高考真题理科数学解析分类汇编16复数
高考复数专题及答案百度文库
一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i -- 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A .12 B.2 CD .23.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y 6.))5511--+=( )A .1B .-1C .2D .-2 7.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z,则z 为( )A .1 BC .2D .48.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 9.若复数()41i 34i z +=+,则z =( ) A .45 B .35 C .25 D.5 10.122i i -=+( ) A .1 B .-1 C .i D .-i11.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1- 12.若复数z 满足213z z i -=+,则z =( )A .1i +B .1i -C .1i -+D .1i --13.复数21i i +的虚部为( ) A .1- B .1 C .i D .i -14.设复数满足(12)i z i +=,则||z =( )A .15BCD .515.题目文件丢失!二、多选题16.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 17.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为218.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限20.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 23.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,12z =D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数25.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =26.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 28.下面四个命题,其中错误的命题是( ) A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .530.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i化简,再利用模长公式即可求解.【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B4.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C. 5.C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-. 6.D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.7.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B. 8.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .9.A【分析】首先化简复数,再计算求模.【详解】,.故选:A解析:A【分析】首先化简复数z ,再计算求模.【详解】()()()2242112434343434i i i z i i i i ⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==. 故选:A10.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A12.A【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果.【详解】设,则,,,解得:,.故选:A.解析:A【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果.【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩, 1z i ∴=+.故选:A.【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果.【详解】,故虚部为1.故选:B.解析:B【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果.【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.14.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B15.无二、多选题16.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.17.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 18.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题21.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.22.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.23.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围24.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.26.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 28.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确, 故选:ACD【点睛】本题考查复数的几何意义,考查复数的模。
2019年高考真题理科数学解析分类汇编16复数
2019年高考真题理科数学解析分类汇编16 复数1.【2019高考浙江理2】 已知i 是虚数单位,则31i i+-= A .1-2i B.2-i C.2+i D .1+2i【答案】D 【解析】31i i +-=i i i i i i 21242)1)(1()1)(3(+=+=+-++。
故选D 。
2.【2019高考新课标理3】下面是关于复数21z i =-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【答案】C 【解析】因为i i i i i i z --=--=--+---=+-=12)1(2)1)(1()1(212,所以2=z ,i i z 2)1(22=--=,共轭复数为i z +-=1,z 的虚部为1-,所以真命题为42,p p 选C.3.【2019高考四川理2】复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -【答案】B 【解析】22(1)1221222i i i i i i i--+-===- [点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以.4.【2019高考陕西理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i +为纯虚数”的( ) A.充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】00=⇔=a ab 或0=b ,而复数bi a i b a -=+是纯虚数00≠=⇔b a 且,i b a ab +⇐=∴0是纯虚数,故选B.5.【2019高考上海理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b【答案】B 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.6.【2019高考山东理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i --【答案】A 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
高考真题汇编——理科数学(解析版)16:复数
1.【2012高考真题浙江理2】已知i是虚数单位,则 =
A .1-2iB.2-iC.2+i D .1+2i
【答案】D
【解析】 = 。故选D。
2.【2012高考真题新课标理3】下面是关于复数 的四个命题:其中的真命题为()
的共轭复数为 的虚部为
【答案】C
【解析】因为 ,所以 , ,共轭复数为 , 的虚部为 ,所以真命题为 选C.
12.【2012高考真题安徽理1】复数 满足: ;则 ()
【答案】D
【命题立意】本题考查复数的概念与运算。
【解析】
13.【2012高考真题天津理1】i是虚数单位,复数 =
(A)2 + i(B)2 – i
(C)-2 + i(D)-2 – i
【答案】B
【解析】复数 ,选B.
14.【2012高考真题全国卷理1】复数 =
【答案】A
【解析】 。故选A。
7.【2012高考真题辽宁理2】复数
(A) (B) (C) (D)
【答案】A
【解析】 ,故选A
【点评】本题主要考查复数代数形式的运算,属于容易题。复数的运算要做到细心准确。
8.【2012高考真题湖北理1】方程 的一个根是
A. B. C.
A 2+I B 2-I C 1+2i D 1- 2i
【答案】C
【解析】 ,选C.
15.【2012高考真题重庆理11】若 ,其中 为虚数单位,则
【答案】4
【命题立意】本题考查复数的四则运算,复数相等的概念与应用.
【解析】由 ,得 ,根据复数相等得 ,所以 .
16.【2012高考真题上海理1】计算: ( 为虚数单位)。
高考数学 真题分类汇编:专题(15)复数(理科)及答案
专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
2012年高考真题汇编——理科数学:16:复数.pdf
感受器和感觉器官(一) 1.眼球的基本结构和功能: 探究主题一 眼是感受外界光线的视觉器官 视神经 感光 睫状体 瞳孔 瞳孔 白色 支持、保护 脉络膜 血管 黑色素 营养 2.视觉的形成:进入眼球的光线经过_______等的折射作用, 在_______上形成物像。
视网膜上大量的_________受到刺激 后形成_________,神经冲动沿着_______传递到_________, 形成视觉。
晶状体 视网膜 感光细胞 神经冲动 视神经 大脑皮层 3.近视与远视: 近视 远视 形成原因 眼球前后径_____或晶 状体的_____过大,物 像落在_______的前方 眼球的前后径 _____,物像落 在_______的后方 矫正 配戴_______ 配戴_______ 过长 曲度 视网膜 过短 视网膜 凹透镜 凸透镜 【特别提醒】预防近视的方法:三要四不看 一要:读写姿势要正确,眼与书的距离要在33厘米左右。
二要:看书、看电视或使用电脑1小时后要休息一下,远眺几分钟。
三要:要定期检查视力,认真做眼保健操。
一不看:不在直射的强光下看书。
二不看:不在光线暗的地方看书。
三不看:不躺卧看书。
四不看:不走路看书。
1.眼球和照相机在哪些结构上比较相似? 提示:眼球结构与照相机结构的对应关系 眼球 晶状体 瞳孔 视网膜 脉络膜 照相机 镜头 光圈 胶卷 暗室的壁2.在眼球的结构中,对物体反射进眼球中的光线起折射作用的结构有哪些?最主要的结构是什么? 提示:晶状体和玻璃体。
晶状体。
探究主题二 耳是接收声音刺激的听觉器官 1.耳的基本结构和功能: 收集 耳廓 外耳道 传送 鼓膜听小骨 鼓 室 半规管 头部位 置变动 前庭 耳蜗 听觉感受器 咽鼓管 咽 2.听觉的形成:当声波引起的振动传到内耳时,耳蜗_____ _______受振动刺激而产生_________,神经冲动沿着位听神 经传到大脑皮层的_____中枢,形成听觉。
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
2016年高考数学分类汇编:复数
2016年高考文科数学新课标Ⅲ卷:若i Z 34+=,则=||Z Z ( ) A 、1 B 、1- C 、i 5354+ D 、i 5354- 本题解答:52591634||3422==+=+=⇒+=Z i Z 。
i Z i Z 3434-=⇒+=。
i i Z Z 5354534||-=-=。
2016年高考理科数学新课标Ⅲ卷:若i Z 21+=,则=-⋅14Z Z i ( ) A 、1 B 、1- C 、i D 、i - 本题解答:541)1(4141)21)(21(21212=+=-⨯-=-=-+=⋅⇒-=⇒+=i i i Z Z i Z i Z 。
i i i Z Z i ==-=-⋅4415414。
2016年高考文科数学新课标Ⅱ卷:设复数Z 满足i i Z -=+3,则=Z ( )A 、i 21+-B 、i 21-C 、i 23+D 、i 23-本题解答:i i i Z i i Z 2333-=--=⇒-=+。
2016年高考理科数学新课标Ⅱ卷:已知i m m Z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是( )A 、)1,3(-B 、)3,1(-C 、),1(+∞D 、)3,(--∞ 本题解答:i m m Z )1()3(-++=在复平面对应的点)1,3(-+m m 在第四象限03>+⇒m ,01<-m 3->⇒m ,)1,3(1-∈⇒<m m 。
2016年高考文科数学新课标Ⅰ卷:设))(21(i a i ++的实部与虚部相等,其中a 为实数,则=a ( )A 、3-B 、2-C 、2D 、3本题解答:i a a i a a i a a i ai i a i a i )21()2(2)21()1(2)21(22))(21(2++-=-++=-⨯+++=+++=++ 实部2-a ,虚部3321221221-=⇒=-⇒+=-⇒+=-⇒+a a a a a a a 。
2019-2023高考数学真题分类汇编 复数提高运算
2019-2023高考数学真题分类汇编复数提高运算一、填空题1.(2019·上海)设i为虚数单位,3z̅−i=6+5i,则|z|的值为2.(2019·天津)i是虚数单位,则|5−i1+i|的值为.3.(2019·浙江)复数z=11+i(i为虚数单位),则|z|=4.(2023·天津卷)已知i是虚数单位,化简5+14i2+3i的结果为.5.(2023·上海卷)已知当z=1+i,则|1−i⋅z|=;6.(2020·新课标Ⅱ·理)设复数z1,z2满足|z1|=|z2|=2,z1+z2=√3+i,则|z1−z2| =.二、选择题7.(2021·全国甲卷)已知(1−i)2z=3+2i,则z=()A.-1- 32i B.-1+ 32i C.- 32+i D.- 32-i8.(2021·全国乙卷)设2(z+ z̅)+3(z- z̅)=4+6i,则z=().A.1-2i B.1+2i C.1+i D.1-i 9.(2021·新高考Ⅱ)已知z=2-i,则( z(z⃗+i)=()A.6-2i B.4-2i C.6+2i D.4+2i 10.(2020·新课标Ⅱ·文)若z̅(1+i)=1−i,则z=()A.1–i B.1+i C.–i D.i11.(2020·新课标Ⅱ·理)复数11−3i的虚部是()A.−310B.−110C.110D.31012.(2020·新课标Ⅱ·文)(1–i)4=()A.–4B.4C.–4i D.4i 13.(2020·新课标Ⅱ·文)若z=1+2i+i3,则|z|=()A.0B.1C.√2D.2 14.(2020·新课标Ⅱ·理)若z=1+i,则|z2–2z|=()A.0B.1C.√2D.215.(2020·新高考Ⅱ)2−i1+2i=()A.1B.−1C.i D.−i16.(2020·北京)在复平面内,复数z对应的点的坐标是(1,2),则i⋅z=().A.1+2i B.−2+i C.1−2i D.−2−i 17.(2020·浙江)已知a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,则a=()A.1B.﹣1C.2D.﹣2 18.(2019·全国Ⅱ卷理)设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x−1)2+y2=1C.x2+(y−1)2=1D.x2+(y+1)2=119.(2019·全国Ⅱ卷文)设z= 3−i1+2i,则|z|=()A.2B.√3C.√2D.1 20.(2019·北京)已知复数z=2+i,则z·z−=()A.√3B.√5C.3D.5 21.(2019·全国Ⅱ卷理)设z=-3+2i,则在复平面内z−对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限22.(2019·全国Ⅱ卷文)设z=i(2+i),则z̅=()A.1+2i B.-1+2i C.1-2i D.-1-2i 23.(2019·全国Ⅱ卷理)若z(1+i)=2i,则z=()A.-1-i B.-1+i C.1-i D.1+i 24.(2023·全国甲卷)若复数(a+i)(1−ai)=2,a∈R,则a=()A.-1B.0·C.1D.2答案解析部分1.【答案】2√2【解析】【解答】解:由3z̅−i=6+5i,得3z̅=6+6i,即z̅=2+i,∴|z|=|z̅|=√22+22=2√2.故答案为:2√2.【分析】利用复数的加减法的运算法则求出复数z,再利用复数z的实部和虚部求出复数的模。
复数高考题分类汇编审批稿
A. B. C. D.
16.(2015·四川卷)设 是虚数单位,则复数 ()
A. B. C. D.
17.(2016·全国卷Ⅲ)若 ,则 ()
A. B. C. D.
18.(2016·四川卷)设 为虚数单位,则 的展开式中含 的项为()
A. B. C. D.
复数高考题分类汇编
复数高考真题分类汇编
题型一复数的概念及分类
1.(2015·天津卷) 是虚数单位,若复数 是纯虚数,则 .
2.(2016·江苏卷)复数 , 为虚数单位,则 的实部是.
3.(2016·上海卷)设 ,其中 为虚数单位,则其虚部为.
4.(2017·天津卷)已知 , 为虚数单位,若 为实数,则 的值为.
A.第一象限B.第二象限C.第三象限D.第四象限
5.(2013·四川卷)如图,在复平面内,点 表示复数,则图中表示的共轭复数的点是_____
6.(2013·天津卷)已知 , 是虚数单位,若 ,则 .
7.(2014·陕西卷)原命题为“若 互为共轭复数,则 ”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()
6.(2014·四川卷)复数 ______.
7.(2014·天津卷) 是虚数单位,复数 ()
A. B. C. D.
8.(2014·全国卷) ()
A. B. C. D.
9.(2014·辽宁卷)设复数满足 ,则 ()
A. B. C. D.
10.(2014·湖北卷) 为虚数单位,则 ()
A. B. C. D.
11.(2014·湖南卷)满足 ( 是虚数单位)的复数 ()
A. B. C. D.
2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)
17.(2016 年全国 I)设 (1 i)x 1 yi ,其中 x, y 是实数,则 x yi =
A.1
B. 2
C. 3
D.2
【答案】B. 18.(2016 年全国 II)已知 z (m 3) (m 1)i 在复平面内对应的点在第四象限,则实数 m
的取值范围是
A. 3,1
B.第二象限
C.第三象限
D.第四象限
【答案】B.
23.(2015
山东)若复数
z
z
满足
1i
i
,其中 i
为虚数单位,则
z
=
A.1 i
B.1 i
C. 1 i
D. 1 i
【答案】A.
24.(2015 四川)设 i 是虚数单位,则复数 i3 2 = i
A. i
B. 3i
C. i
D. 3i
57.(2011 山东)复数 z = 2 i ( i 为虚数单位)在复平面内对应的点所在象限为 2i
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D.
58.(2011 安徽)设 i 是虚数单位,复数 ai 为纯虚数,则实数 a 为 i
A.2
B. 2
C.
D.
B. 1,3
C. 1 , +
D. - , 3
【答案】A.
19.(2016 年全国 III)若 z 1 2i ,则 4i zz 1
A.1
B. 1
C.i
D. i
【答案】C.
20.(2015
新课标
1)设复数
z
1
满足
2012年高考真题理科数学解析分类汇编16复数
2012年高考真题理科数学解析分类汇编16 复数1.【2012高考浙江理2】 已知i 是虚数单位,则31ii+-= A .1-2i B.2-i C.2+i D .1+2i 【答案】D 【解析】31i i +-=i ii i i i 21242)1)(1()1)(3(+=+=+-++。
故选D 。
2.【2012高考新课标理3】下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【答案】C 【解析】因为i i i i i i z --=--=--+---=+-=12)1(2)1)(1()1(212,所以2=z ,i i z 2)1(22=--=,共轭复数为i z +-=1,z 的虚部为1-,所以真命题为42,p p 选C.3.【2012高考四川理2】复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i - 【答案】B【解析】22(1)1221222i i i ii i i--+-===- [点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以. 4.【2012高考陕西理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( ) A.充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B.【解析】00=⇔=a ab 或0=b ,而复数bi a iba -=+是纯虚数00≠=⇔b a 且,iba ab +⇐=∴0是纯虚数,故选B. 5.【2012高考上海理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( ) A .3,2==c b B .3,2=-=c b C .1,2-=-=c b D .1,2-==c b【答案】B【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.6.【2012高考山东理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为 (A )35i + (B )35i - (C )35i -+ (D )35i -- 【答案】A 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
2012-2021高考真题分类汇编及详解-.复数(解析版)
A.
B.
C.
D.
【答案】C
解析:设 ,则 .
8.(2018年高考数学课标Ⅲ卷(理)) ( )
A. B. C. D.
【答案】D
解析: ,故选D.
9.(2018年高考数学课标Ⅱ卷(理)) ( )
A. B. C. D.
A. B. C. D.
【答案】B
【解析】令 ,则由 得 ,所以 , 正确;
当 时,因为 ,而 知, 不正确;
由 知 不正确;
对于 ,因为实数没有虚部,所以它的共轭复数是它本身,也属于实数,故 正确,故选B.
【考点】复数的运算与性质
【点评】分式形式的复数,分子分母乘分母的共轭复数,化简成 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.
A.0B.1C. D.2
【答案】D
【解析】由题意可得: ,则 .
故 .故选:D.
【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.
4.(2020年高考数学课标Ⅲ卷理科)复数 虚部是( )
A. B. C. D.
【答案】D
解析:因为 ,
所以复数 的虚部为 .
故选:D.
【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.
复数
一、选择题
1.(2021年高考全国乙卷理科)设 ,则 ( )
A. B. C. D.
【答案】C
解析:设 ,则 ,则 ,
所以, ,解得 ,因此, .
故选:C.
2.(2021年高考全国甲卷理科)已知 ,则 ( )
A B. C. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考真题理科数学解析分类汇编16 复数
1.【2012高考浙江理2】 已知i 是虚数单位,则31i i
+-= A .1-2i B.2-i C.2+i D .1+2i
【答案】D 【解析】31i i +-=i i i i i i 212
42)1)(1()1)(3(+=+=+-++。
故选D 。
2.【2012高考新课标理3】下面是关于复数21z i =
-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-
()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34
【答案】C
【解析】因为i i i i i i z --=--=--+---=+-=12
)1(2)1)(1()1(212,所以2=z ,i i z 2)1(22=--=,共轭复数为i z +-=1,z 的虚部为1-,所以真命题为42,p p 选C.
3.【2012高考四川理2】复数2
(1)2i i
-=( ) A 、1 B 、1- C 、i D 、i -
【答案】B 【解析】22(1)1221222i i i i i i i
--+-===- [点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以.
4.【2012高考陕西理3】设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i +
为纯虚数”的( )
A.充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
【答案】B.
【解析】00=⇔=a ab 或0=b ,而复数bi a i
b a -=+是纯虚数00≠=⇔b a 且,i b a ab +
⇐=∴0是纯虚数,故选B. 5.【2012高考上海理15】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,
则( )
A .3,2==c b
B .3,2=-=c b
C .1,2-=-=c b
D .1,2-==c b
【答案】B 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则
b i i -==-++22121,
c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选B.
【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于
中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.
6.【2012高考山东理1】若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为
(A )35i + (B )35i - (C )35i -+ (D )35i --
【答案】A 【解析】i i i i i i i i z 535
2515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+
根据复数相等可知72,11
2=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
7.【2012高考辽宁理2】复数
22i i -=+ (A)3455i - (B)3455i + (C) 415i - (D) 315
i + 【答案】A 【解析】2(2)(2)34342(2)(2)555
i i i i i i i i ----===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
复数的运算要做到细心准确。
8.【2012高考湖北理1】方程26130x x ++=的一个根是
A .32i -+
B .32i +
C .23i -+
D .23i +
【答案】A
考点分析:本题考察复数的一元二次方程求根.
【解析】根据复数求根公式:6x 322
i -±==-±,所以方程的一个根为32i -+ 答案为A.
9.【2012高考广东理1】 设i 为虚数单位,则复数
56i i -= A .6+5i B .6-5i C .-6+5i D .-6-5i
【答案】D 【解析】56i i
-=i i i i i 56156)65(2--=-+=-.故选D .
10.【2012高考福建理1】若复数z 满足zi=1-i ,则z 等于
A.-1-I
B.1-i
C.-1+I
D.1=i
【答案】A.
考点:复数的运算。
难度:易。
分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。
解答:i
i z -=1 11
1)
()
)(1(--=--=---=
i i i i i i 。
11.【2012高考北京理3】设a ,b ∈R 。
“a=0”是“复数a+bi 是纯虚数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】B
【解析】当0=a 时,如果0=b 同时等于零,此时0=+bi a 是实数,不是纯虚数,因此不
是充分条件;而如果bi a +已经为纯虚数,由定义实部为零,虚部不为零可以得到0=a ,
因此想必要条件,故选B 。
12.【2012高考安徽理1】复数z 满足:()(2)5z i i --=;则z =( )
()A 22i -- ()B 22i -+ ()C i 2-2
()D i 2+2 【答案】D
【命题立意】本题考查复数的概念与运算。
【解析】55(2)()(2)5222(2)(2)
i z i i z i z i i i i i +--=⇔-=⇔=+=+--+ 13.【2012高考天津理1】i 是虚数单位,复数
i i +-37= (A ) 2 + i (B )2 – i
(C )-2 + i (D )-2 – i
【答案】B
【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算. 【解析】复数i i i i i i i i -=-=+---=+-210
1020)3)(3()3)(7(37,选B. 14.【2012高考全国卷理1】复数
131i i -++= A 2+I B 2-I C 1+2i D 1- 2i
【答案】C
【命题意图】本试题主要考查了复数的四则运算法则。
通过利用除法运算来求解。
【解析】i i i i i i i i 212
42)1)(1()1)(31(131+=+=-+-+-=++-,选C. 15.【2012高考重庆理11】若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b +=
【答案】4
【命题立意】本题考查复数的四则运算,复数相等的概念与应用.
【解析】由bi a i i +=++)2)(1(,得bi a i +=+31,根据复数相等得3,1==b a ,所以
4=+b a .
16.【2012高考上海理1】计算:
=+-i i 13 (i 为虚数单位)。
【答案】i 21- 【解析】复数i i i i i i i i 212
42)1)(1()1)(3(13-=-=-+--=+-。
【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分
母实数化即可.
17.【2012高考江苏3】(5分)设a b ∈R ,,117i i 12i a b -+=-(i 为虚数单位),则a b +的值为 ▲ .
【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117i i 12i a b -+=-得()()()()
117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b + 。
18.【2012高考湖南理12】已知复数2
(3)z i =+ (i 为虚数单位),则|z|=_____.
【答案】10
【解析】2(3)z i =+=29686i i i ++=+,10z ==. 【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用
z =.。