2017-2018学年春七年级数学湘教版下册同步测试题 2.2乘法公式
2017年春季新版湘教版七年级数学下学期2.1、整式的乘法同步练习2
2.1 整式的乘法第4课时单项式与多项式相乘核心笔记:1.单项式乘多项式的法则:单项式与多项式相乘,先用单项式乘多项式中的每一项,再把所得的积相加.字母表达式为m=am+bm+cm.2.几何背景图如图所示:大长方形的面积等于三个小长方形的面积之和,即m=am+bm+cm.基础训练1.计算-x(x-y)的结果是( )A.-x2-xyB.-x+xyC.-x2+xyD.x2+xy2.a2(-a+b-c)与-a(a2-ab+ac)的关系是( )A.相等B.符号相反C.前式是后式的-a倍D.以上结论都不对3.如图是L形钢条截面,它的面积为( )A.ac+bcB.ac+(b-c)cC.(a-c)c+(b-c)cD.a+b+2c+(a-c)+(b-c)4.计算:a(a-1)-a2=______________;(x2-2y)·(xy2)2=______________;-3x·=______________.5.一个长方体的长为2x+4,宽为3x,高为x,则它的体积V=______________.6.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是______________.7.计算:(1)a(a2+b);(2)(3a2b-4ab2-5ab-1)·(-2ab2).8.先化简,再求值:3x2(x2-x-1)-x(2x3-x2-2x-3),其中x=-.培优提升1.计算x(1+x)-x(1-x)等于( )A.2xB.2x2C.0D.-2x+2x22.已知-8xy除某一个多项式所得的商式是-xy+x2y-xy2,余式是3x3y2,则这个多项式是( )A.4x2y2-13x3y2-14x2y3B.4x2y2-15x3y2+14x2y3C.4x2y2-15x3y2-14x3y3D.4x2y2-15x3y3-14x2y33.已知计算(2-nx+3x2+mx3)·(-4x2)的结果中不含x5的项,则m等于( )A.0B.1C.-1D.-0.254.计算:·(-2x)=_______________.5.一个长方体的长、宽、高分别是3x+1,2x和x,则它的表面积是.6.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,…,请你将猜想到的规律用自然数n(n≥1)表示出来: .7.现规定一种运算:a·b=ab+a-b,其中a,b为有理数,则a·(b-1)+(b-a)·b=.8.先化简,再求值:3(2x+1)+2(3-x),其中x=-1.9.一住房的结构如图所示.(1)这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格是a元/m2,那么购买这种地砖至少需要多少元?(2)已知房屋的高度为h m,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果某种壁纸的价格是b元/m2,那么购买这种壁纸至少需要多少元?(计算时不扣除门、窗所占的面积)10.7张如图①的长为a,宽为b(a>b)的小长方形纸片,按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足什么关系?参考答案【基础训练】1.【答案】C2.【答案】A解:a2(-a+b-c)=-a3+a2b-a2c,-a(a2-ab+ac)=-a3+a2b-a2c,故相等.3.【答案】B4.【答案】-a;x4y4-2x2y5;12x3+5x2-2xy5.【答案】3x3+6x26.【答案】-8解:(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,次数是10的项是-8x8y2,其系数是-8.7.解:(1)a(a2+b) =a3+ab.(2)(3a2b-4ab2-5ab-1)·(-2ab2)=-6a3b3+8a2b4+10a2b3+2ab2.8.解: 3x2(x2-x-1)-x(2x3-x2-2x-3)=3x4-3x3-3x2-2x4+x3+2x2+3x=x4-2x3-x2+3x,当x=-时,原式=-2×-+3×=+--=-.【培优提升】1.【答案】B解: x(1+x)-x(1-x)=x+x2-x+x2=2x2.2.【答案】B解:原多项式为·(-8xy)+3x3y2=4x2y2-15x3y2+14x2y3.3.【答案】A4.【答案】-2x3-x2+2x5.【答案】22x2+6x解:长方体的表面积=2[2x(3x+1)+(3x+1)x+2x·x]=2(6x2+2x+3x2+x+2x2)=2(11x2+3x)=22x2+6x.6.【答案】n(n+2)=n2+2n7.【答案】b2-a-b+1解:a·(b-1)+(b-a)·b=a(b-1)+a-(b-1)+(b-a)b+(b-a)-b=b2-a-b+1.8.解:原式=6x+3+6-2x=4x+9.当x=-1时,原式=4×(-1)+9=5.9.解:(1)客厅的面积+厨房的面积+卫生间的面积=2x·4y+x·(4y-2y)+y·(4x-x-2x)=8xy+2xy+xy=11xy(m2).11xy·a=11axy(元).答:至少需要11xy m2的地砖,购买这种地砖至少需要11axy元. (2)(2y+4x-2x)×2×h+(4y+2x)×2×h=4yh+4xh+8yh+4xh=12yh+8xh(m2).(12yh+8xh)×b=12yhb+8xhb(元).答:至少需要(12yh+8xh)m2的壁纸.购买这种壁纸至少需要(12yhb+8xhb)元.10.解:设BC的长度为x,左上角阴影部分的长为x-a,宽为3b;右下角阴影部分的长为x-4b,宽为a.所以阴影部分面积之差S=(x-a)3b-(x-4b)a=3bx-3ab-ax+4ab=(3b-a)x+ab.因为S与x无关,所以3b-a=0,即a=3b.。
湘教版七年级数学下册2.2乘法公式2.2.3运用乘法公式进行计算说课稿
湘教版七年级数学下册2.2乘法公式2.2.3运用乘法公式进行计算说课稿一. 教材分析湘教版七年级数学下册2.2节主要介绍了乘法公式2.2.3及其应用。
这部分内容是学生学习代数的基础知识,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
本节课的内容包括平方差公式、完全平方公式等乘法公式的理解和运用。
通过这些公式的学习,学生可以更好地理解和掌握代数的基本运算规律。
二. 学情分析在七年级的学生中,他们对乘法公式的理解和运用程度各不相同。
有的学生可能已经掌握了乘法公式的基本运用,而有的学生可能还对乘法公式的理解不够深入。
因此,在教学过程中,我需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 说教学目标1.知识与技能目标:学生能够理解平方差公式、完全平方公式的含义,并能够熟练运用这些公式进行计算。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生解决问题的能力和团队合作的精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:平方差公式、完全平方公式的理解和运用。
2.教学难点:如何引导学生理解和掌握乘法公式的运用规律,以及如何解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生主动思考和探索,通过实例分析和小组讨论,培养学生的动手能力和团队协作能力。
2.教学手段:利用多媒体课件、实物模型等教学辅助工具,帮助学生直观地理解乘法公式的含义和运用。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对乘法公式的思考,激发他们的学习兴趣。
2.知识讲解:讲解平方差公式、完全平方公式的含义和运用方法,通过例题展示公式的应用过程。
3.实践操作:学生分组进行练习,运用乘法公式进行计算,教师巡回指导,解答学生的疑问。
4.总结提升:引导学生总结乘法公式的运用规律,培养他们的逻辑思维能力。
5.课堂小结:对本节课的内容进行总结,强调乘法公式的理解和运用。
七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版
3.计算: (1)202×198;
(2)49.8×50.2.
答案:(1)39996;(2)2499.96.
我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴 交流。
2.2.2 完全平方公式
思考
计算下列各式,你能发现什么规律: ( a+1 )2=( a+1 )( a+1 )=a2+a+a+12=a2+2·a·1+12, ( a+2 )2=( a+2 )( a+2 )=a2+2a+2a+22=a2+2·a·2+22, ( a+3 )2=( a+3 )( a+3 )=a2+3a+3a+32=a2+2·a·3+32, ( a+4 )2=( a+4 )( a+4 )=a2+4a+4a+42=a2+2·a·4+42. 我们用多项式乘法来推导一般情况: ( a+b )2=( a+b )=a2+ab+ab+b2=a2+2ab+b2.
(2)1982.
解:(1)1042=( 100+4 )2 (2)1982=( 200-2 )2
= 1002+2×100×4+42
= 2002-2×200×2+22
= 10000+800+16
= 40000-800+16
= 10816.
= 39204.
练习
1.运用完全平方公式计算: (1)( -2a+3 )2; (3)( -x2-4y )2;
湘教版七年级数学下册_2.2 乘法公式
感悟新知
特别解读
知2-讲
1. 弄清公式的特征:公式的左边是一个二项式的平方,公
式的右边是一个三项式,包括左边二项式的各项的平方
和,另一项是这两项的乘积的2倍.
2.理解字母a,b的意义:公式中的字母a,b可以表示具体的
数,也可以表示含字母的单项式或多项式.
3. 口诀记忆:
头平方和尾平方,头(乘)尾两倍在中央,中间符号照原样.
1. 移位置 : 有时交换位置,改变运算顺序,可利用
乘法公式简化计算 .
2. 整体 : 有时将其中几项看成一个整体 ,从而构造
出特殊的结构,利 用 乘法公式简化计算 .
3. 转化 : 将较复杂的未知问题,经过变形,转化为
可轻易解决或已解决的问题 .
感悟新知
解题秘方:紧扣多项式之间的特征,运用移位置、 知3-练 整体或转化的方法寻找乘法公式,进 行计算 .
知1-练
感悟新知
知1-练
方法点拨 运用平方差公式计算两数乘积时, 关键是找到这两个
的平均数,再将原数与这个平均 数进行比较, 变成两 数 的和与差的积的形式 .
感悟新知
知识点 2 测量质量
知2-讲
1. 完全平方公式: 两数和(或差)的平方,等于它们的平方和, 加(或减)它们的积的 2 倍 .
用字母表示为( a+b ) 2=a2+2ab+b2, (a - b) 2=a2 - 2ab+b2.
感悟新知
知3-讲
特别解读 为了体现乘法公式的结构特征,常运用到交换
律和结合律.
感悟新知
例5
计算: (1) ( b - 3 ) ( b2+9 ) ( b+3 ) ;
2017-2018学年七年级数学湘教版下册单元测试题5.解题技巧专题:整式乘法及乘法公式中公式的巧用(带答案)
解题技巧专题:整式乘法及乘法公式中公式的巧用◆类型一利用公式求值一、逆用幂的相关公式求值1.已知5x=3,5y=4,则5x+y的结果为【方法7①】( )A.7 B.12 C.13 D.142.如果(9n)2=312,则n的值是( )A.4 B.3 C.2 D.13.若x2n=3,则x6n=________.4.(湘潭期末)已知a x=3,a y=2,求a x+2y的值.5.计算:-82015×(-0.125)2016+0.253×26.【方法7③】二、多项式乘法中求字母系数的值6.如果(x +m)(x -3)中不含x 的项,则m 的值是( )A .2B .-2C .3D .-37.(邵阳县期中)若(x -5)(2x -n)=2x 2+mx -15,则m ,n 的值分别是 ( )A .m =-7,n =3B .m =7,n =-3C .m =7,n =3D .m =-7,n =-38.已知6x 2-7xy -3y 2+14x +y +a =(2x -3y +b)(3x +y +c),试确定a ,b ,c 的值.三、逆用乘法公式求值9.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4C .32D .1210.已知a +b =3,则a 2-b 2+6b 的值为( )A .6B .9C .12D .1511.(衡阳中考)已知a +b =3,a -b =-1,则a 2-b 2的值为9.【方法9①】 12.已知x +y =3,x 2-y 2=21,求x 3+12y 3的值.四、利用整体思想求值13.若x +y =m ,xy =-3,则化简(x -3)(y -3)的结果是( )A .12B .3m +6C .-3m -12D .-3m +614.先化简,再求值:(1)(菏泽中考)已知4x =3y ,求代数式(x -2y)2-(x -y)(x +y)-2y 2的值;(2)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.◆类型二利用乘法公式进行简便运算15.计算2672-266×268得( )A.2008 B.1 C.2006 D.-116.已知a=7202,b=719×721,则( )A.a=b B.a>bC.a<b D.a≤b17.计算:(1)99.8×100.2; (2)1022;(3)5012+4992; (4)19992-1992×2008.◆类型三 利用乘法公式的变形公式进行化简求值 18.如果x +y =-5,x 2+y 2=13,则xy 的值是( ) A .1 B .17 C .6 D .2519.若a +b =-4,ab =12,则a 2+b 2=________.20.(永州模拟)已知a =2005x +2004,b =2005x +2005,c =2005x +2006,则多项式a 2+b 2+c 2-ab -bc -ac 的值为________.21.已知(x +y)2=5,(x -y)2=3,求3xy -1的值.◆类型四整式乘法中的拼图问题22.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b223.如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后余下部分又剪开拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,其面积是( )A.2m+4 B.4m+4 C.m+4 D.2m+224.★如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中阴影部分的正方形的边长是多少?(2)请你用两种不同的方法求图②中阴影部分的面积;(3)观察图②,你能写出下列三个代数式(m+n)2,(m-n)2,mn之间的等量关系吗?(4)根据(3)中的结论,解决下列问题:若a+b=9,a-b=7,求ab的值.参考答案与解析1.B2.B 解析:∵(9n )2=[(32)n ]2=34n ,∴34n =312,∴4n =12,∴n =3.故选B. 3.274.解:∵a x =3,a y =2,∴a x +2y =a x ·a 2y =3×22=12.5.解:原式=-82015×(-0.125)2015×(-0.125)+(0.25)3×23×23=-[8×(-0.125)]2015×(-0.125)+(0.25×2×2)3=1×(-0.125)+1=0.875.6.C 7.D8.解:∵(2x -3y +b )(3x +y +c )=6x 2-7xy -3y 2+(2c +3b )x +(b -3c )y +bc =6x 2-7xy -3y 2+14x +y +a ,∴2c +3b =14,b -3c =1,bc =a .联立以上三式,可得a =4,b =4,c =1.9.B10.B 解析:a 2-b 2+6b =(a +b )(a -b )+6b =3(a -b )+6b =3a +3b =3(a +b )=9.故选B. 11.-312.解:∵x +y =3,x 2-y 2=21,∴x -y =21÷3=7.联立方程组得⎩⎪⎨⎪⎧x +y =3,x -y =7,解得⎩⎪⎨⎪⎧x =5,y =-2.当x =5,y =-2时,x 3+12y 3=53+12×(-2)3=125-96=29.13.D14.解:(1)(x -2y )2-(x -y )(x +y )-2y 2=x 2-4xy +4y 2-(x 2-y 2)-2y 2=-4xy +3y 2.∵4x =3y ,∴原式=-3y ·y +3y 2=0.(2)∵2a 2+3a -6=0,即2a 2+3a =6,∴3a (2a +1)-(2a +1)(2a -1)=6a 2+3a -4a 2+1=2a 2+3a +1=6+1=7.15.B 解析:2672-266×268=2672-(267-1)(267+1)=2672-2672+1=1.故选B. 16.B17.解:(1)原式=(100-0.2)(100+0.2)=1002-0.22=9999.96. (2)原式=(100+2)2=10000+4+400=10404.(3)原式=(500+1)2+(500-1)2=5002+2×500×1+12+5002-2×500×1+12=2×5002+2=500002. (4)原式=(2000-1)2-(2000-8)(2000+8)=20002-2×2000×1+1-(20002-82)=-4000+1+64=-3935.18.C 19.1520.3 解析:由题意知b -a =1,c -b =1,c -a =2.∵a 2+b 2+c 2-ab -bc -ac =12(a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2)=12[(b -a )2+(c -a )2+(c -b )2]=12×(1+4+1)=3.21.解:∵(x +y )2-(x -y )2=4xy =2,即xy =12,∴3xy -1=3×12-1=12.22.D23.B 解析:依题意得剩余部分的面积为(m +2)2-m 2=m 2+4m +4-m 2=4m +4.故选B. 24.解:(1)m -n .(2)方法一:(m -n )2=m 2-2mn +n 2; 方法二:(m +n )2-4mn =m 2-2mn +n 2. (3)(m +n )2-4mn =(m -n )2.(4)∵(a +b )2-(a -b )2=4ab ,∴4ab =32,∴ab =8.。
2018年湘教版七年级数学下册全册同步练习含答案最新
2017-2018学年湘教版初中数学七年级下册全册课时作业目录1.1 二元一次方程组课时作业1.3 二元一次方程组的应用(第1课时)课时作业1.3 二元一次方程组的应用(第2课时)课时作业1.4 三元一次方程组课时作业2.1.1 同底数幂的乘法课时作业2.1.2 多项式的乘法课时作业2.1.2 幂的乘方与积的乘方课时作业2.1.3 单项式的乘法课时作业2.1.4 多项式的乘法课时作业2.2.1 平方差公式课时作业2.2.2 完全平方公式课时作业2.2.3 运用乘法公式进行计算课时作业3.1 多项式的因式分解课时作业3.2 提公因式法课时作业3.3 公式法(第1课时)课时作业3.3 公式法(第2课时)课时作业4.1.1 相交与平行课时作业4.1.2 相交直线所成的角课时作业4.2 平移课时作业课时作业4.3 平行线的性质课时作业4.4 平行线的判定课时作业4.5 垂线课时作业4.6 两条平行线间的距离课时作业5.1.1轴对称图形课时作业5.1.2轴对称变换课时作业5.2 旋转课时作业5.3 图形变换的简单应用课时作业6.1.1 平均数课时作业6.1.2 中位数课时作业6.1.3 众数课时作业6.2 方差课时作业建立二元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是二元一次方程的是( )A.3x2-2y=4B.6x+y+9z=0C.+4y=6D.4x=2.以为解的二元一次方程组是( )A. B.C. D.3.(2013·广州中考)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B.C. D.二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组,使它的解是5.方程(k2-1)x2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k=时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y 元/盒,则可列方程组为.三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组的解?为什么?①②③④8.(8分)(1)若是方程2x+y=0的解,求6a+3b+2的值.(2)若是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=含有两个未知数x,y,并且含x,y项的次数都是1,是二元一次方程.选项A有二次项,选项B有三个未知数,选项C分母中有未知数,故A,B,C都不是二元一次方程.2.【解析】选D.将分别代入四个方程组中,只有D中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以4.【解析】以为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系. 答案:(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x元,一盒礼盒y元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故答案:7.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组的解.因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x台,乙医疗器械y台,根据题意,得2x+5y=24.因为x,y都是非负整数,所以x==12-2y-.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A. B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( )A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.5.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?【拓展延伸】9.(10分)某公园的门票价格如表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得解得2.【解析】选 A.设小红所买的笔和笔记本的价格分别是x元/支,y元/本,则解得所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选 B.设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=1 1,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x只,兔有y只,根据题意可得解得:即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n个,则可列方程组解得n=4.则k=2+2+4=8.答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得解得所以水的深度为×120=80(cm).答案:807.【解析】设长跳绳的单价是x元,短跳绳的单价是y元.由题意,得解得所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:解得答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:12000+25×200=20×25z,解得z=34.所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标.9.【解析】设甲班有x人,乙班有y人,根据题意得,解得答:甲班有55人,乙班有48人.三元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( ) A.B.C.D.2.若方程组的解x 与y 的值的和为3,则a 的值为()A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.4,1,6,7 C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数 ,得到一个二元一次方程.5.已知方程组则x+y+z= .6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有元.三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax2+bx+c中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y等于多少?她想,在求y值之前应先求a,b,c的值,你认为她的想法对吗?请你帮她求出a,b,c及y的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.三等奖人数(人)2012年那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得解得故选C.4.【解析】方程①和②中未知数y的系数互为相反数,相加可消去未知数y,得2x+z=27.答案:y 2x+z=275.【解析】①+②+③得:2x+2y+2z=12,所以x+y+z=6.答案:66.【解析】设甲有x元、乙有y元、丙有z元,根据题意,得解得所以三人共有20+10+9=39(元).答案:397.【解析】她的想法对.根据题意,得解得所以该等式为y=4x2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x棵、乙小组植树y棵、丙小组植树z棵,根据题意,得解得答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x万元、y万元、z万元, 根据题意,得解得答:一、二、三等奖的奖金数额分别是1万元、万元、万元.同底数幂的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.下列各式计算正确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.若2n-2×24=64,则n= .6.已知2x·2x·8=213,则x= .三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选 B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7. 答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算的结果是( )A.-a3b6B.-a3b5C.-a3b5D.-a3b62.(2013·泸州中考)下列各式计算正确的是( )A.(a7)2=a9B.a7·a2=a14C.2a2+3a3=5a5D.(ab)3=a3b33.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x2)n=x8,则n= .5.若a n=3,b n=2,则(a3b2)n= .6.××(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a3b6)2-(-a2b4)3.(2)2(a n b n)2+(a2b2)n.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b. 例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么lo g a(MN)=log a M+log a N.完成下列各题:(1)因为,所以log28= .(2)因为,所以log216= .(3)计算:log2(8×16)= + = .答案解析1.【解析】选D.=·a3·(b2)3=-a3b6.2.【解析】选 D.根据幂的乘方法则,(a7)2=a7×2=a14,选项A错误;根据同底数幂相乘法则,a7·a2=a7+2=a9,选项B错误;2a2与3a3不是同类项,不能合并,选项C错误;选项D符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n)3=8a3m b3(m+n)=8a9b15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x2)n=x2n=x8,所以2n=8,所以n=4.答案:45.【解析】(a3b2)n=a3n b2n=(a n)3(b n)2=33×22=27×4=108.答案:1086.【解析】原式=×=×=12013×=.答案:7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a6b12-(-a6b12)=a6b12+a6b12= 2a6b12.(2)原式=2a2n b2n+a2n b2n=3a2n b2n.9.【解析】(1)因为23=8,所以log28=3.(2)因为24=16,所以log216=4.(3)log2(8×16)=log28+log216=3+4=7.答案:(1)23=8 3 (2)24=16 4 (3)log28 log216 7单项式的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n43.某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a·2a2= .5.计算:= .6.光的速度约为3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为km.三、解答题(共26分)7.(8分)计算:(1)4y3·(-2x2y).(2)x2y3·xyz.(3)(3x2y)3·(-4xy2).(4)(-xy2z3)4·(-x2y)3.8.(8分)有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x zω)y,求×.答案解析1.【解析】选C.3a·2b=3×2a·b=6ab.2.【解析】选 D.选项A中,(2xy)3(-2xy)2=8x3y3×4x2y2=32x5y5,故此选项正确;选项B 中,(-2ab2)2(-3a2b)3=4a2b4×(-27)a6b3=-108a8b7,故此选项正确;选项C 中,=x2y2×x2y=x4y3,故此选项正确;选项D 中,=m2n×m2n4=m4n5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a·2a2=6a3.答案:6a35.【解析】=(a·a2)(b2·b)=-a3b3.答案:-a3b36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x2·(y3·y)=-8x2y4.(2)原式=(x2·x)(y3·y)·z=x3y4z.(3)原式=27x6y3·(-4xy2)=[27×(-4)](x6·x)(y3·y2)=-108x7y5.(4)原式=x4y8z12·(-x6y3)=-(x4·x6)(y8·y3)z12=-x10y11z12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得可得所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.多项式的乘法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3;②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6;④(1-a)(1+a)=1-a2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x2+kx-15,则m-k的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab= .三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)= .(2)(x-1)(x2+x+1)= .(3)(x-1)(x3+x2+x+1)= .(4)(x-1)(x4+x3+x2+x+1)= .用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q= x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab= x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1 (2)x3-1(3)x4-1 (4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+22.下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:= .6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x2-y2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式====1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n的等式表示其规律为(2n)2-1=(2n-1)(2n+1).答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.完全平方公式(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a2.若a+=7,则a2+的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a2,ab,ab,b2,则原正方形的边长是( )A.a2+b2B.a+bC.a-bD.a2-b2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m2-4mn+4n2的值是.6.若=9,则的值为.三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?答案解析1.【解析】选D.A.a2与a4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x2-5x+6,故本选项错误;C.(x-2)2=x2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+=7,所以=72,a2+2·a·+=49,a2+2+=49,所以a2+=47.3.【解析】选B.因为a2+2ab+b2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b)2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由=9,可得x2+2+=9.即x2+=7,=x2-2+=7-2=5.答案:57.【解析】(1)原式=a2+6a+9+4a-a2=10a+9.(2)原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4××a×b+(b-a)2. 又因为大正方形的面积为c2,所以4××a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.。
七年级数学下册 2.2 乘法公式 构造”完全平方公式”解题素材 (新版)湘教版
构造”完全平方公式”解题完全平方公式是初中代数公式中重中之重的公式,在许多数学解题中若能根据题目的结构特点,构造出完全平方公式解题,往往能使求解简捷.现举例说明.一、处理有关比较复杂的有理数的计算问题例1 计算:1.345×0.345×2.69-1.3453-1.345×0.3452.简析 1.345×0.345×2.69-1.3453-1.345×0.3452=-1.345(1.3452+0.3452-0.345×2.96)=-1.345[(1.345-0.345)2+2×1.345×0.345-0.345×2.96]=-1.345×12=-1.345. 说明 在有关复杂的数字计算中,如能抓住数字特点,巧用完全平方公式的变形式,可简化运算过程,提高运算效率,培养良好的数学素质.本题计算时,先逆用乘法的分配律,将-1.345移到外面,再巧妙地运用完全平方公式.二、处理有关比较复杂的代数式求值问题例2 已知a +b +c =0,a 2+b 2+c 2=4,试求:a 4+b 4+c 4的值.简析 乍看待求式和已知条件毫无关系,但细细琢磨一下,可将c 视为已知数,对a 、b 构造完全平方公式.即由已知条件,得a +b =-c ,a 2+b 2=4-c 2.而ab =21[(a +b )2-(a 2+b 2)]=21[(-c )2-(4-c 2)]=c 2-2,所以a 4+b 4=(a 2+b 2)2-2a 2b 2=(4-c 2)2-2(c 2-2)2=8-c 4.所以a 4+b 4+ c 4=8.说明 利用完全平方变形式可以巧妙、灵活的求出较复杂的代数式的值.三、确定最大或最小值问题例3 试求多项式x 2+4y 2-8x +12y +5的最小值.简析 由于x 2+4y 2-8x +12y +5=x 2-8x +16+4y 2+12y +9-20=(x -4)2+(2y +3)2-20.而(x -4)2≥0,且(2y +3)2≥0,所以(x -4)2+(2y +3)2-20的最小值为-20,即多项式x 2+4y 2-8x +12y +5的最小值是-20.说明 学习了完全平方公式,配方则灵活运用完全公式行之有效的一种途径,所以同学们应熟练记忆一些有关完全平方公式的一些变形等式.如,(1)a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ; (2)ab =21[(a +b )2-(a 2+b 2)]=41[(a +b )2-(a -b )2]=2222⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+b a b a ; (3)(a +b )2+(a -b )2=2a 2+2b 2;(4)a 2+b 2+c 2-ab -bc -ca =21[(a -b )2+(b -c )2+(c -a )2].等等.四、解特殊结构特点的方程2 例4 解方程:x 2+y 2+z 2-21x +6y -10z +31116=0. 简析 将原方程变形为:x 2-21x +116+y 2+6y +9+z 2-10z +25=0.所以(x -14)2+( y +3)2+( z -5)2=0,此时由非负数的性质“若干个非负数的和为零,这几个非负数均为零”,得(x -14)2=0,( y +3)2=0,( z -5)2=0,解得x =14,y =-3,z =5.所以原方程的解是:x =14,y =-3,z =5.说明 一个方程含有几个未知数,要求其解,一般只有通过智取,不能强攻,通常想到利用配方,运用非负数的性质等等知识求解.另外,遇到此类问题,一般一些常数的分解规律:5=1+4,10=1+9,13=4+9,34=9+25,等等,即一般分解成两个或几个完全平方数即可.。
2022-2023学年湘教版七年级数学下册《2-2乘法公式》知识点分类练习题(附答案)
2022-2023学年湘教版七年级数学下册《2.2乘法公式》知识点分类练习题(附答案)一.平方差公式1.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)2.若a+b=6,a2﹣b2=30,则a﹣b=()A.5B.6C.10D.153.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是()A.20B.22C.26D.244.同学们,我们以前学过乘法公式,你一定熟练掌握了吧!想办法计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣).5.若a=20210,b=2020×2022﹣20212,c=()2020×()2021,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<b<a D.b<c<a6.(3+2)×(32+22)×(34+24)×(38+28)计算结果等于()A.1B.316﹣216C.332+232D.332﹣2327.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣28.计算:.9.计算:(x﹣2y+3)(x+2y﹣3).二.平方差公式的几何背景10.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)11.如图,从边长为(a+4)cm的正方形纸片中沿虚线剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪开,并拼成一个长方形(不重叠无缝隙),则这块长方形较长边的长为()A.(2a+5)cm B.(2a+8)cm C.(2a+2)cm D.(a+5)cm 12.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)13.如图1所示,边长为a的正方形中有一个边长为b(b<a)的小正方形.如图2所示是由图1中的阴影部分拼成的一个长方形.(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,则S1=,S2=(直接用含a,b的代数式表示)(2)请写出上述过程所揭示的数学公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.14.将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.15.如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.三.完全平方公式16.计算:(x﹣3y)(3x+2y)﹣(2x﹣y)2.17.若(x﹣2)2=x2+mx+n,则m,n的值分别是()A.4,4B.﹣4,4C.﹣4,﹣4D.4,﹣4 18.(2a﹣m)2=4a2+2a+,则m=()A.B.C.D.19.已知(x﹣p)2=x2+mx+36,则m=.20.若(x﹣)2展开后等于x2+ax+,则a的值为.21.如果x+y=﹣5,xy=6,那么x2+y2=.22.设(2a+b)2=(2a﹣b)2+A,则A=.23.已知:a+b=5,(a﹣b)2=13,则ab的值是.24.已知(a﹣2019)2+(2020﹣a)2=2021,则(a﹣2019)(a﹣2020)=.25.贾宪三角在历史上被不同时代的人绘制出来,有着不同的应用指向.如图,在贾宪三角中,第三行的三个数(1,2,1)对应着两数和的平方(a+b)2的展开式a2+2ab+b2的系数,类似地,通过计算可以发现:第四行的四个数(1,3,3,1)对应着两数和的立方(a+b)3的展开式a3+3a2b+3ab2+b3的系数,第五行的五个数(1,4,6,4,1)对应着两数和的四次方(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数,等等.由此可见,贾宪三角可以看作是对两数和平方公式的推广.此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.根据此规律,(a+b)6的展开式中字母a、b指数相同的项为.四.完全平方公式的几何背景26.将一个长为2a,宽为2b的矩形纸片(a>b),用剪刀沿图1中的虚线剪开,分成四块形状和大小都一样的小矩形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为.27.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为.28.用纸片拼图时,我们发现利用图1中的三种纸片(边长分别为a,b的正方形和长为b 宽为a的长方形)各若干,可以拼出一些长方形来解释某些等式,比如图2可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图3可以解释为等式;(2)要拼出一个两边长为a+b,2a+b的长方形,需要图1中的三种纸片各多少块?请先画出图形,再利用整式乘法验证你的结论.29.如图1,有甲、乙、丙三种纸片,其中甲是边长为a的正方形,乙是长为a,宽为b的长方形,丙是边长为b的正方形(a>b).(1)如图2,用甲、丙纸片各1张,乙纸片2张,可以紧密拼接成一个大正方形,请根据图形的面积写出一个乘法公式;(2)若要用这三种纸片紧密拼接成一个边长为(2a+b)大正方形,则需要取甲、乙、丙纸片各多少张.30.已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图乙中阴影部分的面积.(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?(m+n)2、(m﹣n)2、mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=3,求(a﹣b)2的值.31.如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=34,求图中阴影部分面积.32.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.33.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1,所以(a+b)2=9,2ab=2.所以a2+b2+2ab=9,得a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=30,求xy的值;(2)请直接写出下列问题答案:①若(4﹣x)x=3,则(4﹣x)2+x2=;②若(3﹣x)(5﹣x)=6,则(3﹣x)2+(5﹣x)2=.(3)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=10,两正方形的面积和S1+S2=52,求图中阴影部分面积.五.完全平方式34.若多项式4x2+kx+25是完全平方式,则k的值是.35.若x2﹣(m﹣1)x+49是完全平方式,则实数m=.36.若多项式x2+4x﹣m是一个完全平方式,则m=.37.若x2﹣2(a+1)xy+9y2是完全平方式,则实数a的值是.参考答案一.平方差公式1.解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.2.解:∵a+b=6,a2﹣b2=30,∴(a+b)(a﹣b)=30,∴a﹣b=30÷6=5,故选:A.3.解:设两个连续奇数是2n﹣1和2n+1(其中n取正整数),∵(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,∴由这两个连续奇数构造的奇特数是8的倍数.∵20、22、26都不是8的倍数,∴它们不是“创新数”,∵24是8的倍数,∴24是“创新数”,且24=72﹣52,故选:D.4.解:原式=(1+)×(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)+...+(1+)×(1﹣)===.5.解:a=20210=1;b=2020×2022﹣20212=(2021﹣1)×(2021+1)﹣20212=20212﹣1﹣20212=﹣1;c=(﹣)2020×()2021=(﹣×)2020×=;∴b<a<c.故选:B.6.解:(3+2)×(32+22)×(34+24)×(38+28)=(3﹣2)(3+2)×(32+22)×(34+24)×(38+28)=(32﹣22)×(32+22)×(34+24)×(38+28)=(34﹣24)×(34+24)×(38+28)=(38﹣28)×(38+28)=316﹣216.故选:B.7.解:∵(x﹣1)(x5+x4+x3+x2+x+1)=0.∴x6﹣1=0.∴x6=1.∴(x3)2=1.∴x3=±1.∴x=±1.当x=1时,原式=12021﹣1=0.当x=﹣1时,原式=12021﹣1=﹣2.故选:D.8.解:原式===2022.9.解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.二.平方差公式的几何背景10.解:根据图1和图2可得阴影部分的面积为:a2﹣b2和(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:D.11.解:由题意得,所剪梯形的两底各为a+4和a+1,∴该长方形较长边的长为:(a+4)+(a+1)=a+4+a+1=2a+5,故选:A.12.解:由图可知,大正方形减小正方形剩下的部分面积为a2﹣b2;拼成的长方形的面积:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:A.13.解:(1)由图1可表示阴影部分的面积为:a2﹣b2,由图2可表示阴影部分的面积为:(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由(1)结果可得公式:a2﹣b2=(a+b)(a﹣b)或(a+b)(a﹣b)=a2﹣b2;(3)利用(2)题结论可得,(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)+1=216﹣1+1=216.14.解:(1)由题意得,S1=a2﹣b2,S2=(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由(1)中的结果可验证的乘法公式为(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)由(2)中所得乘法公式(a+b)(a﹣b)=a2﹣b2可得,20212﹣2020×2022=20212﹣(2021+1)(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1=1.15.解:(1)根据上述操作利用阴影部分的面积关系得到的等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,∵2a+b=6,∴2a﹣b=4,故答案为:4,②2002﹣1992+1982﹣1972+…+42﹣32+22﹣12=(200+199)(200﹣199)+(198+197)(198﹣197)+...+(4+3)(4﹣3)+(2+1)(2﹣1)=200+199+198+197+...+4+3+2+1=×(200+1)×200=20100.三.完全平方公式16.解:(x﹣3y)(3x+2y)﹣(2x﹣y)2=3x2+2xy﹣9xy﹣6y2﹣(4x2﹣4xy+y2)=3x2+2xy﹣9xy﹣6y2﹣4x2+4xy﹣y2=﹣x2﹣3xy﹣7y2.17.解:∵(x﹣2)2=x2﹣4x+4,(x﹣2)2=x2+mx+n,∴x2﹣4x+4=x2+mx+n,∴m=﹣4,n=4.故选:B.18.解:∵(2a﹣m)2=4a2﹣4ma+m2,(2a﹣m)2=4a2+2a+,∴4a2﹣4ma+m2=4a2+2a+,∴﹣4m=2,解得:m=﹣,故选:D.19.解:因为(x﹣p)2=x2﹣2px+p2,(x﹣p)2=x2+mx+36,所以m=﹣2p,p2=36,所以m=﹣2p,p=±6,所以m=﹣12或12.故答案为:﹣12或12.20.解:根据题意,可得:(x﹣)2=x2+ax+,∵(x﹣)2=x2﹣x+,∴x2﹣x+=x2+ax+,∴a=﹣1.故答案为:﹣1.21.解:由完全平方公式(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,∴当x+y=﹣5,xy=6时,x2+y2=(﹣5)2﹣2×6=25﹣12=13,故答案为:13.22.解:因为(2a+b)2=(2a﹣b)2+A,(2a+b)2=(2a﹣b)2+8ab,所以A=8ab.故答案为:8ab.23.解:∵a+b=5,(a﹣b)2=13,∴a2+b2+2ab=25①,a2+b2﹣2ab=13②,则①﹣②可得:4ab=12,所以ab=3.故答案为:3.24.解:设a﹣2019=x,2020﹣a=y,则x+y=1,∵(a﹣2019)2+(2020﹣a)2=2021,∴x2+y2=2021,∵(x+y)2=x2+2xy+y2,∴2xy=(x+y)2﹣(x2+y2)=1﹣2021=﹣2020,即xy=﹣1010,∴(a﹣2019)(2020﹣a)=xy=﹣1010,∴(a﹣2019)(a﹣2020)=﹣(a﹣2019)(2020﹣a)=﹣xy=1010.故答案为:1010.25.解:根据规律直接写出(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b3+6ab4+b5,所以(a+b)6的展开式中字母a、b指数相同的项为20a3b3.故答案为:20a3b3.四.完全平方公式的几何背景26.解:由拼图可得小正方形的边长是小矩形长与宽的差,即a﹣b,∴中间小正方形的面积为(a﹣b)2.故答案应为:(a﹣b)2.27.解:∵a2+b2=300,ab=12,∴===144.故答案为:144.28.解:(1)∵图3面积为(a+2b)(2a+b)=2a2+5ab+2b2,∴图3可以解释为等式(a+2b)(2a+b)=2a2+5ab+2b2.(2)需要边长为a的正方形2块,长为b宽为a的长方形3块,边长为b的正方形1块.如下图所示:整式乘法验证,(a+b)(2a+b)=2a2+ab+2ab+b2=2a2+3ab+b2,∴需要a×a的正方形2块,需要a×b的长方形3块,需要b×b的正方形1块.29.解:(1)∵图2中正方形的面积可表示为:(a+b)2和a2+2ab+b2,∴可得公式(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2;(2)由计算(2a+b)2=4a2+4ab+b2可得,需要取甲种纸片4张、乙种纸片4张、丙种纸片1张.30.解:(1)由题意得,图乙中阴影部分的正方形的边长等于m﹣n;(2)图乙中阴影部分的面积可表示为:(m+n)2﹣4mn或(m﹣n)2;(3)由图乙中阴影部分的面积可得等式:(m+n)2﹣4mn=(m﹣n)2;(4)由(3)题结果(m+n)2﹣4mn=(m﹣n)2可得,(a﹣b)2=(a+b)2﹣4ab,∴当a+b=6,ab=3时,(a﹣b)2=62﹣4×3=36﹣12=24,即:(a﹣b)2=24.31.解:(1)由题意得:图2中阴影部分的正方形边长为:a﹣b.故答案为:a﹣b.(2)图2中阴影部分面积为:(a﹣b)2,还可以表示为:(a+b)2﹣4ab.∴(a﹣b)2=(a+b)2﹣4ab.(3)设AC=x,BC=y,由题意得:x+y=8,x2+y2=S1+S2=34.∵(x+y)2=x2+y2+2xy.∴64=34+2xy.∴xy=15.∴S阴影=AC•CF=xy=7.5.32.解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.33.解:(1)由完全平方公式(a+b)2=a2+2ab+b2得,ab=,∴当x+y=8,x2+y2=30时,xy====17;(2)①由完全平方公式(a+b)2=a2+2ab+b2得,a2+b2=(a+b)2﹣2ab,∴当(4﹣x)x=3时,(4﹣x)2+x2=[(4﹣x)+x]2﹣2(4﹣x)x=42﹣2×3=16﹣6=10,故答案为:10;②由完全平方公式(a﹣b)2=a2﹣2ab+b2得,a2+b2=(a﹣b)2+2ab,∴当(3﹣x)(5﹣x)=6时,(3﹣x)2+(5﹣x)2=[(3﹣x)﹣(5﹣x)]2+2(3﹣x)(5﹣x)=(﹣2)2+2×6=4+12=16,故答案为:16;(3)由完全平方公式(a+b)2=a2+2ab+b2得,=,∴当AC+BC=AB=10,AC2+BC2=S1+S2=52时,图中阴影部分面积======12.五.完全平方式34.解:∵4x2+kx+25是一个完全平方式,∴4x2+kx+25=(2x)2+kx+52=(2x±5)2,∵(2x±5)2=4x2±20x+25,∴kx=±20x,解得k=±20.故答案为:±20.35.解:∵x2﹣(m﹣1)x+49是完全平方式,∴﹣(m﹣1)=±14,解得:m=15或﹣13.故答案为:15或﹣13.36.解:∵多项式x2+4x﹣m是一个完全平方式,∴Δ=42﹣4×1×(﹣m)=0,∴m=﹣4.故答案为:﹣4.37.解:∵x2﹣2(a+1)xy+9y2是完全平方式,x2﹣2(a+1)xy+9y2=x2﹣2(a+1)xy+(3y)2,∴﹣2(a+1)xy=±2×x×3y,解得a+1=±3,∴a=2或a=﹣4.故答案为:2或﹣4.。
湘教版七年级下册数学 第2章 整式的乘法 运用乘法公式进行计算(2)
14.我们知道,(k+1)2=k2+2k+1,变形得(k+1)2-k2=2k+1, 对上面的等式,依次令 k=1,2,3,…,得 第 1 个等式:22-12=2×1+1; 第 2 个等式:32-22=2×2+1; 第 3 个等式:42-32=2×3+1; ….
…,
(n+1)2-n2=2n+1,
所以①+②+③+…+ ,
得(n+1)2-12=2(1+2+3+…+n)+n,即 n2+2n=2S1+n, n2+n
所以 S1= 2 .Fra bibliotek15.先仔细阅读材料,再尝试解决问题: 完全平方公式(x±y)2=x2±2xy+y2 及(x±y)2 的值恒为非负 数的特点在数学中有着广泛的应用,比如探求多项式 2x2+ 12x-4 的最小值时,我们可以这样处理: 解:原式=2(x2+6x-2)=2(x2+6x+9-9-2) =2[(x+3)2-11]=2(x+3)2-22. 因为无论 x 取什么数,(x+3)2 的值都为非负数,
12.解方程: 2x(x-1)-(x-4)(x+4)=(x+2)2.
解:2x(x-1)-(x-4)(x+4)=2x2-2x-x2+16 =x2-2x+16.(x+2)2=x2+4x+4. 故原方程可化为 6x=12. 解得 x=2.
13.如果一个正方形的边长增加 4 厘米,那么它的面积就增加 40 平方厘米,这个正方形的边长是多少?
所以(x+3)2 的最小值为 0,此时 x=-3, 进而 2(x+3)2-22 的最小值是 2×0-22=-22, 所以原多项式的最小值是-22. 请根据上面的解题思路,探求多项式 3x2-6x+12 的最小值 是多少,并写出相应的 x 的值.
七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版
6.(5x2-4y2)(-5x2+4y2)运算的结果是( )
(A)-25x4-16y4
(B)-25x4+40x2y2-16y4
(C)25x4-16y4
(D)25x4-40x2y2+16y4
【解析】选B.(5x2-4y2)(-5x2+4y2)
=-(5x2-4y2)(5x2-4y2)=-(5x2-4y2)2
(A)m+3 (B)m+6 (C)2m+3 (D)2m+6
【解析】选C.由题意知,长方形面积为(m+3)2m2=m2+6m+9-m2 =6m+9=3(2m+3),因为长方形一边长为3,故另一边长为 2m+3.
2.下列选项中,与(x+y)2相等的是( )
(A)(-x+y)2 (B)(-x-y)2
(C)(x-y)2
【预习思考】 添括号后,括号前面是“-”号,括到括号里各项的符号应如何 处理? 提示:各项都变号.
完全平方公式的应用 【例1】计算:(1)1972.(2)(x-2y+z)2. 【解题探究】(1)完全平方公式适用的前提是两数和(或差)的平 方,应把197看作哪两个数的和(或差)计算比较方便? 答:200与3的差, 所以1972=(200-3)2
4.计算:(1)592=_____.(2)712=_____. 【解析】(1)592=(60-1)2=3 600-120+1=3 481. (2)712=(70+=5 041. 答案:(1)3 481 (2)5 041
乘法公式的综合运用 【例2】(6分)计算:(m-2n+3t)(m+2n-3t). 【规范解答】原式=[m-(2n-3t)][m+(2n-3t)] ……………………………………………………………………1分 =m2-(2n-3t)2 ……………………………………………………4 分 =m2-(4n212nt+9t2) ……………………………………………5分 =m2-4n2+12nt-9t2. ……………………………………………6
2018年春湘教版七年级数学下册2.2乘法公式
2.2 乘法公式第1课时 平方差公式教学目标1.经历探索平方差公式的过程,会推导平方差公式;2.能利用平方差公式进行简单的运算。
在探索平方差公式的过程中,发展学生的符号感和推理能力。
在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点难点重点平方差公式的推导和运用难点平方差公式的结构特点和灵活运用。
教学过程一、复习导入1. 回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?(1)4139⨯;(2)6159⨯.师生共同想办法,想到能否把数转化成较整的数?变形成:(401)(401)+-,(601)(601)+-再试试把它当成多项式乘法来算算,有什么发现?继续用你发现的方法算算2119⨯,3129⨯,5149⨯,成功了吗?我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解探究新知1.观察(401)(401)+-,(601)(601)+-,相乘的两个多项式有什么特点?运算的结果有什么特点?讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?计算下列各式:(1)(1)(1)a a +-;(2)(2)(2)a a +-;(3)(32)(32)a b a b +-3. 从上面的计算中你有什么发现呢?引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:22()()a b a b a b +-=-,这里字母,a b 是任意形式的两个数。
这个公式叫做平方差公式。
4. 你能通过演算推导出平方差公式吗?最终得到平方差公式:22()()a b a b a b +-=-平方差公式的理解应用下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)(1)(1)(1)x x ++;(2)()()a b b a +-;(3)()()a b a b -+-;(4)22()()x y x y -+;(5)()()a b a b ---;(6)2222()()c d d c -+.学生分组讨论交流,归纳什么情况下可以使用平方差公式。
湘教版七年级数学下册第二章《运用乘法公式进行计算》优
湘教版七年级数学下册第二章《运用乘法公式进行计算》优2.2.3运用乘法公式进行计算1.熟练应用平方差公式和完全平方公式进行计算.(重点)2.理解公式中的字母可以代表多项式.(重点、难点)一、平方差公式a2-b21.公式表示:(a+b)(a-b)=_____.2.说明:字母a,b不仅可以代表单个的数或字母,也可代表一个多项式单项式或一个_______.完3.特征:左边两个多项式相乘,在这两个多项式中,一部分项___全相同另一部分项互为相反数.右边等于_____________完全相同的项的平_______,互为相反数的项的平方.方减去_______________二、完全平方公式a2±2ab+b21.公式表示:(a±b)2=__________.2.说明:字母a,b不仅可以代表单个的数或字母,也可以代表一多项式个单项式或一个_______.平方右边为这两个3.结构特征:左边为两个整式和(或差)的_____.平方和再加上(或减去)这两个整式________.积的2倍整式的_______,(打“√”或“某”)(1)m-n-某+y=m-(n-某+y).(某)(2)a-b-c+1=(a-b)-(c-1).(√)(3)m-a+b-c=m+(a-b+c).(某)(4)(某-y+z)2=[(某-y)+z]2.(√)知识点1运用平方差公式解决较复杂问题【例1】计算:(m-2n+3t)(m+2n-3t).【思路点拨】确定相同项和相反项→应用平方差公式计算→应用完全平方公式计算.【自主解答】(m-2n+3t)(m+2n-3t)=[m+(3t-2n)][m-(3t-2n)]=m2-(3t-2n)2=m2-(9t2-12tn+4n2)=m2-9t2+12tn-4n2.【总结提升】平方差公式应用的三种类型1.直接利用平方差公式计算.2.从左到右重复利用平方差公式计算.3.两个三项式相乘,把其中两项看作一项利用平方差公式计算.知识点2利用完全平方公式解决较复杂问题【例2】计算:(某-2y+z)2.【解题探究】(1)完全平方公式等号左边为几项式的平方提示:两项.(2)而某-2y+z是三项式,应该怎么办提示:把(某-2y)看作一项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 乘法公式
1.计算:
(1)(x +2y)(x 2-4y 2)(x -2y);
解:原式=[(x +2y)(x -2y)](x 2-4y 2)
=(x 2-4y 2)(x 2-4y 2)
=x 4-8x 2y 2+16y 4.
(2)(a +b -3)(a -b +3);
解:原式=[a +(b -3)][a -(b -3)]
=a 2-(b -3)2
=a 2-(b 2-6b +9)
=a 2-b 2+6b -9.
(3)(x 2+x -3)(x 2-x -3);
解:原式=(x 2-3+x)(x 2-3-x)
=(x 2-3)2-x 2
=x 4-6x 2+9-x 2
=x 4-7x 2+9.
(4)(3x -2y)2(3x +2y)2.
解:原式=[(3x -2y)(3x +2y)]2
=(9x 2-4y 2)2
=81x 4-72x 2y 2+16y 4.
2.若(a -b -c)·M =(a -c)2-b 2,则M =a +b -c .
3.运用公式(a +b)(a -b)=a 2-b 2计算(a +b -1)(a -b +1),下列变形正确的是(C)
A .[a -(b +1)]2
B .[a +(b +1)]2
C .[a -(b -1)][a +(b -1)]
D .[(a -b)+1][(a -b)-1]
4.计算(-a +1)(a +1)(a 2+1)的结果是(D)
A .a 4-1
B .a 4+1
C .a 4+2a 2+1
D .1-a 4
5.计算(x -y +1)(x +y -1)的结果是(D)
A .x 2-2xy +y 2-1
B .x 2-y 2-2y -1
C .x 2+y 2-1
D .x 2-y 2+2y -1
6.计算(a +1)2(a -1)2的结果是(D)
A .a 4-1
B .a 4+1
C .a 4+2a 2+1
D .a 4-2a 2+1
7.若一个正方形的边长增加3 cm ,它的面积增加45 cm 2,则此正方形原来的边长为(A)
A .6 cm
B .9 cm
C .12 cm
D .无法确定
8.对于任意整数n ,多项式(n +7)2-n 2都能被(C)
A .2整除
B .n 整除
C .7整除
D .n +7整除
9.先化简,再求值:(a +b)(a -b)+(a +b)2,其中a =-1,b =12
. 解:原式=a 2-b 2+a 2+2ab +b 2
=2a 2+2ab
当a =-1,b =12
时, 原式=2×(-1)2+2x(-1)×12
=1.
10.一个正方形的一边增加3 cm ,另一边减少3 cm ,所得到的长方形与这个正方形的每一边减少1 cm 所得到的正方形的面积相等,求原来正方形的面积.
解:设原来正方形的边长为x cm ,根据题意,得
(x -3)(x +3)=(x -1)2.解得x =5.
所以x 2=25.
答:原来正方形的面积是25 cm 2.
11.计算(2x -3y +1)(2x +3y -1)的结果是(D)
A .4x 2-12xy +9y 2-1
B .4x 2-9y 2-6y -1
C .4x 2+9y 2-1
D .4x 2-9y 2+6y -1
12.已知a 2-b 2=4,那么(a +b)2(a -b)2的结果是(B)
A .32
B .16
C .8
D .4
13.计算(x -1)(x +1)(x 2+1)-(x 4+1)的值是(C)
A .-2x 2
B .0
C .-2
D .-1
14.记x =(1+2)(1+22)(1+24)(1+28)…(1+2256),则x +1是(C)
A .一个奇数
B .一个质数
C .一个整数的平方
D .一个整数的立方
15.若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为(B)
A .-6
B .6
C .18
D .30
16.若M =(a 2-a +1)(a 2+a +1),N =(a +1)2(a -1)2,其中a ≠0,则M ,N 的大小的关系是(A)
A .M >N
B .M <N
C .M =N
D .不能确定
17.设正方形的面积为S 1 cm 2,长方形的面积为S 2 cm 2,如果长方形的长比正方形的边长多3 cm ,宽比正方形的边
长少3 cm.那么S 1与S 2的大小关系是(A)
A .S 1>S 2
B .S 1<S 2
C .S 1=S 2
D .不能确定
18.由m(a +b +c)=ma +mb +mc ,可得:(a +b)(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,
即:(a +b)(a 2-ab +b 2)=a 3+b 3.①
我们把等式①叫做多项式乘法的立方公式.
下列应用这个立方公式进行的变形不正确的是(A)
A .(a +1)(a 2+a +1)=a 3+1
B .(2x +y)(4x 2-2xy +y 2)=8x 3+y 3
C .(a +3)(a 2-3a +9)=a 3+27
D .(x +4y)(x 2-4xy +16y 2)=x 3+64y 3
19.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为4,则另一边长为2m +4.
20.计算:
(1)(a -2b -3c)2;
解:原式=(a -2b)2-2·(a -2b)·3c +9c 2
=a 2+4b 2-4ab -6ac +12bc +9c 2
=a 2+4b 2+9c 2-4ab -6ac +12bc.
(2)(x +2y -z)(x -2y -z)-(x +y -z)2.
解:原式=[(x -z)+2y][(x -z)-2y]-[(x -z)+y]2
=(x -z)2-4y 2-(x -z)2-2(x -z)y -y 2
=-5y 2-2xy +2yz.
21.先化简(2x +y -6)(2x -y -6)+y 2,后请你选一个合适的x 、y 的值,使该式有最小值.
解:原式=(2x -6)2-y 2+y 2=(2x -6)2,
当x =3时,有最小值0.
22.已知x 2+y 2=25,x +y =7,且x >y ,求x -y 的值.
解:因为x +y =7,所以(x +y)2=49.
即x 2+2xy +y 2=49.
因为x 2+y 2=25,所以xy =12.
所以x 2-2xy +y 2=25-2×12=1.
即(x -y)2=1.
因为x >y ,所以x -y =1.
23.若n 满足(n -2 017)2+(2 018-n)2=1,求(2 018-n)(n -2 017)的值.
解:设2 018-n =a ,n -2 017=b ,
则a +b =1,a 2+b 2=1.
又因为(a +b)2-(a 2+b 2)=2ab ,
所以ab =12
[(a +b)2-(a 2+b 2)]=0. 即(2 018-n)(n -2 017)=0.。