概率论与数理统计第五节 条件概率.ppt5(最新版)

合集下载

概率论与数理统计教程_第五版_ppt课件

概率论与数理统计教程_第五版_ppt课件

(3) 分配律

A (B C ) ( A B) ( A C ) AB AC,
A (B C ) AB AC
(4)对偶律 : A B A B, A B A B.
n
n
Ai Ai ,
i 1
i 1
n
n
Ai Ai
i 1
i 1
.
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
概率论与数理统计教程
沈恒范 编 高等教育出版社
.
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
事件与概率 离散型随机变量 连续型随机变量 大数定律与中心极限定理 数理统计的基本概念 点估计 假设检验 方差分析与回归分析
.
第一章 事件与概率
.
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.

《概率论与数理统计》全套课件PPT(完整版)

《概率论与数理统计》全套课件PPT(完整版)
m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计第5讲

概率论与数理统计第5讲
19
类似地, "A1,A2,,An至少有一个不发生" 的概率为
P ( A1 A2 An ) = 1 − p1 p2 pn .
20
例3 加工某一零件共需经过四道工序, 设 第一,二,三,四道工序的次品率分别是 2%,3%,5%,3%, 假定各道工序是互不影响 的, 求加工出来的零件的次品率.
8
例如, 甲,乙两人向同一目标射击, 记事件 A={甲命中}, B={乙命中}, 因"甲命中"并 不影响"乙命中"的概率, 故A,B独立. 又如, 一批产品共n件, 从中抽取2件, 设事 件Ai={第i件是合格品},(i=1,2). 若取是有 放回的, 则A1与A2独立. 因第二次抽取的 结果不受第一次抽取的影响. 若抽取是无 放回的, 则A1与A2不独立.
6
例1 从一副不含大小王的扑克牌中任取 一张, 记A={抽到K}, B={抽到的牌是黑色 的}, 问事件A,B是否独立? 解一 利用定义判断. 由 4 1 26 1 P( A = ) = , P( B = ) = , 52 13 52 2 2 1 P ( AB = ) = 52 26 得到P(AB)=P(A)P(B), 故事件A,B独立.
25
P (C D E ) = 1 − P (C ) P ( D ) P ( E ) = 0.973
例5 甲,乙两人进行乒乓球比赛, 每局甲胜 的概率为p, p≥1/2. 问对甲而言, 采用三局 二胜制有利, 还是采用五局三胜制有利. 设各局胜负相互独立. 解: 采用三局二胜制, 甲最终获胜, 其胜 局的情况是:“甲甲”,或“乙甲甲”或“甲乙 甲”. 而这三种结局互不相容, 于是由独立 性得甲最终获胜的概率为 p1=p2+2p2(1−p)

《条件概率》课件

《条件概率》课件
答案2
两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设

《条件概率》公开课教学PPT课件

《条件概率》公开课教学PPT课件

贝叶斯网络模型简介
贝叶斯网络定义
一种基于概率图模型的 机器学习算法,用于表 示和推理不确定性知识。
网络结构
由有向无环图和条件概 率表组成,节点表示随 机变量,边表示变量间
的依赖关系。
推理算法
通过贝叶斯网络中的条 件概率表,利用推理算 法计算目标变量的后验
概率分布。
应用领域
广泛应用于分类、聚类、 预测等任务,如自然语 言处理、图像处理、医
掌握条件概率的概念和计算方法对于理解和应用概率论和数理统计具有重要意义。
教学目标和要求
教学目标
通过本课程的学习,使学生掌握条件概率的概念、计算方法和 应用,培养学生的逻辑思维能力和分析问题的能力。
教学要求
要求学生能够熟练掌握条件概率的计算方法,理解条件概率在 实际问题中的应用,并能够运用所学知识解决一些实际问题。 同时,要求学生积极参与课堂讨论和思考,提高自己的思维能 力和解决问题的能力。
条件概率与独立性的关系
如果事件A与事件B相互独立,则P(B|A)=P(B),即事件A的发生对事 件B的发生没有影响。
条件概率的应用
条件概率在实际问题中有着广泛的应用,如医学诊断、天气预报、金 融风险评估等领域。
拓展延伸:条件期望、条件方差等概念介绍
• 条件期望的定义与性质:条件期望是指在某一事件发生的条件下,另一 随机变量的期望值。它具有线性性、单调性等基本性质。
条件概率在贝叶斯定理中作用
先验概率与后验概率
01
条件概率在贝叶斯定理中,用于计算先验概率和后验概率,即
根据已知信息更新某事件发生的概率。
因果关系分析
02
条件概率可以帮助分析事件之间的因果关系,进而推断出未知
事件的发生概率。

概率论与数理统计条件概率PPT课件

概率论与数理统计条件概率PPT课件
( 1 ) P ( A B ) = P ( A ) P ( B ) = 0 . 9 × 0 . 9 = 0 . 8 1 ( 2 ) P ( A B ) = P ( A ) + P ( B ) - P ( A B ) = 0 . 9 + 0 . 9 - 0 . 8 1 = 0 . 9 9
(3)P(A B A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)
问题:条件概率P(B|A)与普通概率有何关系?
P(B| A) 6 6 / 20 P( AB ) 10 10 / 20 P( A)
《概率统计》
返回
下页
结束
§1.4.1 条件概率
一、 条件概率
1.定义1 设A,B为随机试验E 的两个事件,且P(A)>0,则称
P(B| A)P(AB) P(A)
为在事件A已发生的条件下,事件B发生的条件概率. 注:条件概率与普通概率有相类似的性质,如,
则 P(A) = 0.9,P(B) = 0.8,P(C) = 0.85
因 A、B、C 相互独立,所求概率分别为
(1) P(ABC)
(2) P(ABC)
(3) P ( A B C A B C A B C A B C )
算法 (1) P (ABC ) P (A )P (B )P (C )
(2) P (A B C )P (AB )1 C P (AB ) C (3) 略.
《概率统计》
返回
下页
结束
二、多个事件的独立性
(1) 3个事件相互独立的定义
三个事件A、B、C,如果满足下面四个等式
P(AB) P(A)P(B)
P(AC) P(A)P(C)

条件概率公开课ppt课件

条件概率公开课ppt课件
$P(A/B) = frac{P(B/A)P(A)}{P(B)}$
事件A和B的独立性
在贝叶斯定理中,事件A和B可以 是独立的,也可以是相关的。
全概率公式
如果事件B能分为互不相容的事 件$B_1, B_2, ldots, B_n$,则
$P(A) = sum_{i=1}^{n} P(A/B_i)P(B_i)$
条件分布
在给定其他随机变量取值的条件下,某个随机变量的条件 分布描述了该随机变量取值的概率分布。条件分布可通过 联合分布和边缘分布求得。
边缘分布与条件分布关系
边缘分布是条件分布的特例,当不给定其他随机变量取值 时,条件分布退化为边缘分布。
多元随机变量独立性判断
独立性定义
若多元随机变量中的任意随机变量取值与其他随机变量取值无关,则称这些随机变量相互独立。
条件概率公开课ppt课 件
contents
目录
• 条件概率基本概念 • 条件概率分布与期望 • 多元随机变量条件概率 • 贝叶斯定理及其应用 • 条件概率在统计学中地位和作用 • 总结与展望
01
条件概率基本概念
条件概率定义及性质
条件概率是指在某个事件发生的条件下,另一个事件发生的概率。具体地,如果事 件B已经发生,那么事件A在事件B发生的条件下发生的概率称为条件概率,记作 P(A|B)。
性质 条件数学期望和条件方差具有一些重要的性质,如线性性 质、常数性质、独立性等。
条件概率分布变换方法
离散型随机变量的条件概率分布
01
对于离散型随机变量,可以通过列举法或者公式法求得条件概
率分布。
连续型随机变量的条件概率分布
02
对于连续型随机变量,可以通过求解条件概率密度函数进而求

概率论与数理统计课件最新完整版

概率论与数理统计课件最新完整版

时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。

《条件概率》课件

《条件概率》课件

在机器学习中的应用
01
分类器设例如,朴素贝
叶斯分类器就是基于条件概率的分类器之一,它可以根据已知特征的概
率分布来预测未知样本的类别。
02
聚类分析
在聚类分析中,条件概率可以帮助我们确定不同数据点之间的相似性或
差异性。例如,基于密度的聚类算法可以利用条件概率密度函数来评估
数据点之间的相似性或差异性。
03
强化学习
在强化学习中,条件概率可以帮助我们确定在不同状态下采取不同行动
的概率。例如,Q-learning算法可以利用条件概率来评估在不同状态下
采取不同行动的期望回报。
04 条件概率的实例分析
抛硬币实验的条件概率分析
总结词:直观理解
详细描述:通过抛硬币实验,理解条件概率的概念。假设硬币是均匀的,那么正 面朝上的概率是0.5。在硬币已经连续出现几次正面朝上的情况下,下一次抛掷 仍然是正面朝上的概率仍然是0.5,即条件概率不变。
全概率公式与贝叶斯公式
总结词
全概率公式和贝叶斯公式是条件概率的 两个重要公式,全概率公式用于计算一 个事件的概率,而贝叶斯公式则用于更 新一个事件的概率。
VS
详细描述
全概率公式将一个事件的概率分解为若干 个互斥事件的概率之和,而贝叶斯公式则 是在已知先验概率和新信息的情况下,更 新一个事件的概率。这两个公式在统计学 、机器学习和数据分析等领域有着广泛的 应用。
B
题目2答案与解析
出现一个正面和一个反面的概率为0.75。解 析:出现一个正面和一个反面意味着出现 HH、HT、TH、TT四种情况中的三种,其
D
概率为C(2,1) / C(2,2) * C(2,1) / C(2,2) =
3/4。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计第五节条件概率5(最新版)

概率论与数理统计第五节条件概率5(最新版)

05 条件概率在回归分析中作 用
回归模型建立过程中条件概率思想体现
确定自变量和因变量
在回归分析中,首先需要确定自变量和因变量,这一过程 需要考虑条件概率的思想,即因变量在自变量的条件下发 生变化。
建立回归方程
根据自变量和因变量的关系,可以建立回归方程,该方程 描述了自变量对因变量的影响,即因变量在自变量的条件 下的期望值。
02 条件概率在实际问题中应 用
抽奖问题中条件概率计算
01
02
03
设定事件与条件
明确参与抽奖的人数、奖 项设置以及每个奖项的中 奖概率,将中奖作为条件 事件。
计算条件概率
根据条件概率公式,计算 在已知有人中奖的条件下, 某个人中奖的概率。
比较不同方案
通过比较不同抽奖方案下 的条件概率,选择最公平、 合理的方案。
首先根据题意列出联合概率密度函数 ;然后计算边缘概率密度函数;接着 根据条件概率密度函数的公式求解; 最后根据条件概率密度函数进行相关 的概率计算。
应用场景
连续型随机变量条件密度函数在实际 问题中也有着广泛的应用,如天气预 报、金融风险评估等。
多维随机变量边缘分布和条件分布关系
边缘分布
条件分布
关系
P(AB)=P(A)P(B)。
02 03
全概率公式
如果事件B1、B2、B3…Bn 是一个完备事件组,即它们两两互不相容, 其和为全集;并且P(Bi)大于0,则对任一事件A有P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
贝叶斯公式
在全概率公式的基础上,当已知事件A发生时,求某个Bi发生的概率, 即P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/∑[P(A|Bj)P(Bj)],其中j=1,2,...,n。

条件概率(公开课)课件

条件概率(公开课)课件

在决策理论中的应用
决策树
决策树是一种表示决策过 程的方法,其中条件概率 用于计算每个决策节点的 收益和损失。
贝叶斯决策理论
贝叶斯决策理论利用条件 概率来计算期望值和风险, 从而选择最优的决策。
强化学习
强化学习中,条件概率用 于描述状态转移和奖励函 数,帮助智能体在环境中 做出最优决策。
在机器学习中的应用
条件概率(公开课)课 件
目录
• 条件概率的定义与性质 • 条件概率的计算 • 条件概率的应用 • 条件概率的扩展 • 条件概率的注意事项
01
条件概率的定义与性质
定义
条件概率的定义
在某个事件B已经发生的情况下,另 一个事件A发生的概率,记作P(A|B) 。
条件概率的数学表达式
P(A|B) = P(A∩B) / P(B),其中P(A∩B) 表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。
01
分类器
分类器利用条件概率来计算给定输入属于某个类别的概率,常用的分类
器有朴素贝叶斯分类器和逻辑回归分类器。
02
聚类分析
聚类分析中,条件概率可以用于相似性度量和距离计算,常用的聚类算
法有K-means和层次聚类。
03
自然语言处理
在自然语言处理中,条件概率被广泛用于词向量表示、语言模型、情感
分析等任务中,例如使用循环神经网络(RNN)或长短期记忆网络
在实际应用中,有时候很难获取到足 够的数据来进行准确的条件概率计算。
THANKS
感谢观看
如果两个事件是独立的,那么它们的 条件概率等于它们各自的概率。
如果两个事件不是独立的,那么它们 的条件概率会受到其他事件的影响, 不能简单地使用各自的概率来计算。

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(B)=P( A1B)+P(A2B)+P(A3B)
P(B)=P( A1B)+P(A2B)+P(A3B)
P ( B) P ( Ai ) P ( B|Ai )
i 1
3
对求和中的每一 项用乘法公式
代入数据计算便可得结果, 我们这里略去计算。
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
例题选讲 例题1 设在10个同一类型的元件中有7个一等品, 从这些元件中不放回地连续取3次,每次取一个元件, 7 ( ) 求: 1) 3次取得一等品的概率 24 119 2) 3次中至少一次取得一等品的概率 ( )
120
例题2 设P( A) 0.5, P( B) 0.4, P( A | B) 0.6 求P( AB), P( A | A B)的值
解 设Ai 第i次取出黑球,i 1, 2,...n, 则所 求的概率为P ( A1... An1 An1 1... An ) p
则 p P( A1 ) P( A2 | A1 ) P( An1 | A1 An1 1 ) *P( An1 1 | A1 An ) P( An | A1 An1 An1 1 An-1 )
B
AB A
S
2 定义
P( AB) 设A,B是两个事件且P(A)>0,称 P( B A) P( A)
为在事件A发生的条件下事件B发生的条件概率.
条件概率也符合概率的公理化定义中的三个条件:
1) 非负性 对于每一事件B,有P(B|A)>=0;
2) 规范性 对于必然事件S,有P(S|A)=1;
3) 可列可加性 :
也可以直接按条件概率的含义来求 P(B A) :
6 2 P( B A) . 9 3
例2 一个人口调查结果表明,深色眼睛的父亲和深色 儿子占被调查者的5%,深色眼睛的父亲和浅色眼睛的 儿子占7.9%,浅色眼睛的父亲和深色眼睛的儿子占 8.9%,浅色眼睛的父亲和浅色眼睛的儿子占78.2%.问 父子的眼睛深浅色有无联系? 解: 设A:=父亲有深色眼睛,B:=儿子有深色眼睛.由 题意知道:P(AB)=5% P(B|A)=0.39 P(AB) 7.9%, P(AB) 8.9% P(A|B)=0.36 由此可见,P(B|A),P(A|B) P(AB) 78.2% 都比P(A),P(B)大得多,故 P(A) P(AB)+P(AB) 0.129 事件A对事件B有影响的, P(B) P(AB)+P(AB) 0.139 即 有关
设B1 , B2 ,...是两两互不相容的事件,则有: P(Bi | A) P(Bi | A)
i =1 i 1
另外有
P(|A)=0
P(B | A) 1 P(B | A)
性质(条件概率一般加法公式) 对于随机事件
B1, B2和A, 一般加法公式成立:
P( B1 B2 | A) P( B1 | A) P( B2 | A) P( B1B2 | A)
球,则 P(A)=0.6,P(B)=0.6
因为,AB样本点有6个,事件A的样本点有12个,

#(AB) 6 6 P(B A )= = #( A) 12 12
#(AB) #(AB) / # S P( AB) P(B A )= = #( A) #( A) / # S P( A)
若事件A已发生, 则为使 B也 发生 , 试验结果必须是既在 A 中 又在B中的样本点 , 即此点必属于 AB. 由于我们已经知道A已发生, 故A变成了新的样本空间 。
A={(1,2), (1,3), (1,4), (2,1), (2,3), (2,4),(3,1),(3,2),(3,4)}
AB={(1,2), (1,3), (2,1), (2,3),(3,1),(3,2)}
所以
P( AB) 6 /12 2 P( B A) . P( A) 9 /12 3
解:设事件Ai: 第i次被击落 则
P( A1 ) 0.3, P( A2 A1 ) 0.3, P( A3 A1 A2 ) 0.4
(1)B:甲被击落,则
P( B) P( A1 A2 ) P( A2 A1 ) P( A1 ) 0.21
(2)C:乙被击落,则
P(C ) P( A1 A1 A2 A3 ) P( A1 ) P( A3 A1 A2 ) P( A2 A1 ) P( A1 ) 0.496
r (n 2 1)c b bc p * *.... br brc b r (n 1)c
当c=0时,对应着有放回抽样 当c=-1时,对应着无放回抽样 当c>0时,每次取球增加了下一次取到同样颜色球的 概率,这对应着传染病模型中每次传染后都增加了再 传染的概率.
例题4 在空战训练中甲机先向乙机开火,击 落乙机的概率为0.2;若已机未被击落,就 进行还击,击落甲机的概率是0.3;若甲机 未被击落,则再攻击乙机,击落乙机的概 率是0.4,求在这几个回合中: (1)甲机被击落的概率; (2)乙机被击落的概率。
练习:设某光学仪器厂制造的透镜,第一次 落下的打破的概率为1/2,若第一次落下未打 破,第二次落下的概率为7/10,若前两次落 下未打破,第三次落下打破的概率为9/10, 试求透镜落下三次而未打破的概率。

全概率公式与贝叶斯公式
1 样本空间的划分(完备事件组)
设S为试验E的样本空间,B1 , B2 ...Bn为E的一组事件,若 1 Bi B j , i j , i, j 1, 2,...n ) 2)
第五节 条件概率
教学内容
1 条件概率; 2 乘法公式; 3 全概率公式与贝叶斯公式
教学重点
条件概率公式的计算公式,乘法公式,全概率公 式与贝叶斯公式的应用
一 条件概率
引例 设袋中有5个球,其中3个红球,2个白 球,无放回地抽取2次,每次一个,试求: 1) 第二次取到红球的概率; 2) 已知第一次取到红球,求第二次取到红球 的概率 解 A:第一次取到红球,B:第二次取到红球, B|A:在第一次取到红球的情况下,第二次取到红
全概率公式的来由, 不难由上式看出: “全”部概率P(A)被分解成了许多部分之和. 我们还可以从另一个角度去理解:全概率公式
某一事件A的发生有各种可能的原因 (i=1,2,…,n),如果A是由原因Bi 所引起,则A发生 的概率是 P(AB )=P(B )P(A|B )
每一原因都可能导致A发生,故A发生的概率是各原 因引起A发生概率的总和,即全概率公式。
例1 从设在4个同一型号的元件中有3个一 等品,1只二等品。这些元件中不放回地连续 取两次,每次取一个元件,求在第一次取得一等 品的条件下,第二次取得一等品的概率。
解:记事件A为“第一次取得一等品”,事件B为“第 二次取得一等品”。 S={(1,2), (1,3), (1,4), (2,1), (2,3), …, (4,2),(4,3)},
25 (0.14, ) 37
例题3 波利亚罐子模型 设一个罐子中有b只黑球和r只红球,随机地从中取 出一只球,然后把原球放回并加进与取出的球同色的 球c只,再第二次取球,这样下去共取了4次,试求第一、 二次取出黑球且第三、四次取到红球的概率。
解 设Ai 第i次取出黑球,i 1, 2,...n, 则所 求的概率为
P( A1 A2 A3 A4 ) P( A1 ) P( A2 | A1 ) P( A3 | A1 A2 ) P( A4 | A1 A2 A3 ) b bc r r c b r b r c b r 2c b r 3c
波利亚罐子模型 设一个罐子中有b只黑球和r只红球,随机地从中取 出一只球,然后把原球放回并加进与取出的球同色的 球c只,再第二次取球,这样下去共取了n次,试求前 n1 次取出黑球,后 n 2 n n1 次取出红球的概率。
• 内容简介: 在自然界及人类的活动中, 存在 着许多互相联系、互相影响的事件. 有时我 们还要提出附加的限制条件, 也就是要分析 “在事件A已经发生的前提下事件B发生的 概率”,这就是条件概率问题. 我们主要学习 条件概率计算公式、概率乘法公式、全概 率公式和贝叶斯公式. 这一节特别重要,一 定要学好.
特别地, 当B1, B2 互不相容时, 加法公式成立:
P( B1 B2 | A) P( B1 | A) P( B2 | A)
• 讲评:
• 计算条件概率P(B|A)有两种方法: • 方法1: 在样本空间S的缩减样本空间A 中计 算B 发生的概率, 得到P(B|A). • 方法2 在样本空间S中, 计算P(AB) b (b r ) , P( A2 ) (b c) (b r c) ..., P( An1 | A1... An1 1 ) [b ( n1 1)c] [b r ( n1 1)c] P ( An1 1 | A 1... An1 ) r (b r n1c) ,... P ( An | A1... An1 An1 1... An-1 ) [ r ( n2 1)c] [b r ( n 1)c]
把 A1 , A2 , , An 看作该过程的若干个原 因,
根据历史资料,每一原因发生的概率已知,
二 乘法公式
1 乘法定理 设P(A)>0,则有P(AB)=P(B|A)P(A) 设P(B)>0,则有P(AB)=P(A|B)P(B) 类似地: P(AB)>0,则有: P(ABC)=P(C|AB)P(AB)=P(C|AB)P(B|A)P(A)
一般地 设A1 , A2 ,... An为n个事件,n 2 且P( A1 A2 ... An-1 ) 0, 则有: P( A1 A2 ... An ) P( An | A1 A2 An-1 ) P ( An-1 | A1 A2 An-2 ) P ( A2 | A1 ) P ( A1 )
相关文档
最新文档