2019中考数学热点,阿氏圆问题讲义无答案.doc

合集下载

中考最值难点突破阿氏圆问题(解析版 )

中考最值难点突破阿氏圆问题(解析版 )

中考最值难点突破阿氏圆问题模块一典例剖析+针对训练【模型简介】在圆上找一点P使得PA+k·PB的值最小.类型一:求和最小求PA+k·PB的最小值,PA+k·PB=PA+PC≥AC,当A,P,C三点共线时,最小值为AC1.(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+23BD的最小值.思路引领:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC =23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.总结提升:本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+12BP的最小值.思路引领:连接CP,在CB上取点D,使CD=1,连接DP、AD,则有CDCP=CPCB=12,以此可证明△PCD ∽△BCP ,即可得到PD BP=12,AP +12BP =AP +PD ,以此可推出当点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长,再根据勾股定理即可求解.解:连接CP ,在CB 上取点D ,使CD =1,连接DP 、AD ,则有CD CP =CP CB=12,∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,要使AP +12BP 最小,只要AP +PD 最小,当点A 、P 、D 在同一条直线上时,AP +PD 最小,即AP +12BP 的最小值为AD 的长,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37.∴AP +12BP 的最小值为37.总结提升:本题主要考查相似三角形的判定与性质、勾股定理,根据题意分析出点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长是解题关键.2.如图,在平面直角坐标系xOy 中,A (6,-1),M (4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO +2PA 的最小值为10.思路引领:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .证明△PMN ∽△OMP ,推出PN OP=MN MP =12,推出PN =12OP ,推出OP +2OA =212OP +PA =2(PN +PA ),再根据PN +PA ≥AN ,求出AN ,可得结论.解:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .∵M(4,4),∴OM=42+42=42,∵PM=22,MN=2,∴PM2=MN•MO,∴PM MN =MO PM,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴PN OP =MNMP=12,∴PN=12OP,∵N(3,3),A(6,-1),∴AN=32+42=5,∴OP+2OA=212OP+PA=2(PN+PA),∵PN+PA≥AN,∴PN+PA≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.总结提升:本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+ 12PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+35MD的最小值.思路引领:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求,再根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,在AD上截取AE,使得AE=32.首先证明△PAE∽△DAP,推出PE DP=PA AD =12,可得PE=12PD,推出PC+12PD=PC+PE,利用三角形的三边关系即可解决问题;(3)如图3中,如图2中,在AD上截取AE,使得AE=9.由△MAE∽△DAM,推出EMMD =MA AD =1525=35,可得ME=35MD,推出MC+35MD=MC+ME,利用三角形的三边关系即可解决问题;解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=32.∵PA2=9,AE•AD=32×6=9,∴PA2=AE•AD,∴PA AD =AEPA,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴PE DP =PAAD=12,∴PE=12PD,∴PC+12PD=PC+PE,∵PC+PE≥EC,∴PC+12PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=9 2,∴EC=62+92 2=152,∴PC+12PD的最小值为152.(3)如图3中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴MA AD =AE MA,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴EM MD =MAAD=1525=35,∴ME=35MD,∴MC+35MD=MC+ME,∵MC+ME≥EC,∴MC+35MD的最小值为EC的长,此时点M在线段EC上(如图M′).在Rt△CDE中,∠CDE=90°,CD=18,DE=16,∴EC=162+182=2145,∴MC+35MD的最小值为2145.总结提升:本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系,最短问题等知识,解题的关键是运用数形结合的思想解决问题,添加常用辅助线,构造相似三角形解决问题,用转化的思想思考问题,属于中考压轴题.类型二: 求差最大2.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC的最大值为 237 .思路引领:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=12PC,再根据PD-12PC=PD-PG≤DG,求出DG,可得结论.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴PB BG =BC PB,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴PG PC =PBBC=12,∴PG=12PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=43,∴GH=CG+CH=6+4=10,∴DG=GH2+DH2=102+(43)2=237,∵PD-12PC=PD-PG≤DG,∴PD-12PC≤237,∴PD-12PC的最大值为237.总结提升:本题考查阿氏圆问题,菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.针对训练1.(2022•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为5.思路引领:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.解:在BC上取一点G,使得BG=1,如图,∵PB BG =21=2,BCPB=42=2,∴PB BG =BC PB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PG PC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为:5总结提升:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=12 PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+ 12PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD-12PC的最大值.思路引领:(1)通过相似三角形△BPN∽△BCP的性质证得结论;(2)如图2中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC =BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG;(3)如图3中,在BC上取一点G,使得BG=1,作DF⊥BC于F.解法类似(2);解:(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴BN BP =BP BC.又∵∠B=∠B,∴△BPN∽△BCP.∴PN PC =BNBP=12.∴PN=12PC;(2)如图2,在BC上取一点G,使得BG=1,∵PB BG =21=2,BCPB=42=2∴PB BG =BCPB,∠PBG=∠PBC∴△PBG∽△CBP∴PG PC =BGPB=12∴PG=12PC∴PD+12PC=DP+PG∵DP+PG≥DG∴当D、P、G共线时,PD+12PC的值最小,最小值为DG=42+32=5 (3)同(2)中证法,如图3,当点P在DG的延长线上时,PD-12PC的最大值,最大值为DG=37.总结提升:本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.类型三:综合应用3.((2020•成华区校级模拟)如图1,抛物线y=mx2-3mx+n(m≠0)与x轴交于点C( -1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2=3625时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α< 90°),连接E′A、E′B,求E'A+23E'B的最小值.思路引领:(1)令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式.(2)由△PNM ∽△ANE ,推出PN AN =65,列出方程即可解决问题.(3)在y 轴上取一点M 使得OM ′=43,构造相似三角形,可以证明AM ′就是E ′A +23E ′B 的最小值.解:(1)∵抛物线y =mx 2-3mx +n (m ≠0)与x 轴交于点C (-1,0)与y 轴交于点B (0,3),则有n =3m +3m +n =0 ,解得m =-34n =3,∴抛物线y =-34x 2+94x +3,令y =0,得到-34x 2+94x +3=0,解得:x =4或-1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx +b ,则b =34k +b =0,解得k =-34b =3 ,∴直线AB 解析式为y =-34x +3.(2)如图1中,设P m ,-34m 2+94m +3 ,则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,S 1S 2=3625,∴PN AN=65,∵NE∥OB,∴AN AB =AE OA,∴AN=54(4-m),∵抛物线解析式为y=-34x2+94x+3,∴PN=-34m2+94m+3--34m+3=-34m2+3m,∴-34m2+3m54(4-m)=65,解得m=2或4(舍弃),∴m=2,∴P2,92.(3)如图2中,在y轴上取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=43×3=4,∴OE′2=OM′•OB,∴OE' OM'=OB OE',∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴M'E'BE'=OE'OB=23,∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=42+432=4103.总结提升:本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+23E′B的最小值,属于中考压轴题针对训练4.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+2A′C最小时,求S△A′BC.2思路引领:(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,BD=2,BG=3DG=23,∴在直角△BDG中有DG=12∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=2+23,BC=2+6;∴AC=22(2)线段DC与线段HG的数量关系为:HG=3CD,4证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END =∠EBD =90°,∴E ,B ,D ,N 四点共圆,∴∠BNE =∠EDB =45°,∠NEB +∠BDN =180°∵∠BDC +∠BDN =180°,∠BCD =45°,∴∠BEN =∠BDC ,∴∠BNE =45°=∠BCD ,在△BEN 和△BDC 中,∠BNE =∠BCD∠BEN =∠BDC BE =BA,∴△BEN ≌△BDC (AAS ),∴BN =BC ,∵∠BAC =90°,在等腰△BNC 中,由三线合一可知BA 是CN 的中线,∵∠BAC =∠END =90°,∴EN ∥AB ,∵A 是CN 的中点,∴F 是EC 的中点,∵G 是BC 的中点,∴FG 是△BEC 的中位线,∴FG ∥BE ,FG =12BE ,∵BE ⊥BD ,∴FG ⊥BD ,∵∠ABD =30°,∴∠BFG =60°,∵∠ABC =45°,∴∠BGF =75°,设AC =a ,则AB =a ,在Rt △ABD 中,AD =33a ,BD =BE =233a ,∴FG =12BE ,∴FG =33a ,∵GM ⊥AB ,∴△BGM 是等腰三角形,∴MG =MB =22BG =22×12BC =22×12×2AC =12a ,在Rt △MFG 中,∠MFG =60°,∴3MF =MG ,∴MF =36a ,∴BF=BM+MF=3+36a,在Rt△BFH中,∠BFG=60°,∴FH=12BF=3+312a,∴HG=FG-FH=33a-3+312a=14(3-1)a,又∵CD=a-33a=33(3-1)a,∴CD HG =43,∴HG=34CD;(3)设AB=a,则BC=2a,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵A'BBN =a22a=2,BCA'B=2aa=2,∴A'BBN =BCA'B=2,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴A'N A'C =A'BBC=22,∴A'N=22A'C,根据旋转和两点之间线段最短可知,A'D+22A'C最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''FA=∠A''DA=90°,∴四边形A''FAD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4-x)2,解得x=4-23.∴此时S△A''BC=S△ABC-S△AA''B-S△A''AC=12AB•AC-12AB•A''F-12AC•A''D=12×4×4-1 2×4×2-12×4×(4-23)=43-4.总结提升:此题主要考查全等三角形判定,等腰三角形的三线合一,解直角三角形,四点共圆,几何最值的阿氏圆模型等知识,综合性强,难度较大,属于压轴题,解得关键是作辅助线,构造全等三角形和相似三角形解决问题.5.(2022•高唐县二模)如图,抛物线y=-x2+bx+c经过点A(-4,-4),B(0,4),直线AC的解析式为y=-12x-6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=-x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+ CM的最小值.思路引领:(1)直接利用待定系数法求解即可;(2)先利用待定系数法求出直线AB的解析式,可判断出AB⊥AC,当四边形EAFH是平行四边形时,四边形EAFH是矩形,分别点E、H、F的坐标,再利用中点坐标公式求解即可;(3)先取EG的中点P,进而判断出△PEM∽△MEA,即可得出PM=12AM,连接CP交⊙E于点M,再求出点P坐标,即可得出结论.解:(1)将点A(-4,-4),B(0,4)代入y=-x2+bx+c得:-16-4b+c=-4c=4,解得:b=-2 c=4,∴抛物线解析式为:y =-x 2-2x +4;(2)如图,当点E 运动到(-2,0)时,四边形EAFH 是矩形,设直线AB 的解析式为y =kx +b ,将点A (-4,-4),B (0,4)代入得:-4k +b =-4b =4 ,解得:k =2b =4 ,∴线AB 的解析式为y =2x +4,∵直线AC 的解析式为y =-12x -6,∴AB ⊥AC ,∴当四边形EAFH 是平行四边形时,四边形EAFH 是矩形,此时,EF 与AH 互相平分,设E (m ,2m +4),H (0,t )则F m ,-12m -6 ,∵A (-4,-4),∴12(m +m )=12(-4+0)122m +4-12m -6 =12(-4+t ),解得:m =-2t =-1∴E (-2,0),H (0,-1);(3)如图,由(2)可知E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于点G ,取GE 的中点P ,则PE =52,设P (k ,2k +4),∵E (-2,0),∴PE 2=(k +2)2+(2k +4)2=522,∴k =-52或k =-32(舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,连接PC 交⊙E 于点M ,连接EM ,则EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PE ME =MEAE,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PM AM =MEAE=12,∴PM=12AM,∴12AM+CM=PM+CM,∴当P、M、C三点共线时,12AM+CM取得最小值即PC的长,∴1 2AM+CM最小值为552.总结提升:本题是二次函数的综合题,考查了待定系数法求函数关系式,平行四边形的性质,矩形的性质,相似三角形的判定与性质,中点坐标公式,极值的确定,熟练掌握待定系数法求函数解析式,利用中点坐标公式构建方程,以及构造相似三角形是解决问题的关键.模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12PB+PC的最小值等于()A.4B.32C.17D.15思路引领:在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=1 2PB,则12PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴AP AB =12,∵AP=2,AQ=1,∴AQAP=12,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=12PB,∴12PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB=AC2+AQ2=17,∴12PB+PC的最小值17,故选:C.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.2.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P 为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+ 2PN的取值范围为6-23≤PM+2PN≤6+23 .思路引领:PM+2PN=212PM+PN,作MH⊥PN,HP=12PM,确定HN的最大值和最小值.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,PM+2PN=212PM+PN=2HN=6+23,如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,∴PM+2PN=212PM+PN=2HN=6-23,∴6-23≤PM+2PN≤6+23.总结提升:本题考查的是解直角三角形等知识,解决问题的关键是构造12 PM.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为 17 .思路引领:在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=13AP,当B、Q、P三点共线时,13PA+PB的值最小,求出BQ即为所求.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴CP AC =13,∵CP=3,CQ=1,∴CQCP=13,∴△ACP∽△PCQ,∴PQ=13AP,∴13PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,13PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=17,∴13PA+PB的最小值17,故答案为:17.总结提升:本题考查阿氏圆求最短距离,熟练掌握胡不归求最短距离的方法,利用三角形相似将13PA转化为PQ是解题的关键.4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为 1452 .思路引领:如图,在CB上取一点F,使得CF=12,连接PF,AF.利用相似三角形的性质证明PF=14PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.解:如图,在CB上取一点F,使得CF=12,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵CF CP =14,CPCB=14,∴CF CP =CP CB,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴PF PB =CFCP=14,∴PF=14PB,∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=CF2+AC2=12 2+62=1452,∴PA+14PB≥1452,∴PA+14PB的最小值为1452,故答案为145 2.总结提升:本题考查阿氏圆问题,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O 半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 85 .思路引领:在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵OA OP =13=39=OPOH,∠AOP=∠POH,∴△AOP∽△POH,∴AP HP =OPOH=13,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH=OB2+OH2=4+81=85,故答案为:85.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 163 .思路引领:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,证明△APC ∽△BPA ,由相似三角形的性质可得BP =2AP ,CP =12AP ,从而求出AP 、BP 和CP ,即可求出点A 的运动轨迹,再找出距离BC 最远的A 点的位置即可求解.解:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,∵∠CAP =∠ABC ,∠BPA =∠APC ,AB =2AC ,∴△APC ∽△BPA ,AP BP =CP AP =AC AB =12,∴BP =2AP ,CP =12AP ,∵BP -CP =BC =4,∴2AP -12AP =4,解得:AP =83,∴BP =163,CP =43,即点P 为定点,∴点A 的轨迹为以点P 为圆心,83为半径的圆上,如图,过点P 作BC 的垂线,交圆P 与点A 1,此时点A 1到BC 的距离最大,即△ABC 的面积最大,S △ABC =12BC •A 1P =12×4×83=163.故答案为:163.总结提升:本题考查相似三角形的判定和性质,三角形的面积,确定点的运动轨迹,熟练掌握三角形的判定和性质以及三角形的面积公式是解题的关键.7.(2020•溧阳市一模)如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .思路引领:延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT= 2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴OMOD =OT OM,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴DM MT =OMOT=12,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT=OC2+OT2=42+122=410,∴CM+2DM≥410,∴CM+2DM的最小值为410,∴答案为410.总结提升:本题考查相似三角形的判定和性质,阿氏圆问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为5.思路引领:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出PTPC=PBCB=12,推出PT=12PC,由PD+12PC=PD+PT≥DT=5,由此可得结论.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT=CD2+CT2=42+32=5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴PB BT =BC PB,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴PT PC =PBCB=12,∴PT=12PC,∵PD+12PC=PD+PT≥DT=5,∴PD+12PC的最小值为5,故答案为:5.总结提升:本题考查阿氏圆问题,正方形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为 132 .思路引领:如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出PCPE =OPOE=12,推出EP=2PC,推出PC+12PD=12(2PC+PD)=12(PD+PE),推出当点E,点P,点D三点共线时,PC+12PD的值最小.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴OP OE =OCOP=12,且∠COP=∠EOP∴△OPE ∽△OCP ∴PC PE =OP OE=12,∴EP =2PC ,∴PC +12PD =12(2PC +PD )=12(PD +PE ),∴当点E ,点P ,点D 三点共线时,PC +12PD 的值最小,∵DE =OD 2+OE 2=52+122=13,∴PD +PE ≥DE =13,∴PD +PE 的最小值为13,∴PC +12PD 的值最小值为132.故答案为:132.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.10.如图所示的平面直角坐标系中,A (0,4),B (4,0),P 是第一象限内一动点,OP =2,连接AP 、BP ,则BP +12AP 的最小值是 17 .思路引领:如图,取点T (0,1),连接PT ,BT .利用相似三角形的性质证明PT =12PB ,推出PB +12PA =PB +PT ≥BT ,求出BT ,可得结论.解:如图,取点T (0,1),连接PT ,BT .∵T (0,1),A (0,4),B (4,0),∴OT =1,OA =4,OB =4,∵OP =2,∴OP 2=OT •OA ,∴OP OT =OA OP,∵∠POT =∠AOP ,∴△POT ∽△AOP ,∴PT PA =OPOA=12,∴PT=12PA,∴PB+12PA=PB+PT,∵BT=12+42=17,∴PB+PT≥17,∴BP+12AP≥17∴BP+12PB的最小值为17.故答案为:17.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为25 .思路引领:2PA+PB=2PA+22PB,利用相似三角形构造22PB.解:设⊙O半径为r,OP=r=12BC=2,OB=2r=22,取OB的中点I,连接PI,∴OI=IB=2,∵OPOI =22=2,OB OP =222=2,∴OPOI =OB OP,∠O是公共角,∴△BOP∽△POI,∴PI PB =OIOP=22,∴PI=22PB,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.总结提升:本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.12.如图,在每个小正方形的边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上,点E 在OA 上,且点E 也在格点上.(I )OE OB的值为 23 ;(Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°)连接E 'A ,E 'B ,当E 'A +23E 'B 的值最小时,请用无刻度的直尺画出点E ′,并简要说明点E '的位置是如何找到的(不要求证明) 通过取格点K 、T ,使得OH :OD =2:3,构造相似三角形将23E ′B 转化为E ′H .思路引领:(1)求出OE ,OB 即可解决问题.(2)构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.解:(1)由题意OE =2,OB =3,∴OE OB =23,故答案为:23.(2)如图,取格点K,T,连接KT交OB于H,连接AH交DE于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将23E′B转化为E′H,利用两点之间线段最短即可解决问题.总结提升:本题是作图-旋转变换,主要考查了相似三角形的判定与性质,两点之间,线段最短等知识,找到点H是解题的关键.13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n-m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.思路引领:(1)根据正方形性质和三角形内角和定理即可证得结论;(2)如图1,过点O作OE⊥PA于E,先证明△APM∽△OAE,利用相似三角形性质可得出m=14n2,进而可得:n-m=n-14n2=-14(n-2)2+1,再运用二次函数性质即可得出答案;(3)如图2,连接AC、BD交于点D,连接PD,当D、P、M三点共线且DM⊥AB时,PD+ PM=DM最小,即2h+2m=2DM最小,根据正方形和等腰直角三角形的性质即可求得答案.解:(1)证明:∵四边形OABC是正方形,∴∠OAB=90°,∴∠OAP+∠PAM=90°,即2∠OAP+2∠PAM)=180°,∵OA=OP,∴∠OPA=∠OAP,∵∠OPA+∠OAP+∠POA=180°,∴2∠OAP+∠POA=180°,∴∠POA=2∠PAM;(2)解:如图1,过点O作OE⊥PA于E,∵OA=OP,OE⊥PA,∴AE=12PA,∠AOE=∠POE=12∠POA,∵∠POA=2∠PAM,∴∠PAM=12∠POA,∴∠PAM=∠AOE,∵PM⊥AB,∴∠AMP=90°=∠OEA,∴△APM∽△OAE,∴PMPA =AEOA,即mn=12n2,∴m=14n2,∴n-m=n-14n2=-14(n-2)2+1,∴当n=2时,n-m取得最大值,n-m最大值为1;(3)解:如图2,连接AC、OB交于点D,连接PD,∵四边形ABCO是正方形,∴AC⊥BD,OD=AD=BD,∴OD OA =OAOB=22,∵OP=OA,∴OD OP =OPOB=22,∵∠POD=∠BOP,∴△POD∽△BOP,∴PD PB =OPOB=22,∴PD=22PB,∵PB=h,PM=m,∴2h +2m =222h +m=222PB +PM =2(PD +PM ),∵当D 、P 、M 三点共线且DM ⊥AB 于M 时,PD +PM =DM 最小,∴当D 、P 、M 三点共线且DM ⊥AB 时,2h +2m =2(PD +PM )=2DM 最小,如图3,∵△ABD 是等腰直角三角形,DM ⊥AB ,∴DM =12AB =1,∴2DM =2,即2h +2m 的最小值为2.总结提升:本题是圆的综合题,考查了等腰直角三角形的性质,正方形的性质,三角形内角和定理,圆的性质,相似三角形的判定和性质,两点之间线段最短,点到直线的距离垂线段最短,二次函数最值的应用,利用相似三角形性质列出关于m 、n 的关系式恰当运用配方法是解题关键.14.(2022•从化区一模)已知,AB 是⊙O 的直径,AB =42,AC =BC .(1)求弦BC 的长;(2)若点D 是AB 下方⊙O 上的动点(不与点A ,B 重合),以CD 为边,作正方形CDEF ,如图1所示,若M 是DF 的中点,N 是BC 的中点,求证:线段MN 的长为定值;(3)如图2,点P 是动点,且AP =2,连接CP ,PB ,一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,到达点B 后停止运动,求点Q 的运动时间t 的最小值.思路引领:(1)AB 是⊙O 的直径,AC =BC 可得到△ABC 是等腰直角三角形,从而得道答案;(2)连接AD 、CM 、DB 、FB ,首先利用△ACD ≌△BCF ,∠CBF =∠CAD ,证明D 、B 、F 共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',先证明PM =PC 2,PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,再计算BM 的长度即可.解:(1)∵AB 是⊙O 的直径,∴∠ABC =90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90-∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=12BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB 于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=PC2+BP,∵AM=1,AP=2,AC=BC=4,∴AMAP =APAC=12,又∠MAP=∠PAC,∴△MAP∽△PAC,∴PMPC =AMAP=12,∴PM=PC2,。

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

中考数学模型阿氏圆专题

中考数学模型阿氏圆专题

中考数学模型阿氏圆专题阿基米德的圆是指周长是半径r的常数倍的圆,即C=2πr。

在数学模型中,阿基米德的圆是一种重要的几何模型。

它的特点是,无论圆的半径大小如何变化,其周长与半径的比值始终保持不变。

这种性质使得阿基米德的圆在工程、物理、生物等领域有着广泛的应用。

首先,阿基米德的圆在工程领域中具有重要意义。

在建筑设计中,通过使用阿基米德的圆模型可以制作出很多典型的建筑结构,比如圆形天花板、拱桥等。

而在工业制造领域,阿基米德的圆也可以应用于机械设计、汽车制造等方面。

例如,在汽车制造中,阿基米德的圆模型可以用来设计轮胎的形状和尺寸,以确保汽车在行驶过程中的稳定性和平衡性。

其次,阿基米德的圆在物理学中也有着广泛的应用。

在力学中,通过使用阿基米德的圆模型可以描述物体的运动轨迹。

例如,在自由落体运动中,物体的竖直位移与时间的关系可以通过阿基米德的圆模型来解释。

在光学中,阿基米德的圆也可以用来解释光的传播规律。

例如,在反射折射现象中,阿基米德的圆模型可以用来解释光线在不同介质间传播时的变化。

此外,阿基米德的圆在生物学中也有一定的应用。

在生物进化研究中,阿基米德的圆模型可以用来描述物种的数量与时间的关系。

例如,根据阿基米德的圆模型,如果假设某一物种的数量每年以相同的速率增加,那么可以预测在未来的某一时刻,该物种的数量将达到一个平衡值。

总的来说,阿基米德的圆是一种非常有用的数学模型,它在工程、物理、生物等多个领域都有着广泛的应用。

通过研究阿基米德的圆模型,我们可以更好地理解和应用这些领域中的相关知识,为实际问题的解决提供更科学、准确的方法。

因此,我们应该深入学习和研究阿基米德的圆模型,以提高我们的数学建模能力和解决实际问题的能力。

中考数学热点阿氏圆问题讲义无答案

中考数学热点阿氏圆问题讲义无答案

定义:已知平面上两点A,B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,具体的描述:一动点P到两定点A、B的距离之比等于定比m:n,则P点的轨迹,是以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆。

该圆称为阿波罗尼斯圆,简称阿氏圆。

解题策略:利用两边成比例且夹角相等构造相似三角形(简称美人鱼相似)“阿氏圆”一般解题步骤第一步:连接动点至圆心0(将系数不为1的线段的两个端点分别与圆心相连接),则连接0P、OB;第二步:计算出所连接的这两条线段OP、OB长度;第三步:计算这两条线段长度的比=k;第四步:在0B上取点C,使得;第五步:连接AC,与圆0交点即为点P.阿氏圆最值问题例题精讲例1:问题提出:如图1,在R△ABC中,∠ACB=90,CB=4,AC=6.圆C半经为2,P为圆上一助点,连结AP,BP,求AP+BP的最小值尝试解决:为了解块这个间题,下面给出一种解题思路、如图2,连接CP,在CB上取点D,使CD=1则有,又∵∠PCD=∠BCP,∴△PCD△BCP,∴,∴PD=,∴AP+AP+PD请你完成余下的思考,并直接写出答案:AP+BP的最小值为。

自主探索:在“间题提出”的条件不变的情况下,AP+BP的最小值为。

拓展延伸:已知扇形COD中,∠COD=90,0C=6,OA=3,0B=5,点P是弧CD上一点,求2A+PB的最小值。

强化训练向内构造类型1,如图,已知AC=6,BC=8,AB=10,圆C的半经为4,点D是圆C上的动点,连接AD、BD,则AD+BD的最小值为。

2.在Rt△ABC中,∠ACB=90°AC=4,BC=3,点D为△ABC内一动点,且满足CD=2,则AD+BD的最小值为。

3、如图,在R△ABC中,∠C=90°,CA=3,CB=4.⊙C的半径为2,点P是⊙C上一动点,则AP+PB的最小值为。

4、如图,四边形ABCD为边长为4的正方形, ⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为。

阿氏圆专题讲解

阿氏圆专题讲解

阿氏圆专题知识点回顾:轨迹为圆的几何条件:一、一动点到一定点的距离不变,此动点的轨迹为圆; 二、定角对定长,也叫“隐形圆”注意:1、定长表示线段的长度和位置不变;2、定角为90°,角的顶点的轨迹为圆,定角不为90°,角的顶点的轨迹为一段圆弧;阿氏圆定义:已知平面两个定点A 、B 到一动点P 的比值为一定值k (k ≠1),那么这个动点P 的轨迹是一个圆。

注意:1、此圆与直线AB 交于点E 和点F ,点E 以定比内分线段AB,点F 以定比外分线段AB;2、k=1,此动点在定线段的垂直平分线上。

图文:EBFPOABPAK PB PA =,且K EB EA FB FA == 1==K PBPA解题思路:1、连接动点至圆心,即连接OP ,再连接其中一个定点于圆心,即连接OB,为了确定另一个定点也在直线OB 上;2、计算OB 和OP 的长度,确定比值OBOP=K; 3、在OB 上取一点,A ,使OP OA =OBOP=K,得三角形相似即△POA ∽△BOP ; 4、根据△POA ∽△BOP ,可得PA=K ·PB,可将PB 和PA 进行转换。

阿氏圆总结:遇到”“kPB PA +型的最值问题,要将系数为K 的线段转化为系数为1的线段,即要考虑”“PC kPB =。

求kAB PA +可转化为PA+PC.图1 图2 图3 关键在于确定点C 的位置,当点A 、P 、C 三点共线时,PA+PC.最小,即PA+k ·PB 值最小。

(提示:kAB PA +=k (k 1PA+PB ),所以也可以将k1PA 转化为系数为1的线段。

)B APOBC APOBC PPAO相关例题:例1、如图,点A 、B 在圆O 上,且OA=OB=6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且0D=4,动点P 在圆O 上,则2PC+PD 的最小值为 。

解题思路:连接OP,圆上一动点P ,OA 上有一定点C ,由阿氏圆可得,直线OA 上肯定存在另一定点E ,使得PE PC 为定值。

2019中考数学热点,阿氏圆问题讲义(无答案)(可编辑修改word版)

2019中考数学热点,阿氏圆问题讲义(无答案)(可编辑修改word版)

定义:已知平面上两点A,B,则所有满足PA/PB=k 且不等于1的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,具体的描述:一动点P 到两定点A 、B 的距离之比等于定比m :n ,则P 点的轨迹,是以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆。

该圆称为阿波罗尼斯圆,简称阿氏圆。

解题策略:利用两边成比例且夹角相等构造相似三角形(简称美人鱼相似)“阿氏圆”一般解题步骤第一步:连接动点至圆心0(将系数不为1的线段的两个端点分别与圆心相连接),则连接0P 、OB;第二步:计算出所连接的这两条线段OP 、OB 长度;第三步:计算这两条线段长度的比=k;OP OB 第四步:在0B 上取点C,使得;OC OP =OP OB 第五步:连接AC,与圆0交点即为点P.阿氏圆最值问题例题精讲例1:问题提出:如图1,在R △ABC 中,∠ACB=90,CB=4,AC=6.圆C 半经为2,P°为圆上一助点,连结AP,BP,求AP+BP 的最小值12尝试解决:为了解块这个间题,下面给出一种解题思路、如图2,连接CP,在CB 上取点D,使CD=1则有,又∵∠PCD=∠BCP,∴△PCD △BCP,CD CP =CP CB =12~∴,∴PD=,∴AP+AP+PDPD BP =1212BP 12BP =请你完成余下的思考,并直接写出答案:AP+BP 的最小值为 。

自主探索:在“间题提出”的条件不变的情况下,AP+BP 的最小值为 。

拓展延伸:已知扇形COD 中,∠COD=90,0C=6,OA=3,0B=5,点P 是弧CD 上一点,求2A+PB 的最小值。

°强化训练向内构造类型1,如图,已知AC=6,BC=8,AB=10,圆C 的半经为4,点D 是圆C 上的动点,连接AD 、BD,则AD+BD 的最小值为 。

12 2.在Rt △ABC 中,∠ACB=90°AC=4,BC=3,点D 为△ABC 内一动点,且满足CD=2,则AD+BD 的最小值为 。

中考数学总复习系列之最值系列——阿氏圆问题

中考数学总复习系列之最值系列——阿氏圆问题

最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=. ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。

阿氏圆问题

阿氏圆问题

阿氏圆问题1.阿氏圆的定义已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.2.阿氏圆的应用在初中阶段,阿氏圆主要用于求系数不相同的线段和的最小值.求PC+kPD的最小值.3.解阿氏圆的基本方法构造子母相似△.4.解阿氏圆问题的一般步骤问题:求PC+kPD的最小值(1)连接动点至圆心O(将系数不为1的线段的两个端点分别与圆心相连接),则连接OP、OD;(2)计算出所连接的两条线段OP、OD长度;(3)计算两条线段长度的比OPOD=m;(4)在OD上取点M,使得OMOP=m;(5)连接CM,与圆O的交点即为点P.5.阿氏圆问题的题型(1)两定点都在圆外:P A+k·PB,k<1(2)两定点都在圆内:P A+k·PB,k>1(3)一定点在圆外,一定点在圆内:m·P A+n·PB,m<1,n>1(4)隐圆问题.类型1:两定点在圆外:系数不变,构造子三角形【例题1】(1)如图,已知菱形ABCD的边长为4,∠B=60°,⊙B的半径为2,P为⊙B上一动点,则PD+12PC的最小值为___________.(提示:记BC与⊙B交于点E,取BE的中点F,则△PBF∽△CBP,∴PF=12PC,当D、P、F三点共线时,PD+PF有最小值)(2)如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,⊙C的半径为2,点P是⊙C上一动点,则AP+12PB的最小值为___________.(提示:连接CP,在BC上取一点E,使得CE=12CP=1,则△EPC∽△PBC,∴PE=12PB,当A、E、P三点共线时,AP+PE(3)如图,在△ABC中,∠B=90°,AB=CB=2,以点B为圆心作⊙B与AC相切,点P为⊙B上一动点,则P APC的最小值为____________..(提示:连接BP,取BC的中点E,则△EPB∽△PCB,∴PE PC,当E、P、A三点共线时,PA+PE)(4)如图,菱形ABCD边长为2,∠ABC=60°,⊙A的半径为3,BC与圆相切于点E,点P在⊙A上运动,则PBPD的最小值为____________..(提示:连接AP,作AF=34AD=32,则△AFP∽△APDPD=PF)(5)如图,已知点A (-3,0),B(0,3),C(1,0),若点P是⊙C上一动点,且⊙C与y轴相切,则1 4AP+BP的最小值为___________..(提示:连接CP,在OC上取一点E,使得CE=14CP=14,则△PEC∽△APC,∴PE=14P A,当B、P、C三点共线时,PE+BP(6)如图,若⊙OPOMO=2,∠POM=90°,点Q在⊙OPQ+QM的最小值为____________.(提示:作OE=15OP,则△QEO∽△PQOP Q=QE)DDxxPP【例题2】如图,已知正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上一动点,则PD+12PC的最小值为___________,PD-12PC的最大值为____________.【答案】5;5.(提示:连接BP,记BC与⊙B交于点E,取BE的中点F,则△PBF∽△CBP,∴PF=1 2PC,当D、P、F三点共线时,PD+PF有最小值5;当D、P、F三点共线时,PD-PF有最大值5)类型2:两定点在圆外:系数化简【例题3】(1)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D,连接AD、BD、CD,则2AD+3BD的最小值为___________.【答案】(提示:在AC上取一点E,使得CE=23CD=4,则△CED∽△CDA,∴ED=23AD,当E、D、B三点共线时,ED+BD有最小值(2)如图,在平面直角坐标系xOy中,半⊙O交x轴与点A、B(2,0)两点,AD、BC均为半⊙O的切线,AD=2,BC=7,若点P是半⊙O上的动点,则PD的最小值为___________.【答案】OD、OP,取OD的中点E,则△OPE∽△ODP,∴PEPD,当E、P、C三点共线时,PE+PC有最小值)CDDCB Bx(3)如图,已知菱形ABCD的边长为4,∠B=60°,⊙B的半径为2,P为⊙B+6PC的最小值为___________.【答案】.(提示:分别连接AC、BD交于点O,则BD=BP,在BD上取一点M,使得BMBP,则△PBM∽△DBP,∴PMPD,当C、P、M三点共线时,PM+PC有最小值)类型3:两定点在圆内:向外延长,构造母三角形【例题4】(1)如图,∠AOB=90°,OA=OB=1,圆OP是圆O上一动点,则P APB的最小值为___________..(提示:点在圆内,反向操作,延长OB至点C,使CO=2OB=2,则△OPB∽△OCP,∴P B=PC)(2)如图,已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,则2P A +PB的最小值为___________.【答案】13.(提示:点在圆内,反向操作,延长OC至点E,使CE=6,连接PE、OP,则△EOP∽△POA,∴PE=2P A,当E、P、B三点共线时,PE+PB有最小值13)DCC(3)如图,⊙O的半径为2,AB为直径,过AO的中点C作CD⊥AB交⊙O于点D,DE为⊙O的直径,点P为⊙O上一动点,则2PC+PE的最小值为____________.【答案】(提示:连接OP,延长OA至点F,使AF=OA,则△FOP∽△PCO,∴PF=2PC,当F、P、E三点共线时,PF+PE有最小值【例题5】如图,在△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为2,点D是⊙C上一动点,点E在CB上,CE=1,连接AD、DE,则12AD+2DE的最小值为___________.(提示:连接CD,在CA上取一点F,使CF=14CA=1,则△FDC∽△DAC,∴DF=12AD;∵CE=1,CB=4,∴△DCB∽△ECD,∴BD=2DE,当F、D、B三点共线时,DF+DB有最小值类型4:隐圆问题【例题6】如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为△ABC内一动点,且满足CD=2,则AD+23BD的最小值为____________.(提示:点D的运动轨迹为以C为圆心,2为半径的圆,在BC上取一点E,使得CE=2 3CD=43,则△ECD∽△BCD,∴DE=23BD,当E、D、A三点共线时,AD+DEBF BBBABCDDEDCBA【例题7】如图,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB外部的第一象限内一动点,且∠BP A =135°,则2PD+PC的最小值为____________.【答案】.(提示:连接AB,∵∠BP A=135°,AB=,∴点P的轨迹是以O为圆心,2为半径的圆,连接OP,在OA上取一点E,使得OE=12OA,则△POE∽△COP,∴PE=12PC,当D、P、E三点共线时,PD+PE有最小值xx。

阿氏圆中考数学压轴热点

阿氏圆中考数学压轴热点

C阿氏圆模型专题训练阿氏圆(阿波罗尼斯圆):已知平面上两定点A 、B ,则所有满足PA/PB=k(k 不等于1)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。

在初中的题目中往往利用逆向思维构造"斜A"型相似(也叫"母子型相似"或"美人鱼相似")+两点间线段最短解决带系数两线段之和的最值问题。

观察下面的图形,当P 在在圆上运动时,PA 、PB 的长在不断的发生变化,但它们的比值却始终保持不变。

解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。

如图,在△ABC 的边AC 上找一点D ,使得AD/AB=AB/AC ,则此时△ABD ∽△ACB 。

那么如何应用"阿氏圆"的性质解答带系数的两条线段和的最小值呢?我们来看一道基本题目:已知∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点. (1)求12AP BP +的最小值为 (2)求13AP BP +的最小值为 (3) 实战练习: 1、已知⊙O 半径为1,AC 、BD 为切线,AC=1,BD=2,P 为弧试求2PC PD +的最小值 2、已知点A (4,0),B (4,4),点P 在半径为2的⊙O 的最小值 3、已知点A(-3,0),B (0,3),C (1,0),若点P 为⊙C 上一动点,且⊙C 与y 轴相切,(1)14AP BP +(2)PAB S V 的最小值.4、如图1,在平面直角坐标系xoy 中,半⊙O 交x 轴与点A 、B(2,0)两点,AD 、BC 均为半⊙O 的切线,AD=2,BC=7.(1)求OD 的长;(2)如图2,若点P 是半⊙O 上的动点,Q 为OD 的中点.连接PO 、PQ.①求证:△OPQ ∽△ODP;②是否存在点P ,使2PD PC +有最小值,若存在,试求出点P 的坐标; 若不存在,请说明理由.5、(1)如图1,已知正方形ABC 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值. (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么23PD PC +的最小值为 ;23PD PC -的最大值为 (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2.点P 是圆B 上的一个动点.那么12PD PC +的最小值为 ;12PD PC -的最大值为。

阿氏圆问题归纳全新

阿氏圆问题归纳全新

阿氏圆题型的解题方法和技巧以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比nm内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.【补充:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k 提到括号外边,将其中一条线段的系数化成k1,再构造△相似进行计算】习题【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.4.如图,点A ,B 在⊙O 上,OA=OB=12,OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,OD=10.动点P 在⊙O 上,则PC+21PD 的最小值为_______. 5.如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.6.如图,边长为4的正方形,内切圆记为⊙O ,P 是圆上的动点,求2PA+PB 的最小值.7.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+21PC 的最小值为______;2PD+4PC 的最小值为______.8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+21FA 的最小值.11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+21PC 的最小值和PD-21PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+32PC 的最小值为______,PD-32PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+21PC 的最小值为______,PD-21PC 的最大值为________.12.问题提出:如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+21BP 的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=1,则有21==CB CP CP CD ,又∵∠PCD=∠BCP ,∴△PCD ∽△BCP .∴21=BP PD , ∴PD=21BP ,∴AP+21BP=AP+PD . 请你完成余下的思考,并直接写出答案:AP+21BP 的最小值为________. (2)自主探索:在“问题提出”的条件不变的情况下,31AP+BP 的最小值为_______.(3)拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax ²+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M . (1)求a 的值和直线AB 的函数表达式;(2)设△PMN 的周长为C1,△AEN 的周长为C2,若5621 C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+32E ′B 的最小值.问题背景:如图1,在△ABC 中,BC=4,AB=2AC .问题初探:请写出任意一对满足条件的AB 与AC 的值:AB=_____,AC=_______. 问题再探:如图2,在AC 右侧作∠CAD=∠B ,交BC 的延长线于点D ,求CD 的长. 问题解决:求△ABC 的面积的最大值.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2AB,试探究BC,BD的数量关系.(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.生活如意,事业高升。

阿氏圆中考数学压轴热点

阿氏圆中考数学压轴热点

阿氏圆模型专题训练阿氏圆 ( 阿波罗尼斯圆 ) :已知平面上两定点 A 、B ,则全部知足 PA/PB=k(k 不等于 1) 的点 P 的轨迹是一个圆,这个轨迹最初由古希腊数学家阿波罗尼斯发现, 故称阿氏圆。

在初中的题目中常常利用逆向思想结构 "斜 A"型相像 ( 也叫 " 母子型相像 " 或 " 佳人鱼相像 ")+ 两点间线段最短解决带系数两线段之和的最值问题。

察看下边的图形,当 P 在在圆上运动时, PA 、PB 的长在不停的发生变化,但它们的比值却一直保持不变。

解决阿氏圆问题,第一要娴熟掌握母子型相像三角形的性质和结构方法。

如图,在△ ABC 的边 AC 上找一点 D ,使得 AD/AB=AB/AC ,则此时△ ABD ∽△ ACB 。

母子型相像(共角共边)BA D C那么怎样应用 " 阿氏圆 " 的性质解答带系数的两条线段和的最小值呢 ?我们来看一道基此题目 :已知∠ ACB=90°, CB=4,CA=6,⊙ C 半径为 2,P 为圆上一动点 .A1BP 的最小值为(1) 求 AP2(2) 求 1AP BP 的最小值为3P(3)CB实战练习:1、已知⊙ O 半径为 1, AC 、 BD 为切线, AC=1,BD=2,P 为弧 AB 上一动点,D试求2 PC PD 的最小值2C PA OB2、已知点 A (4, 0),B (4,4),点 P 在半径为 2 的⊙ O 上运动,试求 1AP BP 的最小值2yBPOA x3、已知点A(-3,0) , B( 0,3 ), C( 1,0 ),若点 P为⊙ C 上一动点,且⊙ C与 y 轴相切,(1)1AP BP 的最小值;y 4B(2)S VPAB的最小值 .PA OCx4、如图 1,在平面直角坐标系 xoy 中,半⊙ O交 x 轴与点 A、B(2,0) 两点, AD、BC均为半⊙ O 的切线, AD=2, BC=7.(1)求 OD的长;(2)如图 2,若点 P 是半⊙ O上的动点, Q为 OD的中点 . 连结 PO、 PQ.①求证:△ OPQ∽△ ODP;②能否存在点P,使PD2PC有最小值,若存在,试求出点P 的坐标;若不存在,请说明原因.5、(1)如图 1,已知正方形 ABC的边长为 4,圆 B 的半径为 2,点 P 是圆 B 上的一个动点,1122(2)如图 2,已知正方形 ABCD的边长为 9,圆 B 的半径为 6,点 P 是圆 B 上的一个动点,那么PD 2 PC的最小值为; PD2 PC的最大值为33(3)如图3,已知菱形ABCD的边长为4,∠ B=60°,圆 B 的半径为 2. 点P 是圆 B 上的一个动点. 那么PD 1PC的最小值为; PD1PC的最大值为22。

阿氏圆问题专题知识解读

阿氏圆问题专题知识解读

阿氏圆专题知识解读【专题说明】“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。

此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。

即点P在直线上运动和点P在圆上运动。

(1)其中点P在直线上运动的类型称之为“胡不归”问题;(2)点P在圆周上运动的类型称之为“阿氏圆”问题;本章节主要学习“阿氏圆”解题方法。

【方法技巧】阿氏圆问题问题:求解“AP nPB+”类加权线段和最小值方法:①定:定系数,并确定是半径和哪条线段的比值②造:根据线段比,构造母子型相似③算:根据母子型结论,计算定点位置④转:“AP nPB+”问题+”转化为“AP PM关键:①可解性:半径长与圆心到加权线段中定点距离比等于加权系数②系数小于1:内部构造母子型③系数大于1:外部构造母子型【典例分析】【典例1】阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.【变式1】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=9,⊙B的半径为3,点P 是⊙B上一点,连接AP,CP,则AP+CP的最小值为.【答案】【解答】解:连接BP,在BC上截取BQ=1,连接PQ,AQ,∴,,∴,∵∠PBQ=∠CBP,∴△BPQ∽△BCP,∴,∴PQ=CP,∴AP+CP=AP+PQ≥AQ,当A、P、Q三点依次在同一直线上时,AP+CP=AQ=的值最小,故答案为:.【典例2】如图,在扇形AOB中,∠AOB=90°,OA=4,C,D分别为OA,OB的中点,点P是上一点,则2PC+PD的最小值为.【答案】2.【解答】解:如图,延长OA使AE=OA,连接ED,EP,OP,∵AO=OB=4,C,D分别是OA,OB的中点,∴OE=8,OP=4,OD=OC=2,∴==,且∠COP=∠EOP,∴△OPE∽△OCP,∴==,∴EP=2DC,∴2PC+PD=PE+PD,∴当点E,点P,点D三点共线时,2PC+PD的值最小,∴2PC+PD最小值==2.【变式2-1】如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为.【答案】【解答】解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.【变式2-2】如图,△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转θ(0°<θ<120°)得到线段AD,连接CD,∠BAD的平分线交CD于点E,点F为CD上一点,且DF=2CF,连接BF.(1)如图①,当θ=60°时,求EF的长;(2)如图②,连接AF,求BF+AF的最小值.【解答】解:(1)∵将边AB绕点A顺时针旋转θ(0°<θ<120°)得到线段AD,如图,∴∠BAD=θ,AB=AD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴AC=AD,∴∠ADC=∠ACD,∵θ=60°,∴∠DAC=120°∴∠ADC=∠ACD=30°,∵AE平分∠BAD,∴∠DAE=∠BAE=30°,∴∠EDA=∠EAD,∠CAE=90°,∴DE=AE=,∵AB=AC=6,∴DE=AE=AC•tan30°=2,∴CE=4,∴CD=CE+DE=6,∵DF=2CF,∴CF=CD=2,∴EF=CE﹣CF=2;(2)如图,过F作FH∥AD,交AC于H,取AC的中点M,连接FM,则AM=CM=3,∴△CFH∽△CDA,∴,∵DF=2FC,∴,∴CH=FH=2,∴MH=3﹣2=1,∵,,∴,∵∠FHM=∠AHF,∴△FHM∽△AHF,∴,∴FM=AF,∴当B、F、M三点共线时,BF+FM=BF+AF的长最小,如图,此时BM⊥AC,∴BM=,∴BF+AF的最小值为3.。

(完整版)阿氏圆问题归纳

(完整版)阿氏圆问题归纳

阿氏圆题型的解题方法和技巧以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.习题【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+1PC 的最小值为_________.6.如图,边长为47.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+21PC 的最小值为______;2PD+4PC 的最小值为______.8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+21FA 的最小值.11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+21PC 的最小值和PD-21PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+32PC 的最小值为______,PD-32PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+21PC 的最小值为______,PD-21PC 的最大值为________.2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax ²+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C1,△AEN 的周长为C2,若5621=C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+32E ′B 的最小值.问题背景:如图1,在△ABC中,BC=4,AB=2AC.问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决:求△ABC的面积的最大值.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2 AB,试探究BC,BD的数量关系.(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.。

阿氏圆专题讲解

阿氏圆专题讲解

阿氏圆专题知识点回顾:轨迹为圆的几何条件:一、一动点到一定点的距离不变,此动点的轨迹为圆; 二、定角对定长,也叫“隐形圆”注意:1、定长表示线段的长度和位置不变;2、定角为90°,角的顶点的轨迹为圆,定角不为90°,角的顶点的轨迹为一段圆弧;阿氏圆定义:已知平面两个定点A 、B 到一动点P 的比值为一定值k (k ≠1),那么这个动点P 的轨迹是一个圆。

注意:1、此圆与直线AB 交于点E 和点F ,点E 以定比内分线段AB,点F 以定比外分线段AB;2、k=1,此动点在定线段的垂直平分线上。

图文:EBFPOABPAK PB PA =,且K EB EA FB FA == 1==K PBPA解题思路:1、连接动点至圆心,即连接OP ,再连接其中一个定点于圆心,即连接OB,为了确定另一个定点也在直线OB 上;2、计算OB 和OP 的长度,确定比值OBOP=K; 3、在OB 上取一点,A ,使OP OA =OBOP=K,得三角形相似即△POA ∽△BOP ; 4、根据△POA ∽△BOP ,可得PA=K ·PB,可将PB 和PA 进行转换。

阿氏圆总结:遇到”“kPB PA +型的最值问题,要将系数为K 的线段转化为系数为1的线段,即要考虑”“PC kPB =。

求kAB PA +可转化为PA+PC.图1 图2 图3 关键在于确定点C 的位置,当点A 、P 、C 三点共线时,PA+PC.最小,即PA+k ·PB 值最小。

(提示:kAB PA +=k (k 1PA+PB ),所以也可以将k1PA 转化为系数为1的线段。

)B APOBC APOBC PPAO相关例题:例1、如图,点A 、B 在圆O 上,且OA=OB=6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且0D=4,动点P 在圆O 上,则2PC+PD 的最小值为 。

解题思路:连接OP,圆上一动点P ,OA 上有一定点C ,由阿氏圆可得,直线OA 上肯定存在另一定点E ,使得PE PC 为定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:已知平面上两点A,B,则所有满足 PA/PB=k 且不等于 1 的点 P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,具体的描述:一动点P 到两定点A、B 的距离之比等于定比m:n,则 P 点的轨迹,是以定比m: n 内分和外分定线段AB 的两个分点的连线为直径的圆。

该圆称为阿波罗尼斯圆,简称阿氏圆。

解题策略:利用两边成比例且夹角相等构造相似三角形(简称美人鱼相似)
“阿氏圆”一般解题步骤
第一步 :连接动点至圆心0(将系数不为 1 的线段的两个端点分别与圆心相连接),则连接 0P、 OB;
第二步 :计算出所连接的这两条线段OP、 OB 长度 ;
第三步 :计算这两条线段长度的比=k;
第四步 :在 0B 上取点 C,使得;
第五步 :连接 AC,与圆 0 交点即为点P.
阿氏圆最值问题例题精讲
例 1:问题提出 :如图 1,在 R△ ABC中 ,∠ ACB=90 ,CB=4,AC=6圆. C 半经为 2,P
为圆上一助点,连结 AP,BP求 AP+ BP 的最小值
尝试解决:为了解块这个间题,下面给出一种解题思路、如图2,连接 CP,在 CB 上取点D,使 CD=1 则有
,又∵∠ PCD=∠BCP,∴△ PCD △ BCP,
∴,∴ PD=,∴ AP+AP+PD
请你完成余下的思考,并直接写出答案:AP+BP的最小值为。

自主探索 :在“间题提出”的条件不变的情况下,AP+BP的最小值为。

拓展延伸 :已知扇形COD中 ,∠ COD=90 ,0C=6,OA=3,0B=5,点 P 是弧 CD 上一点 ,求 2A+PB 的最小值。

强化训练
向内构造类型
1,如图 ,已知 AC=6,BC=8,AB=10,圆 C 的半经为4,点 D 是圆 C 上的动点 ,连接 AD、 BD,
则 AD+ BD 的最小值为。

2.在 Rt△ABC 中 ,∠ ACB=90° AC=4,BC=3,点 D 为△ ABC内一动点 ,且满足 CD=2,
则 AD+ BD 的最小值为。

3、如图 ,在 R△ ABC中 ,∠C=90° ,CA=3,CB=4⊙.C 的半径为2,点 P 是⊙ C 上一
动点 ,则 AP+ PB 的最小值为。

4、如图 ,四边形 ABCD为边长为 4 的正方形 , ⊙ B 的半径为 2,P是⊙ B 上一动点 ,则 PD+ PC的最小值为。

PD+4PC的最小值为。

5、如图 ,⊙ O 的半径为,PO=,MO=2,∠ POM=90 ,Q 为⊙ O 上一动点 ,则
PQ+ QM 的最小值为。

6、如图 ,已知菱形 ABCD的边长为4,∠ B=60°,⊙ B 的半径为 2,P 为
⊙ B 上一动点则PD+ PC 的最小值为。

7、如图,点 C 坐标为 (2, ,5),点 A 的坐标为 (7,0),⊙ C 的半为,点 B 在⊙ C 上一动点 ,OB+ AB 的最小值为。

8、如图 ,在面直角坐标系xoy 中,A(6,-1),M(4,4) , M 为圆心 ,2为半径画圆,0为原点 ,p 是⊙ M 上分动点 ,则 PO+2PA的最小值为.
9、在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2)、P 是△
AOB 外部的第一象限内一动点,且∠ BPA=135 则 2PD+PC
的最小值是.
10、如图 ,AB 为⊙ O 的直径 ,AB=2,点 C 与点 D 在 AB 的同侧 ,
且 AD⊥ AB,BC⊥ AB,AD=1,BC=3,点 P 是⊙ O 上的一动点 ,则 PD+PC的最小值为.
11、在△ ABC中 ,AB=9,BC=8,∠ ABC=60° ,⊙A 的半径为6,P 是⊙ A 上的动点连
接 PB、 PC,则3PC+2PB的最小值为.
12 如图 ,边长为 4 的正方形,内切圆记为⊙O,P 是⊙ O 上一动点,则PA+PB的
最小值为。

13、如图 ,等边△ ABC 的边长为 6,内切圆记为⊙ O,P 是⊙ O 上一动点 ,则 2PB+PC
的最小值为。

14、如图 ,在△ ABC 中 ,∠ B=90 为圆 B 上任一动点 ,则 PA+
AB=CB=2,以
点PC的最小值

B 为圆心作圆。

B 与A
C 相切 ,点P
15、如图 ,菱形ABCD的边长
为2,∠ ABC=60° ,⊙A 与BC相切于

E,点 P是⊙A
上一动点 ,PB+ PD 的最小值为。

16 如图 ,Rt△ ABC中 ,∠ ACB=90 AC=8,BC=6,点 P 是 AB 上一点 ,且
F 在以点 p 为圆心 ,AP 为半径的⊙ P 上 ,则 CF+mBF的最小值为点。

17、(1)如图 1,已知正方形ABCD的边长为 4,圆 B 的半径为2,点 P 是圆 B 上的一个动点 ,求 PD+ PC 的最小值和PD PC的最大值;
(2)如图 2,已知正方形ABCD的边长为 9,圆 B 的半径为 6,点 P 是圆 B 上的一个动点求PD+ PC的最小值和 PD PC的最大值;
(3)如图的最小值和3,已知菱形ABCD的边长

PD PC的最大值。

4,∠ B=90 圆 B 的半径为2,点P 是圆 B 上的一个动点,求 PD+ PC
18.如图 ,在 R△ ABC中 ,∠ A=30° ,AC=8,以 C 为圆心 ,4 为半径作⊙ C。

(1)试判断⊙ C 与 AB 的位置关系 ,并说明理由;
(2)点 F 是⊙ C上一动点 ,点 D 在 AC 上且 CD=2,试说明△ FCD~△ ACF;
(3)点 E 是 AB 边上任意一点,在 (2)的情况下 ,试求出 EF+ FA 的最小值 .。

相关文档
最新文档