(
2
)
4 θ = arctan = 45 4
4N l C
θ
y
O
x
l
4N
动量与角动量二
第三章 动量守Байду номын сангаас和能量守恒
质量为0.05kg的小块物体,置于一光滑水平桌面 的小块物体, △2.质量为 质量为 的小块物体 有一绳一端连接此物, 上.有一绳一端连接此物,另一端穿过桌面中心的小孔 如图所示).该物体原以3rad/s的角速度在距孔 ).该物体原以 的角速度在距孔0.2m (如图所示).该物体原以 的角速度在距孔 的圆周上转动.今将绳从小孔缓慢往下拉, 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之 转动半径减为0.1m.则物体的角速度ω=___. 转动半径减为 . . 物体在有心力作用下,对力心的角动量守恒 物体在有心力作用下 对力心的角动量守恒: 对力心的角动量守恒
T 2
(2mυ ) + (mgπR υ )
2
2
0
m
I=
∫ Fdt
0
y
I G = m g T 2 = mg j πR υ
动量与角动量二
第三章 动量守恒和能量守恒
4.一质量为M的斜面原来静止于水平光滑平面上,将 .一质量为 的斜面原来静止于水平光滑平面上 的斜面原来静止于水平光滑平面上, 一质量为m的木块轻轻放于斜面上 如图. 的木块轻轻放于斜面上, 一质量为 的木块轻轻放于斜面上,如图.如果此后 木块能静止于斜面上, 木块能静止于斜面上,则斜面将 (A) 保持静止. 保持静止. (B) 向右加速运动. 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 向右匀速运动. 向左加速运动. 对于木块-斜面系统 水平方向不受外力作用 动量守恒 对于木块 斜面系统,水平方向不受外力作用 动量守恒: 斜面系统 水平方向不受外力作用,动量守恒

第一册第三章动量与角动量

第一册第三章动量与角动量

时 ∑ F ix = 0时 ,
m 1 v 1 x + m 2 v 2 x + L + m n v nx = 常 数
时 ∑ Fiy = 0时 ,
时 ∑ F iz = 0时 ,
m 1 v 1 y + m 2 v 2 y + L + m n v ny = 常 数
m 1 v 1 z + m 2 v 2 z + L + m n v nz = 常 数
M L
解:(1)链条在运动过程中,各部分的速度、 )链条在运动过程中,各部分的速度、 加速度都相同。 加速度都相同。
o
x
v F
研究对象:整条链条 研究对象: 建立坐标: 建立坐标:如图 M v v (= xg ) 受力分析: 受力分析: F 运动方程: 运动方程:
M L xg dv = M dt
2
L
一段时间内,质点所受的合外力的冲量 冲量等 在t1到t2一段时间内,质点所受的合外力的冲量等 动量的增量。 于在这段时间内质点动量的增量 于在这段时间内质点动量的增量。 几点说明: 几点说明: (1)冲量的方向: (1)冲量的方向: 冲量的方向 v v 的方向, 冲量 I 的方向一般不是某一瞬时力 Fi 的方向,而是所
例子:见书 例子:见书P137例3.3
12
方向, 例1. 力 F = 3 − 2t ,沿z方向,计算 =0至t =1s 方向 计算t 至 内,力对物体的冲量。 力对物体的冲量。
解: Fz = F = 3 − 2t
I z = ∫ Fz dt = ∫ (3 − 2t )dt = 2( N ⋅ s ) t
I y = ∫ Fy dt
t1
t2
I z = ∫ Fz dt

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

第三章-练习题

第三章-练习题

第三章 练习题一、填空题3-1 一根长度为L 的轻杆AB (其质量可忽略),两端分别固定质量为m 1和m 2的两个小球,此系统绕通过其中心O 并垂直AB 连线的轴转动时,其转动惯量为 。

3-2 一质量为M ,半径为R 的转台,以角速度ω1转动,转动摩擦不计,有一质量为m 的蜘蛛垂直落在转台边缘(转台的转动惯量221MR J =)。

此时转台的角速度ω2为___ _____;若蜘蛛慢慢爬向转台中心,至离转台中心的距离为r 时,转台的角速度ω3为___ ______。

3-3 一转速为1200r/min 的飞轮,因制动而均匀的减速,经10s 停止转动,则飞轮的角加速度为 ,从开始制动到停止转动飞轮转过的圈数为___ __ _;开始制动后5s 时飞轮的角速度为___ ______。

设飞轮转动惯量为J ,其制动力矩为__ _______。

3-4 自由刚体共有6个自由度,其中3个 自由度,3个 自由度。

3-5 一均匀细杆AB ,长为l ,质量为m 。

A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动。

杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小B V = 。

3-6 一质量为M ,长为L 的均匀细棒绕通过中心与棒垂直的转轴转动,其转动惯量等于 ;若细棒绕通过一个端点与棒垂直的转轴转动,其转动惯量等于 。

3-7 一飞轮的转动惯量为20.125kg m ⋅,其角动量在1.5s 内从213.0kg m s -⋅⋅减到212.0kg m s -⋅⋅ 在此期间作用于飞轮上的平均力矩M = ,飞轮作功为A = 。

3-8 一质量为m 的小球固定在一质量不计、长为l 的轻杆一端,并绕通过杆另一端的水平固定轴在竖直平面内旋转。

若小球恰好能通过最高点而作圆周运动,则在该圆周的最高点处小球的速度=v ;如果将轻杆换成等长的轻绳,则为使小球能恰好在竖直平面内作圆周运动,小球在圆周最高点处的速度=v 。

3-9 长为L 质量为m 的均匀细棒可绕通过其一端并与棒垂直的光滑水平轴O 转动.设棒从水平静止位置开始释放,则它摆到竖直位置时的角加速度为 ;角速度为 。

第三章 动量与角动量

第三章 动量与角动量

在光滑桌面上运动,速度分别为
v1

10i ,
v2

3.0i
5.0
j
(SI制)碰撞后合为一体,求碰撞后的速度?
解:方法一,根据动量守恒定律
m1v1 m2v2 (m1 m2 )v
解得:
v
7i
25
j
7
方法二,利用动量守恒分量式:
(m1 m2 )vx m1v1x m2v2x vx 7m / s
例 题 12
12、一子弹在枪筒里前进时所受的合力大小为 F 400 4105 t
3
(SI),子弹从枪口射出时的速率为300m/s。假设子弹离
开枪口时合力刚好为零,则
(1)子弹走完枪筒全长所用的时间;
(2)子弹在枪筒中所受力的冲量; (3)子弹的质量 m ;
解:(1)根据题意,子弹离开枪口时合力为零,
f mg
f t(N)
30N L L L 0 t 4 30 ft 70 10tL 4 t 7
0
Ft ft f
t(s) 47
当 t 4s 时 Ftt mv4 mv0 v4 8m / s
(2)当 t 6s 时
6
4 Ftdt mv6 mv4 v6 v4 8m / s
人造卫星的角动量守恒。
A1 : L1 mv1(R l1)
l2
l1 m
A2 : L2 mv2 (R l2 )
A2
A1
mv1(R l1) mv2 (R l2 )
v2 6.30km/s
v2

v1
R l1 R l2
o
B

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)
答:(a)正确。与轴平行的力,对该轴都不产生力矩。(b)正确。比如当两个力垂直于轴,且力的 作用线通过轴时,每个力对该轴的力矩都为零;当两个力作用线不通过该轴时,这两个力的力矩之和 可以不为零。(c)错误。大小相等、方向相反的两个力作用于刚体上不同位置处,如下图所示,两个 力合力为零,但对 O 点的合力矩不为零。(d)错误,如下图所示情况,两个力对 O 点的合力矩为零, 但合力不为零。
为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动

L

r

mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。

m
解:(1) J

J1

J2

ml 2

1 ml 2 3

4 ml 2 3
(2)根据转动定理: M

J
d dt

J
d d
d dt

J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。

第3章动量角动量

第3章动量角动量
(3)动量守恒定律只适用于惯性系, 使用时所有速度必须相 对于同一惯性系。
(4)动量守恒定律是物理学中最普遍、最基本的定律之一。 在微观高速范围同样适用。
例3-3 如图,在光滑的水平面上,有一质量为M、长为l 的小车, 车上一端站有质量为m的人,起初m、M均静止,若人从车 的一端走到另一端,则人和车相对地面走过的距离为多少?
为ω,杆长均为l 。(2)如系统作加速转
动,系统的动量和角动量变化吗?
三、质点的角动量(动量矩)定理
Lrp

dL

d (r
p)
dr
p
r
dp
F
dt
dt
M
dL
dt
dt
dt
质点的角动量定理(微分形式)
质点所受合力对点O 的力矩, 等于质点对点O的角 动量的时间变化率。
M
dL
dt
改写
Mdt dL
t2 t1
F dt
p2
p1
(1)定理中的冲量指的是质点所受合力的冲量,或者质点所
受冲量的矢量和。
I
t2 t1
F合
dt
= =
t2 t1
(
F1+F2++Fn
)
d
t
t2 t1
F1dt
t2 t1
F2dt+

t2 t1
Fndt =
i 1
Ii
(2)冲量是过程量,动量是状态量,冲量的方向可用动量变化的
由动量定理 I p2 得 p1
(3) 2.7 m/s
(2)3s末质点的加速度
a(3) F (3) 1.5 m/s2 m
3.1.2 质点系的动量定理 动量守恒定律

角动量复习题

角动量复习题

角动量复习题角动量复习题角动量是物体运动的一个重要物理量,它描述了物体围绕某一轴心旋转的性质。

在物理学中,角动量的计算涉及到物体的质量、速度以及旋转半径等因素。

下面将介绍一些与角动量相关的复习题,帮助大家巩固对角动量的理解。

1. 一个半径为2米的旋转木马上,有一个质量为100kg的小孩坐在边缘处。

如果旋转木马以每秒2π弧度的角速度旋转,求小孩的角动量。

解析:角动量的计算公式为L = Iω,其中L为角动量,I为转动惯量,ω为角速度。

在此题中,旋转木马上的小孩可以视为一个质点,其转动惯量可以近似为mR^2,其中m为小孩的质量,R为旋转木马的半径。

代入数值计算可得L = 100kg × (2m)^2 × 2π rad/s = 800π kg·m^2/s。

2. 一个质量为2kg的物体以每秒4π弧度的角速度绕着一个半径为1米的圆周运动,求其角动量。

解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。

在此题中,物体可以视为一个质点,转动惯量I = mR^2,其中m为物体质量,R为圆周半径。

代入数值计算可得L = 2kg × (1m)^2 × 4π rad/s = 8π kg·m^2/s。

3. 一个半径为3米的风车叶片以每秒3π弧度的角速度旋转,其转动惯量为10kg·m^2,求其角动量。

解析:根据角动量的计算公式L = Iω,其中L为角动量,I为转动惯量,ω为角速度。

代入数值计算可得L = 10kg·m^2 × 3π rad/s = 30π kg·m^2/s。

4. 一个质量为1kg的小球以每秒2π弧度的角速度绕着一个半径为2米的圆周运动,求其角动量。

解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。

在此题中,小球可以视为一个质点,转动惯量I = mR^2,其中m为小球质量,R为圆周半径。

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

内力做功,机械能守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有
作用力,动量不守恒。
3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑
O
固定轴 O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打
击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆
与小球这一系统的哪种物理量守恒? 答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为
思考题 3­2 图
零,所以角动量守恒。因碰撞时转轴与杆之间有作用力,所以动量不守恒。碰撞是非弹性的,
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
解:(1)设在任意时刻定滑轮的角速度为w,物体的速度大小为 v,则有 v=Rw.
则物体与定滑轮的总角动量为: L = Jw + mvR = Jw + mR2w
根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率:
M = dL ,该系统所受的合外力矩即物体的重力矩:M=mgR dt
所以: b

《大学物理AI》作业 No.03 角动量、角动量守恒定律

《大学物理AI》作业 No.03 角动量、角动量守恒定律

lv 12
(B)
2v 3l
(C)
3v 4l
(D)
3v l
解:小球与细杆碰撞过程中对 o 点的合外力矩为零,根据角动量守恒定律有:
⎛1 ⎞ mvl = ⎜ ml 2 + ml 2 ⎟ω ⎝3 ⎠ 3v ω = 碰撞后的转动角速度为 4l
选C
3. 质量为 m 的小孩站在转动,转动惯量为 J。平台和小孩开始时静止。当小孩突然以相对于地面为 v 的速率在台边缘沿逆时针转向走动时,此平台相对地面旋转的角速度和旋转方向分别为 2 2 v⎞ v ⎞ [ ] (A) ω = mR ⎛ (B) ω = mR ⎛ ⎜ ⎟ ,顺时针 ⎜ ⎟ ,逆时针 J ⎝R⎠ J ⎝R⎠
2r
2m r m
m
β
m
mg − T2 = ma 2 T1 − mg = ma1
T 2 × 2 r − T1 × r =
绳和圆盘间无相对滑动有
9 mr 2 β 2
v a2
v T2
v T1
a 2 = 2rβ a1 = rβ
β=
2g 19r
v a1
v mg v mg
联立以上方程,可以解出盘的角加速度的大小:
选A
v
R
m
O
J
4.一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处 于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ ] (A) 动量守恒 (B) 机械能守恒 (C) 对转轴的角动量守恒 (D) 动量、机械能和角动量都守恒 (E) 动量、机械能和角动量都不守恒 解:此系统所受的合外力矩为零,故对转轴的角动量守恒。 选C 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量 (2) 作用力和反作用力对同一轴的力矩之和必为零 (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等 在上述说法中, [ ] (A) 只有(2)是正确的 (B) (1)、(2)是正确的 (C) (2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的 解:内力成对出现,对同一轴,一对内力的力矩大小相等,方向相反,内力矩之和为零, 不会改变刚体的角动量。质量相等,形状和大小不同的两个物体,转动惯量不同,在相 同力矩作用下,角加速度大小不等。 选B 二、填空题 1.如图所示,一轻绳绕于半径为 r 的飞轮边缘,并以质量为 m 的物体

题解动量及角动量.ppt

题解动量及角动量.ppt
A
rr v2 v1
B
解:取m为研究对象
ur p (mv1)2 (mv2 )2 2(m)2 v1v2 cos 750
3.98m
r mv2
150
ur p 300
设传送带对矿砂平均作用力F
r
ur
mv1
Ft p
ur
F
p t
3.98
m t
3.98qm
3.98 2000 3600
2.2N
ur F的方向与 p相同,由图示:
m(2r2
)2
1 2
m(1r1
)2
角动量守恒r1mv1
r2mv2 ; v
r
2
1
r12 r22
VEk
0.5mr1212
(
r12 r22
1)
12.
uur M
r r
ur F
r r
(m
r d2r)
r
drt 2
r
r m( 2a costi 2b sint j)
rr
m 2 r r 0
ur L
r r
f
1.8 10 3 N
(2)动量定理:
ft (mA mB )vA
求解得到: vA 6m / s
动量守恒: mv0 mAvA (mB m)vB
求解得到: vB 22m / s
P18-4:矿砂从传送带A落到另一传送带B,其速率 大小v1=4m/s,速度方向与竖直方向成30度角,而 传送带B与水平成15度角,其速度的大小v2=2m/s。 如果传送带的运送量恒定,设为qm=2000kg/h,求 矿砂作用在传送带B上的力的大小和方向。
m
d
r r
drt

03第三章 动量与角动量作业答案

03第三章  动量与角动量作业答案

第三次作业(第三章动量与角动量)一、选择题[A]1.(基础训练2)一质量为m0的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图3-11(A) 保持静止.(B) 向右加速运动.(C) 向右匀速运动.(D) 向左加速运动.【提示】设m0相对于地面以V运动。

依题意,m静止于斜面上,跟着m0一起运动。

根据水平方向动量守恒,得:m V mV+=所以0V=,斜面保持静止。

[C]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ(D) 0.【提示】22TGTI mgdt mg==⨯⎰,而vRTπ2=[C ]3.(自测提高1)质量为m的质点,以不变速率v沿图3-16正三角形ABC的水平光滑轨道运动。

质点越过A点的冲量的大小为(A) m v.(B) .(C) .(D) 2m v.【提示】根据动量定理2121ttI fdt mv mv==-⎰,如图。

得:21I mv mv∴=-=[ B] 4.(自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-17所示的方向射入一原来静止的质量为980 g的摆球中,摆线长度不可伸缩。

子弹射入后开始与摆球一起运动的速率为(A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s.【提示】相对于摆线顶部所在点,系统的角动量守恒:2sin30()mv l M m lV︒=+其中m为子弹质量,M为摆球质量,l为摆线长度。

解得:V=4 m/s(解法二:系统水平方向动量守恒:2sin30()mv M m V︒=+)图3-11图3-17二、填空题1、(基础训练7)设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅.【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰2.(基础训练8)静水中停泊着两只质量皆为0m 的小船。

大学力学习题

大学力学习题

大学力学习题————-小数点的流浪整理第一章 运动的描述一、选择题:(注意:题目中可能有一个或几个正确答案)1.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻应是(A )s 4=t (B )s 2=t (C )s 8=t(D )s 5=t[ ]2.质点作半径为R 的变速圆周运动时的加速度大小应为(其中v 表示任意时刻质点的速率)(A )tv d d(B )21242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v t v(C )Rvtv 2d d +(D )Rv2[ ]3.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间关系正确的有(A )v v v v ==, (B )v v v v =≠, (C )v v v v ≠≠,(D )v v v v ≠=,[ ]4.某物体的运动规律为t kv tv 2d d -=,式中k 为大于零的常数。

当t =0时,初速为0v ,则速度v 与t 的函数关系应是(A )0221v ktv +=(B )0221v ktv +-=(C )2121v kt v+=(D )2121v kt v+-=[ ]5.在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行使,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢量用ji、表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i22+ (B )j i22+- (C )j i22--(D )j i22-[ ]6.一刚体绕z 轴以每分种60转作匀速转动。

设某时刻刚体上一点P 的位置矢量为k j i r543++=,其单位为“m 102-”,若以“12s m 10--⋅”为速度单位,则该时刻P 点的速度为:(A )k j i v0.1576.1252.94++= (B )j i v 8.181.25+-=(C )j i v8.181.25+=(D )k v4.31=[ ]二、填空题:1.一质点的运动方程为SI)(62t t x -=,则在t 由0至4 s 的时间间隔内,质点的位移大小为 ,在t 由0到4 s 的时间间隔内质点走过的路程为 。

角动量练习题

角动量练习题

角动量练习题角动量是物体绕某一点旋转时所具有的物理量,它是描述物体旋转状态的重要参数。

在本篇文章中,我们将通过一些练习题来巩固对角动量的理解和应用。

练习题一:质点角动量假设一个质点的质量为m,速度为v,沿着均匀圆周运动,半径为r。

计算此质点的角动量L。

解析:质点的角动量L可以通过以下公式进行计算:L = mvr其中,m表示质量,v表示速度,r表示半径。

练习题二:刚体的角动量现考虑一个自由刚体,该刚体绕自己的一个固定轴做匀速旋转。

刚体总质量为M,刚体质量分布与距离轴的距离的平方成正比,比例常数为k。

问刚体质心的角动量与旋转轴的角动量之比是多少?解析:对于这个刚体,质心的角动量L_cm可以通过以下公式计算:L_cm = I_cm * ω_cm其中,I_cm表示刚体绕质心的转动惯量,ω_cm表示质心的角速度。

而整个刚体绕轴的角动量L_axis可以通过以下公式计算:L_axis = I_axis * ω_axis其中,I_axis表示刚体绕轴的转动惯量,ω_axis表示轴的角速度。

根据转动惯量的定义可知,I_axis = kM,I_cm = (1/2)kM。

将以上结果代入计算,可得:L_cm / L_axis = (1/2) / 1 = 1 / 2练习题三:角动量守恒现有两个质量分别为m1、m2的质点,m1的速度为v1,m2的速度为v2,m1和m2的初始位置分别为r1和r2,它们在一个封闭系统中相互作用。

求系统的总角动量L_i和最后的总角动量L_f。

解析:系统的总角动量L_i可以通过以下公式计算:L_i = L1 + L2 = m1v1r1 + m2v2r2其中,L1和L2分别为两个质点的角动量。

根据角动量守恒定律可知,L_i = L_f。

因此,总角动量在系统内部相互作用过程中保持不变。

练习题四:转动惯量计算假设一个半径为R、质量均匀分布的圆环围绕其直径做匀速转动。

计算该圆环相对于转动轴的转动惯量I。

解析:对于一个质量均匀分布的圆环,其转动惯量I可以通过以下公式计算:I = (1/2)MR^2其中,M表示圆环的质量,R表示圆环的半径。

清华出版社《大学物理》专项练习及解析 03动量与角动量

清华出版社《大学物理》专项练习及解析  03动量与角动量

清华出版社专项练习动量与角动量一、选择题 1、(0063A15)质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) 2m v . (C) 3m v . (D) 2m v . [ ] 2、(0067B30)两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以0.5 m/s的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg , m B =4 kg (D) m A =4 kg, m B =3 kg [ ]3、(0367A10)质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ] 4、(0368A10) 质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ] 5、(0384A20)质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]6、(0385B25)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 7、(0386A20) A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为C(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]8、(0629C45)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断.(C)两根线一起断. (D)两根线都不断. [ ] 9、(0632A10)质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) v m . (B) 0.(C) v m 2. (D) v m 2-. [ ] 10、(0633A20)机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ] 11、(0659A15)一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 12、(0702B25)如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.[ ]13、(0703A15)如图所示,砂子从h =0.8 m 高处下落到以3 m /s 向右运动的传送带上.取重力加速度g =10 m /s 2落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ]14、(0706B30) 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动.此时斜面上摩擦力对物块的冲量的方向(A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]15、(5260A20)动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B .若碰撞为完全非弹性的,则碰撞后两物体总动能为(A) E K (B)K E 32. (C) K E 21. (D) K E 31. [ ] 16、(0405A20)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]17、(0406B30) 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]18、(0407C45) 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]19、(5636A15) 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]二、填空题:1、(0055A20) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2)2、(0056B40) 质量m =10 kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示.若已知木箱与地面间的摩擦系数μ=0.2,那么在t = 4 s 时,木箱的速度大小为______________;在t =7 s 时,木箱的速度大小为______________.(g 取10 m/s 23、(0060A10) 一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为________________________,方向为____________________.4、(0061A10) y 21y有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg ,第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F =50 N 的水平力来拉绳子,则 5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.5、(0062B30) 两块并排的木块A 和B ,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.6、(0066A20) 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为P A =P 0-bt ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则P B 1=______________________;(2) 开始时,若B 的动量为-P 0,则P B 2=_____________.7、(0068A15) 一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8、(0184A15) 设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I =__________________.9、(0222A20) 一物体质量M =2 kg ,在合外力i t F )23(+= (SI)的作用下,从静止开始运动,式中i 为方向一定的单位矢量,则当t =1 s 时物体的速度1v =__________.10、(0371A20) 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t =____________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.11、(0372A15) 水流流过一个固定的涡轮叶片,如图所示.水流流过叶片曲面前后的速率都等于v ,每单位时间流向叶片的水的质量保持不变且等于Q ,则水作用于叶片的力大小为______________,方向为_________.12、(0374B40) 图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 13、(0387B25) 质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°v的方向运动,则球A 的速率为____________,方向为______________________.14、(0393B25) 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i v += cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15、(0630A10) 一质量m =10 g 的子弹,以速率v 0=500 m/s 沿水平方向射穿一物体.穿出时,子弹的速率为v =30 m/s ,仍是水平方向.则子弹在穿透过程中所受的冲量的大小为________,方向为_________.16、(0631A15) 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于___________________.17、(0707B25) 假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________.18、(0708B35) 一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t +0.96(SI),则2秒末物体的速度大小v =______________.19、(0709A15) 质量为1500 kg 的一辆吉普车静止在一艘驳船上.驳船在缆绳拉力(方向不变)的作用下沿缆绳方向起动,在5秒内速率增加至5 m/s ,则该吉普车作用于驳船的水平方向的平均力大小为______________.20、(0710B30) 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P ∆=__________________.21、(0711A20) 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i 43+=0A v ,粒子B 的速度j i 72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v =______________.22、(0715B30)有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.23、(0717A10) 如图所示,质量为m 的子弹以水平速度0v 射入静止的木 块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量=____________________.24、(0718A15) 一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20m·s -1的速率水平向北运动。

角动量守恒习题课解答

角动量守恒习题课解答

mg − T = ma
T ′R = 1 mR 2β
2
a = Rβ;T = T ′
β = 2g
3R
匀加速转动
R T
T′
∴θ = 1 βt 2 = g t 2
2
3R
mg
0J
ω ωo
t = J ln 2 K
第三章角动量守恒习题课后作业 (12)
一、填空题
1、一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此 系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴(O
轴)转动。开始时杆与水平成60°角,处于静止状态。无初转速地
释放后,杆球这一刚体系统绕O轴转动,系统绕O轴的转动惯量
(A) 增大 (B) 减少
(C) 不变 (D) 无法确定
B
角动量守恒,子弹进 入盘中后系统转动惯 量增大

∴ I0ω = (I0 + I子弹 )ω ′
二、计算题
1.如图所示,一半径为R,质量为m的均匀圆盘,可绕水平固定光 滑轴转动,现以一轻绳绕在轮边缘,绳的下端挂一质量为m的物 体,求圆盘从静止开始转动后,它转过的角度和时间的关系。
2.如图所示,一质量为m,半径为R的均匀圆柱体,平放在桌面 上。若它与桌面间的滑动摩擦系数为μ,在t=0时,使圆柱体获
得一个绕轴旋转的角速度ω。则到圆柱体停止转
动所需时间t为:( )
B
(A)ω0R/2gμ (D)2ω0R/gμ
(B)3ω0R/4gμ(C) (E)2ω0R/3gμ
ω0R/gμω
由作业(9)计算题2的结果,摩擦阻力矩
O
I = 1 MR 2 + mR 2 2
m2
=
m L

第3章 动角动量习题解答

第3章 动角动量习题解答

第3章 动量 角动量3-1一架飞机以300m/s 的速率水平飞行,与一只身长0.20m 、质量0.50kg 的飞鸟相撞,设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率很小,可以忽略不计。

试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算)。

根据本题计算结果,谈谈高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰撞后会产生什么后果?解 飞鸟碰撞前速度可以忽略,碰撞过程中冲量的大小为:I m Ft υ==考虑到碰撞时间可估算为 lt υ=即得飞鸟对飞机的冲击力2250.5300 2.2510(N)0.2m F l υ⨯===⨯由此可见飞机所受冲击力是相当大的,足以导致机毁人亡,后果很严重。

3-2 水力采煤,是用高压水枪喷出的强力水柱冲击煤层。

如图,设水柱直径30mm D =,水速56m/s υ=,水柱垂直射在煤层表面上,冲击煤层后的速度为零,求水柱对煤的平均冲力。

解 △t 时间内射向煤层的水柱质量为21π4m V D x ρρ∆=∆=∆ 煤层对水柱的平均冲击力(如图以向右为正方向)为211x x x m m m F t t υυυ∆-∆∆==-∆∆211π4x xD t ρυ∆=-∆3322311.010π(3010)562.2210(N)4-=-⨯⨯⨯⨯⨯⨯=-⨯水柱对煤层的平均冲力为'32.2210N F F =-=⨯,方向向右。

习题3-2图3-3 质量10kg m =的物体沿x 轴无摩擦地运动,设0t =时,物体位于原点,速率为零。

如果物体在作用力()34N Ft =+的作用下运动了3秒,计算3秒末物体的速度和加速度各为多少?(题中F 作用线沿着x 轴方向)解 力F 在3秒内的冲量33d (34)d 27N s I F t t t ==+=⋅⎰⎰根据质点的动量定理 ()30m I υ-=得()3 2.7m/s Imυ== 加速度()()223153m/s 1.5m/s 10F a m === 3-4 质量为m 的物体,开始时静止,在时间间隔T t 20≤≤内,受力()2021t T F F T ⎡⎤-=-⎢⎥⎢⎥⎣⎦作用,试证明,在2t T =时物体的速率为043F Tm。

05动量与角动量一解答

05动量与角动量一解答

m1υ1 + m2υ 2 = (m1 + m2 )υ
m1υ1 i + m2υ 2 j = (m1 + m2 )υ
m1υ1
θ x
m2υ2
υ = (m υ )2 + (m υ )2 (m + m ) = 10(m/s ) 1 1 2 2 1 2 θ = arctan(m2υ 2 m1υ1 ) = 53.13o
0 = M υ1 + mυ
υ1 = mυ M
mυ = (m + M )υ 2
υ 2 = m υ (M + m )
动量与角动量一 4.求半圆形均匀薄板的质心。 .求半圆形均匀薄板的质心。
第三章 动量守恒和能量守恒
由对称性知,质心分布在对称轴y轴上 轴上。 解: 由对称性知,质心分布在对称轴 轴上。xC = 0
(M 1 + M 2 )υ x = M 2υ ′x υ ′ = (M 1 + M 2 )υ x x
M2
s′ = υ ′ t = (M 1 + M 2 )υ x h (gM 2 ) x > s = υxh g
动量与角动量一
第三章 动量守恒和能量守恒
二、填空题
1.质量为m的小球自高为 0处沿水平方向以速率υ0抛 .质量为 的小球自高为 的小球自高为y 出,与地面碰撞后跳起的最大高度为 0/2,水平速率为 与地面碰撞后跳起的最大高度为y , 与地面碰撞后跳起的最大高度为 υ0/2,则碰撞过程中 地面对小球的竖直冲量的大小 ,则碰撞过程中(1) (1+ 2)m gy0 为________________________;(2) 地面对小球的水平 ; mυ0/2 冲量的大小为________________________. 冲量的大小为________________________.

动量与角动量习题

动量与角动量习题

习题4 4-1.如图所示的圆锥摆,绳长为l,绳子一端固定,另一端系一质量为m的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。

在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T的冲量TI。

解:(1)设周期为�8�3,因质点转动一周的过程中,速度没有变化,12vv�8�8,由Imv�8�8�8�5,∴旋转一周的冲量0I�8�8;(2)如图该质点受的外力有重力和拉力,且cosTmg�8�0�8�8,∴张力T旋转一周的冲量:2cosTITjmgj�8�9�8�0�8�3�8�6�8�8�8�2�8�8�8�2 所以拉力产生的冲量为2mg�8�9�8�6,方向竖直向上。

4-2.一物体在多个外力作用下作匀速直线运动,速度4/vms�8�8。

已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。

求:(1)力F 在1s到3s间所做的功;(2)其他力在1s到3s间所做的功。

解:(1)由于椭圆面积为Sab�8�9�8�8椭,∴�8�9�8�9�8�94042012121�8�8�8�7�8�7�8�7�8�8�8�2�8�8vabA (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J时,其他的力的功为�8�2125.6J。

4-3.质量为m的质点在Oxy 平面内运动,运动学方程为cossinratibtj�8�6�8�6�8�8�8�0,求:(1)质点在任一时刻的动量;(2)从0�8�8t到�8�6�8�9/2�8�8t的时间内质点受到的冲量。

解:(1)根据动量的定义:Pmv�8�8,而drvdt�8�8�8�8sincosatibtj�8�6�8�6�8�6�8�6�8�2�8�0,∴sincosPtmatibtj�8�6�8�6�8�6�8�8�8�2�8�2 ;�8�0�8�6lmgTFN2010O23ts1 (2)由200ImvPPmbjmbj�8�9�8�6�8�6�8�6�8�8�8�5�8�8�8�2�8�8�8�2�8�8 ,所以冲量为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《动量和角动量》习题
动量守恒和角动量守恒是物理学中各种运动所遵循的普遍规律,本章的主要内容有质点和质点系的动量定理、角动量定理,及动量守恒定律和角动量守恒定律。

基本要求:
掌握动量定理和动量守恒定律,并能分析、解决简单的力学问题。

掌握运用守恒定律分析问题的思想和方法,能分析简单系统在平面内运动的力学问题。

理解质心的概念和质心运动定律。

作业题:
1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ∆,则铁锤所受的平均冲力大小为( )
(A )mg (B )t gh m ∆2 (C )
mg t gh
m +∆2 (D )mg t gh m -∆2 2 一个质量为m 的物体以初速为
0v 、抛射角为o 30=θ从地面斜上抛出。

若不计空气阻力,当物体落地时,
其动量增量的大小和方向为( ) (A )增量为零,动量保持不变 (B )增量大小等于
0mv ,方向竖直向上 (C )增量大小等于0mv ,方向竖直向下 (D )增量大小等于03mv ,方向竖直向下
3 停在空中的气球的质量为m ,另有一质量m 的人站在一竖直挂在气球的绳梯上,若不计绳梯的质量,人沿梯向上爬高1m ,则气球将( )
(A )向上移动1m (B )向下移动1m
(C )向上移动0.5m (D )向下移动0.5m
4 有两个同样的木块,从同高度自由下落,在下落中,其中一木块被水平飞来的子弹击中,并使子弹陷于其中,子弹的质量不能忽略,不计空气阻力,则( )
(A )两木块同时到达地面 (B )被击木块先到达地面
(C )被击木块后到达地面 (D )条件不足,无法确定
5 用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( )
(A )前者遇到的阻力大,后者遇到的阻力小 (B )前者动量守恒,后者动量不守恒
(C )后者动量变化大,给钉的作用力就大 (D )后者动量变化率大,给钉的作
用冲力就大
6 质量为20×10-3kg 的子弹以4001
s m -⋅的速率沿图示方向击入一原来静止的质量为980×10-3
kg 的摆球中,摆线长为1. 0m ,不可伸缩,则子弹击入后摆球的速度大小为( ) (A )41s m -⋅ (B )81s m -⋅ (C )21s m -⋅ (D )8π1s m -⋅
7 一船浮于静水中,船长5m ,质量为m ,一个质量亦为m 的人从船尾走到船头,不计水和空气的阻力,则在此过程中船将( )
(A )静止不动 B )后退5m (C )后退2. 5m (D )后退3m
选做练习:
1 质量分别为m 和4m 的两个质点分别以k E 和4k E 的动能沿一直线相向运动,它们的总动量的大小为( )
(A )k 22mE (B )k 23mE (C )k 25mE (D )k 2)122(mE
2 有两个倾角不同、高度相同,质量相同的斜面置于光滑的水平面上,斜面也是光滑的,有两个一样的小球,从这两斜面顶点,由静止开始下滑,则( )
(A )两小球到达斜面底端时的动量相等
(B )小球和斜面组成的系统在水平方向上的动量守恒
(C )小球和斜面组成的系统的动量守恒
3 一圆锥摆的摆球在水平面上作匀速圆周运动。

如图所示,已知摆球质量为m ,
圆半径为R ,摆球速率为v ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大
小为 。

4 一个原来静止在光滑水平面上的物体,突然分裂为21 ,m m 和3m 三块,且以相同的速率沿三个方向在水
平面上运动。

各运动方向之间的夹角如图所示,则三块物体的质量之比321: :m m m = 。

相关文档
最新文档