高中数学圆的方程专题复习
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
高中数学圆及其方程
圆及其方程一、公式及相关内容(1)圆的标准方程:222()()x a y b r -+-= (圆心及半径)(2)圆的一般方程:220x y Dx Ey F ++++= (无xy 项,22,x y 系数相等且不为零)(3)圆的参数方程:cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数)上述方程中均有三个字母系数,因此确定一个圆需要三个独立的条件。
(4)过圆 222x y r +=上一点00(,)P x y 的切线方程为200xx yy r +=圆 222xy r +=的斜率为k 的切线方程为y kx =± (掌握推导方法)(5)经过两圆:221110x y D x E y F ++++=,222220x y D x E y F ++++=交点的圆的方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++= 当1λ=-时,得到两圆公共弦所在直线方程121212()()()0D D x E E y F F -+-+-=(6)判断点与圆的位置关系:取决于点与圆心的距离与圆半径的比较结果 (7)直线与圆的位置关系:一:圆心到直线的距离与圆半径比较二:直线与圆方程组成的方程组的解的个数:∆法(8)圆与圆位置关系:圆心距d 与两圆半径,R r 的比较:d R r d R r R r d R r d R r d R r>+⎧⎪=+⎪⎪-<<+⎨⎪=-⎪<-⎪⎩(9)公切线求法:通过比例求得公切线与连心线的交 点A 的坐标,用点斜式设公切线的 方程,然后求得斜率k ,得到公切 线方程。
外离 外切 相交 内切 内含二 求圆的方程1. 求经过两点(1,4),(3,2)A B -,且圆心在y 轴上的圆的方程。
(标准方程法,垂径弦性质)2.(1)已知圆经过(2,3)A -和(2,5)B --两点,若圆心在直线230x y --=上,求圆的方程; (2)求过点(1,0),(3,0),(0,1)A B C -的圆的方程。
高中数学圆的方程知识点题型归纳
高中数学圆的方程知识点题型归纳第一讲圆的方程一、知识清单一)圆的定义及方程圆的定义是平面内距离定点距离相等的点的轨迹。
圆的标准方程为 (y-b)2=r2,一般方程为 x2+y2+Dx+Ey+F=0,其中圆心为 (a,b),半径为 r。
标准方程和一般方程可以互相转化。
二)点与圆的位置关系点 M(x,y) 与圆 (x-a)2+(y-b)2=r2 的位置关系有三种情况:在圆外、在圆上和在圆内。
三)温馨提示求圆的方程时,可以利用圆的几何性质简化运算,如圆心在过切点且与切线垂直的直线上、圆心在任一弦的中垂线上、两圆内切或外切时,切点与两圆圆心三点共线。
此外,中点坐标公式也是常用的计算方法。
二、典例归纳本讲内容主要是圆的方程和点与圆的位置关系。
在求圆的方程时,需要注意利用圆的几何性质简化运算。
同时,中点坐标公式也是常用的计算方法。
在实际问题中,需要根据具体情况选择合适的方法来解决问题。
且圆心在直线2x+y=0上,求该圆的方程。
变式3】已知圆C的方程为x2+y2-4x-6y+9=0,直线l的方程为2x+3y-6=0,求圆C与直线l的交点坐标。
变式4】已知圆C的方程为x2+y2-2x+4y-4=0,直线l的方程为x-y+2=0,求圆C与直线l的交点坐标。
方法总结:1.对于一般的圆方程,可以通过平移变换将其化为标准方程,然后根据圆的几何性质求出圆心和半径,进而写出标准方程。
2.对于已知圆心和半径的问题,可以利用圆的几何性质直接写出标准方程。
3.对于圆与直线的交点问题,可以将直线方程代入圆方程中解方程,或者将圆方程代入直线方程中解方程,求出交点坐标。
变式3】给定四个点A(0,1),B(2,1),C(3,4),D(-1,2),判断它们能否在同一个圆上,并说明原因。
这题可以通过计算四边形ABCD的两条对角线的中垂线是否相交来判断四个点是否在同一个圆上。
首先可以计算出AC的中点坐标为M(1.5.2.5),斜率为-3/2,所以AC的中垂线的方程为y-2.5 = 2/3(x-1.5)。
圆系方程-高中数学知识点讲解
圆系方程
1.圆系方程
【知识点的知识】
所谓圆系方程指的是所有的圆都有相同的圆心,但圆的半径不同的圆的总和,还可以是圆的半径相同,但圆心
不同,我们把满足这两种情况的圆的总和就叫做圆系方程;除了圆系,还有直线系(过某一定点)等等.
【例题解析】
例:已知圆系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率为 2 的直线l 被圆系方程表示的任意一圆截得的弦长是定值45?如果存在,试求直线l 的方程;如果不存在,请说明理由.
解:假设存在满足条件的直线方程为y=2x+m,
圆的方程配方可得:(x+k)2+(y+2k+5)2=25.
所以圆心到直线的距离d =1
5|―2푘+2푘+5+푚|=
|5+푚|
,
5
|5+푚|
由垂径定理可得:(2=52―(25)2,
5)
解得m=0 或m=﹣10,
故存在满足条件的直线方程,方程为y=2x 或y=2x﹣10.
这个题可以看出,遇到圆系方程的题,只需知道其概念就可以了,关键还是看圆心、半径、圆心到直线的距离这三个因素,常用的方法就是待定系数法.
【考点分析】
本考点也是在初中就已经学过,对于高考来说,算是个冷门,但也偶尔会考,还是希望大家了解这些基本的概念,争取不漏死角.
1/ 1。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)
高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
高中数学必修2--圆与方程知识点归纳总结
圆与方程知识点1.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:1圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+2圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3.圆的一般方程:022=++++F Ey Dx y x .(1)当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2)当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D .(3)当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ;2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交;(2)当0=∆时,直线与圆只有1个交点,直线与圆相切;(3)当0<∆时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=1条公切线外离421⇔⇔+>r r d ;2条公切线外切321⇔⇔+=r r d ;3条公切线相交22121⇔⇔+<<-r r d r r ;4条公切线内切121⇔⇔-=r r d ;5无公切线内含⇔⇔-<<210r r d ;外离外切相交内切(2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:1若1C 与2C 相切,则表示其中一条公切线方程;2若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:1上述圆系不包括2C ;22)当1λ=-时,表示过两圆交点的直线方程(公共弦)3过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为。
高中数学圆与方程知识点
高中数学圆与方程知识点分析1. 圆的方程:(1)标准方程:222()()x a y b r -+-=(圆心为A(a,b),半径为r )(2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(-2D ,-2E )半径F E D 42122-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法(1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。
d=r 为相切,d>r 为相交,d<r 为相离。
适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。
利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
(2)代数法:由直线与圆的方程联立得到关于x 或y 的一元二次方程,然后由判别式△来判断。
△=0为相切,△>0为相交,△<0为相离。
利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。
4.圆与圆的位置关系判断方法(1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切;3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含;(2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。
△=0为外切或内切,△>0为相交,△<0为相离或内含。
若两圆相交,两圆方程相减得公共弦所在直线方程。
5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系题型一 求圆的方程例1.求过点A( 2,0),圆心在(3, 2)圆的方程。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。
高中数学必修2直线与圆常考题型:圆的一般方程
圆的一般方程【知识梳理】圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.(2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为(-D 2,-E 2),半径长为12D 2+E 2-4F . 【常考题型】题型一、圆的一般方程的概念辨析【例1】 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求(1)实数m 的取值范围;(2)圆心坐标和半径.[解] (1)据题意知D 2+E 2-4F =(2m )2+(-2)2-4(m 2+5m )>0,即4m 2+4-4m 2-20m >0, 解得m <15, 故m 的取值范围为(-∞,15). (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m , 故圆心坐标为(-m,1),半径r =1-5m .【类题通法】形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法: ①由圆的一般方程的定义令D 2+E 2-4F >0,成立则表示圆,否则不表示圆,②将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【对点训练】1.下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0);(3)2x 2+2y 2+2ax -2ay =0(a ≠0).解:(1)∵D =1,E =0,F =1,∴D 2+E 2-4F =1-4=-3<0,∴方程(1)不表示任何图形.(2)∵D =2a ,E =0,F =a 2,∴D 2+E 2-4F =4a 2-4a 2=0,∴方程表示点(-a,0).(3)两边同除以2,得x 2+y 2+ax -ay =0,D =a ,E =-a ,F =0,∴D 2+E 2-4F =2a 2>0,∴方程(3)表示圆,它的圆心为(-a 2,a 2), 半径r =12 D 2+E 2-4F =22|a |. 题型二、圆的一般方程的求法【例2】 已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5),求△ABC 的外接圆方程、外心坐标和外接圆半径.[解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3, ∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5. ∴外接圆方程为(x -1)2+(y +1)2=25.应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F .【对点训练】2.求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切,∴6+E 28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上,∴2D +4E -F -20=0,②8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.题型三、代入法求轨迹方程【例3】 已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0. ①∵|AD |=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).用代入法求轨迹方程的一般步骤【对点训练】3.过点A (8,0)的直线与圆x 2+y 2=4交于点B ,则AB 中点P 的轨迹方程为________________. 解析:设点P 的坐标为(x ,y ),点B 为(x 1,y 1),由题意,结合中点坐标公式可得x 1=2x -8,y 1=2y ,故(2x -8)2+(2y )2=4,化简得(x -4)2+y 2=1,即为所求.答案:(x -4)2+y 2=1【练习反馈】1.圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)解析:选D 圆的方程化为(x -2)2+(y +3)2=13,圆心(2,-3),选D.2.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .(-32,+∞) 解析:选A 方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆.3.方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a =________,b =________,c =________.解析:∵⎩⎪⎨⎪⎧ -2a 2=2,--b 2=2,12 4a 2+b 2-4c =2,∴⎩⎪⎨⎪⎧ a =-2,b =4,c =4.答案:-2,4,44.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|P A |2+1=|PB |2,∴(x -1)2+y 2=2.答案:(x -1)2+y 2=25.求过点(-1,1),且圆心与已知圆x 2+y 2-6x -8y +15=0的圆心相同的圆的方程. 解:设所求的圆的方程为:x 2+y 2+Dx +Ey +F =0,又圆x 2+y 2-6x -8y +15=0的圆心为(3,4),依题意得⎩⎪⎨⎪⎧2-D +E +F =0,-D 2=3,-E 2=4, 解此方程组,可得⎩⎪⎨⎪⎧D =-6,E =-8,F =0. ∴所求圆的方程为x 2+y 2-6x -8y =0.。
高中数学圆与方程专题(压轴题训练)
圆与方程【知识梳理】 1、确定圆的要素 2、圆的标准方程和一般方程 3、直线和圆、圆与圆的位置关系 4、用解析方法解决几何问题 【重难点问题】 1、求圆的方程 2、位置关系 3、求最值、范围 4、求轨迹 5、存在性问题 6、定切线,定圆,定点【典题讲练】 【例1】以(2 1)A -,,(1 5)B ,为半径两端点的圆的方程是_______________. 【变】圆心在直线20x y +=上,并且经过点(1 3)A ,和(4 2)B ,的圆的方程为_______________.【拓】求过A (0,0)、B (1,1)、C (4,2)三点的圆的方程,并求这个圆的半径长和圆心坐标.【例2】过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为______________. 【变】已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为_____________. 【拓1】已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为_______________.【拓2】在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为_______________.【例3】过点P ﹣1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是___________.【变】(1)过点P (2,1)的直线l 被圆x 2+y 2=10截得的弦长为___________.(2)已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于A 、B 两点,且AC BC ⊥,则实数a 的值为__________. 【拓】(1)圆x 2+y 2+2x =0和x 2+y 2﹣4y =0的公共弦所在直线方程为___________.(2)过点(3,1)作圆(x ﹣1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为___________.【例4】若直线y =k (x ﹣4)与曲线y 有公共点,则k 的取值范围为___________.【练】若过定点M (﹣1,0)且斜率为k 的直线与圆x 2+y 2+4x ﹣5=0在第一象限内的部分有交点,则k 的取值范围是___________.【变】(1)若关于x 的方程3x b +=只有一个解,则实数b 的取值范围是____________.(2)曲线1x 与直线45y kx k =-+有两个不同的交点时,实数k 的取值范围是____________. A .53(,]124B .78(,]243C .8[,)3+∞D .72(,)(,)243-∞+∞ (3)若曲线221:20C x y x +-=与曲线2:()0C y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A .(B .(,0)(0⋃C .[D .(-∞,⋃,)+∞【例5】已知实数x ,y 满足方程22410x y x +-+=,求下列各式的最大值与最小值. (1)yx; (2)14y x --; (3)736xy +; (4)y x -;(5)23x y +;(6)22x y +;(7)221014x x y y -+-.【练】已知实数x ,y 满足方程22410x y x +-+=,求下列各式的最大值与最小值. (1)14y x --; (2)23x y +; (3)221014x x y y -+-. (4)若对任意的x ,y 有20x y m ++≥,求m 的取值范围.【变】(1)已知实数x ,y 满足(x -2)2+y 2=4,则3x 2+4y 2的最大值为________.(2)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.【拓】(1)已知实数x ,y 满足方程22220x y x y ++-=,则||||x y +的最大值为( )A .2B .4C .D .2+(2)已知实数x ,y 满足221x y +≤,340x y +≤,则32x x y ---的取值范围是( )A .[1,4]B .19[17,4]C .[1,11]3D .19[17,11]3(3)设点(,)P x y 是圆22:2230C x x y y ++--=上任意一点,若|2|||x y x y a --+-+为定值,则a 的值可能为( ) A .4- B .0C .3D .6【例6】设P 为直线0x y -=上的一动点,过P 点做圆22(4)2x y -+=的两条切线,切点分别为A ,B ,则APB ∠的最大值_______________.【练】(1)在平面直角坐标系xOy 中,过圆221:()(4)1C x k y k -++-=上任一点P 作圆222:1C x y +=的一条切线,切点为Q ,则当线段PQ 长最小时,k =_______________.(2)已知点P 为直线1y x =+上的一点,M ,N 分别为圆221:(4)(1)4C x y -+-=与圆222:(2)1C x y +-=上的点,则||||PM PN -的最大值为( ) A .4 B .5C .6D .7【变】(1)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为____________.(2)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.(3)已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为____________.(4)已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2﹣2x ﹣2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为___________.(5)在平面直角坐标系xOy 中,已知点(1,1)A ,(1,1)B -,点P 为圆22(4)4x y -+=上任意一点,记OAP ∆和OBP ∆ 的面积分别为1S 和2S ,则12S S 的最小值是____________.【例7】(1)已知|M 1M 2|=2,点M 与两定点M 1,M 2距离的比值是一个正数m .试建立适当坐标系,求点M 的轨迹方程,并说明其轨迹是什么图形.(直接翻译)(2)已知点P 在圆221x y +=运动,点M 的坐标为(2,0)M ,Q 为线段PM 的中点,则点Q 的轨迹方程为_______________.(设坐标转移)(3)由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为_______________.(几何法)(4)已知过原点的动直线l 与圆C 1:x 2+y 2﹣6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.(消参法)【练】(1)自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为____________.(2)已知3AB =,动点P 满足2PA PB =,那么PAB ∆的面积的最大值为_______________.(3)在圆228x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是_______________.(4)已知动圆P 与圆M :(x +1)2+y 2=16相切,且经过M 内的定点N (1,0).试求动圆的圆心P 的轨迹C 的方程.【拓】(1)过定点(3,2)P 任作一直线与圆2242110x y x y +---=相交于A 、B 两点,A 和B 两点处的切线相交于M ,求点M 的轨迹方程.(2)已知圆224x y +=,(1,1)B 为圆内一点,P ,Q 为圆上动点,若90PBQ ∠=︒,则线段PQ 中点的轨迹方程为____________________.(3)已知直线:l y x b =+与圆22:(1)1C x y ++=相交于A ,B 两点,点P 在l 上,且||||2PA PB ⋅=.当b 变化时,求点P 的轨迹方程.【例8】在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是_______________.【练】在平面直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存 在点M ,使||2||MA MO =,则圆心C 的横坐标的取值范围为( ) A .12[0,]5B .[0,1]C .12[1,]5D .12(0,)5【变】(1)在平面直角坐标系xOy 中,已知直线:30l x y +-=和圆22:()8M x y m +-=,若圆M 上存在点P ,使得P 到直线l的距离为,则实数m 的取值范围是_______________.(2)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -、(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的取值范围是( ) A .[3,7] B .[4,6]C .[3,6]D .[4,7](3)已知圆22:1O x y +=,圆.若圆上存在点,过点作圆的两条切线,切点为,,使得,则实数的取值范围为_______________.(4)在平面直角坐标系xOy 中,若圆22:(3)()4C x y a -+-=上存在两点A 、B 满足:60AOB ∠=︒,则实数a 的最大值是( ) A .5B .3CD.(5)已知(2,0)A -,(2,0)B ,点P 在圆222(3)(4)(0)x y r r -+-=>上,满足2240PA PB +=,若这样的点P 有两个,则r 的取值范围是_______________.22:()(4)1M x a y a -+-+=M P P O A B 60APB ∠=︒a【例9】已知当a R ∈且1a ≠时,圆2222(2)20x y ax a y +-+-+=总与直线l 相切,则直线l 的方程是___________.【练】已知:正数m 取不同的数值时,方程222(42)24410x y m x my m m +-+-+++=表示不同的圆,求:这些圆的公切线(即与这些圆都相切的直线)的方程.【变1】(1)已知直线2:2(1)440l mx m y m +---=,若对任意m R ∈,直线l 与一定圆相切,则该定圆方程为_______________.(2)当实数m 变化时,不在任何直线2mx +(1-m 2)y -4m -4=0上的所有点(x ,y )形成的图形的面积为_______________.【变2】无论a 如何变化直线sin cos 10x y αα++=总和一个定圆相切,则该定圆方程为_______________.【例10】已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点( )A .48(,)99B .24(,)99C .(2,0)D .(9,0)【变1】已知圆M (M 为圆心)的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线 l 上,过P 点作圆M 的切线P A 、PB ,切点为A 、B . (1)若∠APB =60°,试求点P 的坐标;(2)求证:经过A 、P 、M 三点的圆必过定点,并求出所有定点的坐标.【变2】已知圆O 过点A (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆O 的方程;(2)若EF 、GH 为圆O 的两条相互垂直的弦,垂足为N (1,22),求四边形EGFH 的面积的最大值; (3)已知直线l :y =12x -2,P 是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究直线CD 是否过定点,若过定点,求出定点;若不过定点,请说明理由.【变3】已知圆O 的方程为x 2+y 2=1,直线l 1过点A (3,0),且与圆O 相切. (1)求直线l 1的方程;(2)设圆O 与x 轴相交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C 总经过定点,并求出定 点坐标.【家庭作业】1、过点(3,4)P -作圆22(1)2x y -+=的切线,切点分别为A 、B ,则直线AB 的方程为( ) A .220x y +-=B .210x y --=C .220x y --=D .220x y ++=2、圆C 的方程为221x y +=,(,2)P x .过P 作圆C 的切线,切点分别为A ,B 两点.则APB ∠最大为( ) A .30︒B .45︒C .60︒D .90︒3、已知直线1:360l x y +-=与圆心为(0,1)M ,半径为的圆相交于A ,B 两点,另一直线2:22330l kx y k +--=与圆M 交于C ,D 两点,则四边形ACBD 面积的最大值为( )A .B .C .1)D .1)4、在平面直角坐标系xOy 中,若圆22:(3)()4C x y a -+-=上存在两点A 、B 满足:60AOB ∠=︒,则实数a 的最大值是( )A .5B .3CD .5、已知关于x 2ax =-有且只有一个解,则实数a 的取值范围为_______________.6、已知实数x ,y 满足22430x x y -++=,则21x y x ++-的取值范围是_______________. 7、设圆22:(1)1C x y -+=,过点(1,0)-作圆的任意弦,求所作弦的中点的轨迹方程.8、在平面直角坐标系xOy 中,直线:420l kx y k ---=,k R ∈,点(2,0)A -,(1,0)B ,若直线l 上存在点P 满足条件2PA PB =,求实数k 的取值范围.9、设实数x 、y 满足方程:2286210x y x y +--+=. (1)当3x ≠时,求12y P x +==-的取值范围; (2)求2S x y =-的最大值与最小值;(3)求2210226T x y x y =+-++的最大值与最小值.10、已知点(0,4)A ,点P 在直线20x y -=上运动.以线段AP 为直径作一个圆,求该圆恒过的定点坐标.11、已知圆22:4C x y +=,点P 为直线280x y --=上的一个动点,过点P 向圆C 引两条切线PA 、PB 、A 、B 为切点,求证直线AB 恒过点.。
高中数学必修二第四章 章末复习题圆的相关试题(含答案)
章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。
高中数学 第04章 圆与方程 专题4.1.2 圆的一般方程试
4.1.2圆的一般方程一、圆的一般方程 1.圆的一般方程的定义当2240D E F +->时,方程220x y Dx Ey F +++=+表示一个圆,这个方程叫做圆的一般方程,其中圆心为________________,半径r =_________________. 2.圆的一般方程的推导把以(,)a b 为圆心,r 为半径的圆的标准方程222()()x a y b r -+-=展开,并整理得22222220x y ax by a b r +--++-=.取2222,2,D a E b F a b r =-=-=+-,得: 220x y Dx Ey F +++=+ ①.把①的左边配方,并把常数项移到右边,得22224()()224D E D E Fx y +-+++=.当且仅当_______________时,方程表示圆,且圆心为__________,半径长为___________; 当2240D E F +-=时,方程只有实数解,22D Ex y =-=-,所以它表示一个点____________; 当2240D E F +-<时,方程没有实数解,因而它不表示任何图形. 3.点与圆的位置关系点00)(,P x y 与圆22220(40)x y Dx Ey F D E F ++=+->++的位置关系是:P 在圆内⇔_______________________,P 在圆上⇔_______________________,P 在圆外⇔_______________________.二、待定系数法求圆的一般方程求圆的方程常用“待定系数法”,用“待定系数法”求圆的方程的大致步骤是: ①根据题意,选择____________________;②根据条件列出关于a b r 、、或D E F 、、的________; ③解出a b r 、、或D E F 、、,代入标准方程或一般方程. 三、轨迹和轨迹方程 1.轨迹和轨迹方程的定义平面上一动点M ,按照一定规则运动,形成的曲线叫做动点M 的轨迹.在坐标系中,这个轨迹可用一个方程表示,这个方程就是轨迹方程.2.求轨迹方程的五个步骤①________:建立适当的坐标系,用(,)x y 表示曲线上任意一点M 的坐标; ②________:写出适合条件P 的点M 的集合){}(|P M p M =; ③________:用坐标(,)x y 表示条件()p M ,列出方程(,)0F x y =; ④________:化方程(,)0F x y =为最简形式;⑤査漏、剔假:证明化简后的方程的解为坐标的点都是曲线上的点.K 知识参考答案: 一、1.(,)22D E -- 22142D E F +- 2.2240D E F +-> (,)22D E -- 22142D E F +-(,)22D E--3.2200000x y Dx Ey F ++++< 2200000x y Dx Ey F ++++= 2200000x y Dx Ey F ++++>二、①标准方程或一般方程 ②方程组 三、2.①建系 ②设点 ③列式 ④化简K —重点 圆的一般方程、用待定系数法求圆的一般方程K —难点 与圆有关的轨迹问题K —易错忽视圆的一般方程应满足的条件致错1.圆的方程的判断判断二元二次方程220x y Dx Ey F ++++=是否表示圆的方法: (1)利用圆的一般方程的定义,求出224D E F +-利用其符号判断. (2)将方程配方化为()()22x a y b m -+-=的形式,根据m 的符号判断. 【例1】判断下列方程是否表示圆,若是,化成标准方程. (1)x 2+y 2+2x+1=0; (2)x 2+y 2+2ay-1=0; (3)x 2+y 2+20x+121=0;(4)x 2+y 2+2ax =0.【例2】 方程x 2+y 2+4mx-2y+5m =0表示圆的条件是 A .14<m <1 B .m <14或m >1 C .m <14D .m >1【答案】B【解析】由于二元二次方程x 2+y 2+4mx-2y+5m =0表示一个圆,则D 2+E 2-4F =16m 2+4-20m >0,解得m >1或m <14. 2.用待定系数法求圆的一般方程应用待定系数法求圆的一般方程的步骤如下:【例3】已知圆经过点(4,2)和(-2,-6),且该圆与两坐标轴的四个截距之和为-2,求圆的方程. 【解析】设圆的一般方程为22220(40)x y Dx Ey F D E F ++++=+->.由圆经过点(4,2)和(-2,-6),得4220026400 ① ②D E F D E F +++=⎧⎨+--=⎩,设圆在x 轴上的截距为x 1,x 2,则x 1,x 2是方程x 2+Dx+F =0的两个根,得x 1+x 2=-D . 设圆在y 轴上的截距为y 1,y 2,则y 1,y 2是方程y 2+Ey+F =0的两个根,得y 1+y 2=-E . 由已知,得-D+(-E )=-2,即D+E-2=0. ③ 联立①②③,解得D =-2,E =4,F =-20, 故所求圆的方程为x 2+y 2-2x+4y-20=0.【例4】试判断(1,2)A ,(0,1)B ,(76)C -,,(4,3)D 四点是否在同一个圆上.解法二: 因为211611007AB BC k k -+⋅=⨯=---,所以AB BC ⊥, 所以AC 是过,,A B C 三点的圆的直径,22||(17)(26)10,AC =-++=线段AC 的中点M 即圆心2(4,)M -.因为221||(44)(32)5||2DM AC -++===, 所以点D 在圆M 上,所以,,,A B C D 四点在同一个圆上.【名师点睛】判断四点是否在同一个圆上,一般可先求过其中三点的圆的方程,然后把第四个点的坐标代入,若满足方程,则四点在同一个圆上,若不满足方程,则四点不在同一个圆上. 3.与圆有关的轨迹问题求与圆有关的轨迹方程的常用方法:(1)直接法: 能直接根据题目提供的条件列出方程.步骤如下:(2)定义法:当动点的轨迹符合圆的定义时,可直接写出动点的轨迹方程.(3)相关点法:若动点,()P x y 随着圆上的另一动点11(),Q x y 运动而运动,且11,x y 可用,x y 表示,则可将Q 点的坐标代入已知圆的方程,即得动点P 的轨迹方程.【例5】已知点P (x ,y ),A (1,0),B (-1,1),且|PA|=|PB|.(1)求点P 的轨迹方程;(2)判断点P 的轨迹是否为圆,若是,求出圆心坐标及半径;若不是,请说明理由. 【解析】(1)由题意得·,两边同时平方,化简得x 2+y 2+6x-4y+3=0, 即点P 的轨迹方程为x 2+y 2+6x-4y+3=0. (2)解法一:由(1)得(x+3)2+(y-2)2=10, 故点P 的轨迹是圆, 其圆心坐标为(-3,2),半径为.解法二:由(1)得D =6,E =-4,F =3, 所以D 2+E 2-4F =36+16-12=40>0, 故点P 的轨迹是圆. 又32D -=-,22E-=, 所以圆心坐标为(-3,2),半径r =.【例6】已知直角ABC △的斜边为AB ,且1,0,()(,0)3A B -,求: (1)直角顶点C 的轨迹方程;(2)直角边BC 中点M 的轨迹方程.解法二:同解法一得3x ≠且1x ≠-.由勾股定理得222||||||AC BC AB +=,即2222131))6((x y x y +++-+=, 化简得22230x y x +--=.因此,直角顶点C 的轨迹方程为22230(31)x y x x x +--=≠≠-且.解法三:设AB 中点为D ,由中点坐标公式得()1,0D ,由直角三角形的性质知, 122||||CD AB ==, 由圆的定义知,动点C 的轨迹是以()1,0D 为圆心,以2为半径的圆(由于,,A B C 三点不共线,所以应除去与x 轴的交点).设,()C x y ,则直角顶点C 的轨迹方程为2214))1((3x y x x -+=≠≠-且. (2)设点00,,(),()M x y C x y 点,因为,(3,0)B M 是线段BC 的中点,由中点坐标公式得032x x += (3x ≠且1x ≠), 02yy =, 于是有0023,2x x y y =-=.由(1)知,点C 在圆2214))1((3x y x x -+=≠≠-且上运动,将00,x y 代入该方程得22()(244)2x y -+=,即2221()x y -+=.因此动点M 的轨迹方程为2221))1((3x y x x -+=≠≠且. 4.忽视圆的一般方程应满足的条件致错【例7】已知点()0,0O 在圆2222210x y kx ky k k +++-+=+外,求k 的取值范围.【错解】∵点()0,0O 在圆外,∴2210k k ->+,解得11.2k k ><-或 ∴k 的取值范围是(),1-∞-U 1(,)2+∞.【错因分析】本题忽视了圆的一般方程220x y Dx Ey F +++=+表示圆的条件为2240D E F +->,而导致错误.【正解】∵方程表示圆,∴222()(2420)1k k k k +-+>-,即23440k k -<+,解得22.3k -<< 又∵点()0,0O 在圆外,∴2210k k ->+,解得12k >或1k <-. 综上所述,k 的取值范围是1()(22,3)12--U ,.【易错点睛】一个二元二次方程是否满足表示圆的条件,这是将二元二次方程按圆的方程处理时应首先考虑的问题.1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为 A .(4,-6),16 B .(2,-3),4 C .(-2,3),4D .(2,-3),162.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围是 A .1(,)2-∞ B .(,0)-∞ C .1(,)2+∞D .1(,]2-∞3.设圆的方程是22222(10)x y ax y a +++-=+,若01a <<,则原点与圆的位置关系是A .在圆上B .在圆外C .在圆内D .不确定4.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是 A .224680x y x y +-+-= B .224680x y x y +-++= C .224680x y x y ++--=D .224680x y x y ++-+=5.若Rt △ACB 的斜边的两端点A ,B 的坐标分别为(-3,0)和(7,0),则直角顶点C 的轨迹方程为 A .x 2+y 2=25(y ≠0) B .x 2+y 2=25 C .(x-2)2+y 2=25(y ≠0)D .(x-2)2+y 2=256.圆心是(-3,4),经过点M (5,1)的圆的一般方程为 .7.已知圆C :x 2+y 2-2x +2y -3=0,AB 为圆C 的一条直径,点A (0,1),则点B 的坐标为 . 8.下列方程各表示什么图形?若表示圆,求其圆心和半径. (1)2210x y x +++=;(2)222200()x y ax a a +=≠++; (3)222222)0(0x y ax ay a -=≠++.9.已知方程(m ∈R )表示一个圆.(1)求m 的取值范围.(2)若m ≥0,求该圆半径r 的取值范围.10.已知三点坐标分别是A (0,5),B (1,-2),C (-3,-4),求过A ,B ,C 的圆的一般方程,并判断点M (1,4),N (6,4),P (0,1)与所求圆的位置关系.11.若圆22230x y ax by +-=+的圆心位于第三象限,那么直线0x ay b ++=一定不经过A .第一象限B .第二象限C .第三象限D .第四象限12.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于A .πB .4πC .8πD .9π13.当a 为任意实数时,直线(a-1)x-y +a +2=0恒过定点C ,则以C 为圆心,为半径的圆的方程为A .x 2+y 2-2x +6y =0 B .x 2+y 2+2x +6y =0 C .x 2+y 2+2x-6y =0 D .x 2+y 2-2x-6y =014.如图,设定点,动点在圆上运动,以为邻边作平行四边形,求点的轨迹.15.(2016新课标II )圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=A .43-B .34- C .3D .216.(2016新课标I )设直线2y x a =+与圆22220C x y ay +--=:相交于,A B 两点,若||23AB =,则圆C 的面积为 .1 2 3 4 5 11 12 13 15 CABBCDBCA1.【答案】C【解析】由圆的一般方程可知圆心坐标为(-2,3),半径2214(6)12 4.2r =+-+=故选C. 2.【答案】A【解析】由方程x 2+y 2-x +y +m =0表示圆,可得1140m +->,解得12m <.故选A. 3.【答案】B【解析】将原点坐标(0,0)代入圆的方程得2()1a -,∵01a <<,∴2(10)a ->,∴原点在圆外. 4.【答案】B【解析】把圆224630x y x y +-++=化成标准方程为22(2)(3)10x y -++=,由于两圆共圆心,可设另一个圆的方程为:222(2)(3)x y r -++=,把1,1x y ==-代入所设方程,得:222(12)(13),r -+-+=∴25r =,所以所求的圆的方程为22(2)(3)5x y -++=,化简为:224680x y x y +-++=,故选B.5.【答案】C【解析】线段AB 的中点坐标为(2,0),因为△ABC 为直角三角形,C 为直角顶点,所以点C 到点(2,0)的距离为|AB|=5,所以点C (x ,y )满足=5(y ≠0),即(x-2)2+y 2=25(y ≠0).8.【解析】(1)∵1,0,1D E F ===,∴2241430D E F =-=--<+.∴方程(1)不表示任何图形.(2)∵220D a E F a ===,,,∴22224440D E F a a +--==.∴方程(2)表示点(),0a -.(3)方程两边同除以2,得220x y ax ay +-=+,∴0D a E a F ==-=,,,∴222420D E F a =->+.∴方程(3)表示圆,它的圆心为(,)22aa-, 半径22124||2r D E F a =+-=.9.【解析】(1)依题意,得4(m +3)2+4(2m -1)2-4(5m 2+2)>0,即8m +32>0,解得m >-4,所以m 的取值范围是(-4,+∞).(2),因为m ∈[0,+∞),所以,所以r 的取值范围是.11.【答案】D【解析】圆22230x y ax by +-=+的圆心为(a ,32b -),则a <0,b >0.直线y =1x a --b a,其斜率k =1a ->0,在y 轴上的截距为-b a>0,所以直线不经过第四象限,故选D . 12.【答案】B【解析】设点P 的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹是以(2,0)为圆心,2为半径长的圆,所以点P 的轨迹所包围的图形的面积等于4π.13.【答案】C【解析】直线方程可化为(x +1)a-(x +y-2)=0,直线过定点,即对任意的实数a ,方程恒成立,故有,解得,即直线过定点C (-1,3),故所求圆的方程为(x +1)2+(y-3)2=10,即x 2+y 2+2x-6y =0.15.【答案】A【解析】圆的方程可化为22(1)(4)4x y -+-=,所以圆心坐标为(1,4),由点到直线的距离公式得24111a d a +-==+,解得43a =-,故选A . 16.【答案】4π【解析】圆22:220C x y ay +--=,即222:()2C x y a a +-=+,圆心为(0,)C a , 由||3,AB =且圆心C 到直线2y x a =+222223()(222a +=+,则22,a = 所以圆的面积为2π(2)4πa +=.【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:222()2lr d =+在求圆的方程时常常用到.。
2022-2023学年人教版高二数学阶段复习精练专题2-4 圆的方程(解析版)
专题2.4 圆的方程知识点一:圆的标准方程222()()x a y b r -+-=,其中(),C a b 为圆心,r 为半径.知识点诠释:(1)如果圆心在坐标原点,这时0,0a b ==,圆的方程就是.有关图形特征与方程的转化:如:圆心在x 轴上:0b =;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为(),a b ,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.知识点二:点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为(),C a b ,半径为r ,则有(1)若点()00,M x y 在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00,M x y 在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00,M x y 在圆内()()22200||CM r x a y b r ⇔<⇔-+-<知识点三:圆的一般方程 当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为半径. 知识点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D Ex y =-=-.它表示一个点. 222x y r +=(,)22D E--(2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径的圆. 知识点四:用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程.知识点五:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程; (3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答.题型一:圆的标准方程1.(2022·湖北·安陆第一高中高二阶段练习)与圆C :224690x y x y ++-+=关于直线10x y -+=对称的圆的方程为( )A .()()22214x y -+-= B .()()22324x y -++= C .()()22214x y -++=D .()()22324x y ++-=【答案】C【解析】圆C :224690x y x y ++-+=的圆心()2,3C -,半径2r =. 设点()2,3C -关于直线10x y -+=的对称点为00'(,)C x y ,则000000311*******22y x x y x y -⎧⨯=-⎪=⎧+⎪⇒⎨⎨=--+⎩⎪-+=⎪⎩, 所以圆C 关于直线10x y -+=的对称圆的方程为()()22214x y -++=, 故选:C .2.(2022·江苏·高二)圆C :()()22341x y ++-=关于直线y x =对称的圆的方程为( ). A .()()22431x y -++= B .()()224349x y -+-= C .()()22431x y ++-= D .()()224349x y +++=【答案】A【解析】:()()22341x y ++-=表示以()3,4-为圆心,以1为半径的圆.设()3,4-关于直线y x =对称的点为(),a b ,则有34022413a b b a -+⎧-=⎪⎪⎨-⎪=-⎪+⎩,解得:4a =,3b =-, 所以C :()()22341x y ++-=关于直线y x =对称的圆的方程为()()22431x y -++=. 故选:A .3.(2022·江苏·高二)求满足下列条件的圆的标准方程. (1)圆心在x 轴上,半径为5,且过点()2,3A -;(2)经过点()4,5A --、()6,1B -,且以线段AB 为直径;(3)圆心在直线y =-2x 上,且与直线y =1-x 相切于点()2,1-;(4)圆心在直线x -2y -3=0上,且过点()2,3A -,()2,5B --. 【答案】(1)()22225x y ++=或()22625x y -+=(2)()()221329x y -++=(3)()()22122x y -+=+(4)()()221210x y +++=【解析】(1)设圆的标准方程为()2225x a y -+=.因为点()2,3A -在圆上,所以()()222325a -+-=,解得a =-2或a =6,所以所求圆的标准方程为()22225x y ++=或()22625x y -+=. (2)设圆的标准方程为()()()2220x a y b r r -+-=>,由题意得4612a -+==,5132b --==-; 又因为点()6,1-在圆上,所以()()222611329r =-+-+=. 所以所求圆的标准方程为()()221329x y -++=. (3)设圆心为(),2a a -.因为圆与直线y =1-x 相切于点()2,1-解得a =1.所以所求圆的圆心为()1,2-,半径r所以所求圆的方程为()()22122x y -+=+.(4)设点C 为圆心,因为点C 在直线230x y --=上,故可设点C 的坐标为()23,a a +. 又该圆经过A 、B 两点,所以CA CB =.a =-2,所以圆心坐标为()1,2C --,半径r =故所求圆的标准方程为()()221210x y +++=.题型二:圆的一般方程1.(2022·黑龙江·哈尔滨市第三十二中学校高二期中)已知圆方程222410+-+-=x y x y 的圆心为( ) A .()2,4- B .()1,2- C .()1,2- D .()2,4-【答案】C 【解析】 【分析】将圆的方程配成标准式,即可得到圆心坐标; 【详解】解:因为222410+-+-=x y x y ,即()()22126x y -++=, 所以圆心坐标为()1,2-; 故选:C2.(2022·福建漳州·高二期末)在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若(2,0)A -,(2,0)B ,(0,4)C ,则ABC 的最小覆盖圆的半径为( ) A .32B .2C .52D .3【答案】C 【解析】(2,0)A -,(2,0)B ,(0,4)C ,ABC ∴△为锐角三角形,ABC ∴△的外接圆就是它的最小覆盖圆,设ABC 外接圆方程为220x y Dx Ey F ++++=,则420420,1640D F D FEF -+=⎧⎪++=⎨⎪++=⎩解得034D E F =⎧⎪=-⎨⎪=-⎩ABC ∴△的最小覆盖圆方程为22340x y y +--=,即22325()24x y +-=,ABC ∴△的最小覆盖圆的半径为52.故选:C3.(2022·全国·高三专题练习)在平面直角坐标系中,四点坐标分别为()((2,0,3,2,1,2,A B C ()4,D a ,若它们都在同一个圆周上,则a 的值为( )A .0B .1C .2 DC设圆的方程为220x y Dx Ey F ++++=,由题意得((((2222222020323201220D F DEF D E F ⎧+++=⎪⎪++++=⎨⎪⎪++++=⎩,解得444D E F =-⎧⎪=-⎨⎪=⎩,所以224440x y x y +--+=,又因为点()4,D a 在圆上,所以22444440a a +-⨯-+=,即2a =. 故选:C.题型三:点与圆的位置关系1.(2022·全国·高二课时练习)已知点A (1,2)在圆C :22220x y mx y ++-+=外,则实数m 的取值范围为( ) A .()()3,22,--+∞ B .()()3,23,--⋃+∞ C .()2,-+∞D .()3,-+∞【答案】A【解析】由题意,22220x y mx y ++-+=表示圆 故22(2)420m +--⨯>,即2m >或2m <- 点A (1,2)在圆C :22220x y mx y ++-+=外 故22122220m ++-⨯+>,即3m >- 故实数m 的取值范围为2m >或32m -<<- 即()()3,22,m --∞∈+故选:A题型四:圆过定点问题1.(2022·河北沧州·高二期末)已知点A 为直线2100x y +-=上任意一点,O 为坐标原点.则以OA 为直径的圆除过定点()0,0外还过定点( ) A .()10,0 B .()0,10 C .()2,4 D .()4,2【答案】D【解析】设OB 垂直于直线2100x y +-=,垂足为B ,则直线OB 方程为:12y x =, 由圆的性质可知:以OA 为直径的圆恒过点B ,由210012x y y x +-=⎧⎪⎨=⎪⎩得:42x y =⎧⎨=⎩,∴以OA 为直径的圆恒过定点()4,2. 故选:D.2(2022·上海·高三专题练习)已知二次函数2()2()f x x x b x R =++∈的图像与坐标轴有三个不同的交点,经过这三个交点的圆记为C ,则圆C 经过定点的坐标为_______(其坐标与b 无关) 【答案】(0,1)和(2,1)-【解析】二次函数2()2()f x x x b x R =++∈的图像与坐标轴有三个不同的交点,记为(,0),(,0),(0,)M m N n B b ,易知0b ≠,,m n 满足2m n +=-,m n ≠,220m m b ++=,220n n b ++=,设圆C 方程为220x y Dx Ey F ++++=,则222000m Dm F n Dn F b Eb F ⎧++=⎪++=⎨⎪++=⎩①②③, ①-②得22()0m n D m n -+-=,()2D m n =-+=,∴220n n F ++=,从而F b =,代入③得1E b =--,∴圆C 方程为222(1)0x y x b y b ++-++=, 整理得222(1)0x y x y b y ++-+-+=,由222010x y x y y ⎧++-=⎨-+=⎩得0,1x y =⎧⎨=⎩或21x y =-⎧⎨=⎩.∴圆C 过定点(0,1)和(2,1)-. 题型五:轨迹问题1 古希腊数学家阿波罗尼斯(约前262—前190年)的著作《圆锥曲线论》是古代光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知()0,0O ,()3,0A ,圆()()222:20C x y r r -+=>上有且仅有一个点P 满足2PA PO =,则r 的取值为( ) A .1B .5C .1或5D .不存在【答案】C 【解析】 【分析】直接设点P (),x y ,根据2PA PO =可以求得点P 的轨迹为圆,根据题意两圆有且仅有一个公共点,则两圆外切或内切,可得11CC r r =+或11CC r r =-. 【详解】 设点P (),x y∵2PA PO =整理得:()2214x y ++=∴点P 的轨迹为以()11,0C -为圆心,半径12r =的圆, ∵圆()222:2C x y r -+=的()2,0C 为圆心,半径r 的圆由题意可得:113CC r r ==+或113CC r r ==- ∴1r =或=5r 故选:C .2已知()2,0A 、()8,0B 、()4,2C ,且动点P 满足12PA PB =,则2PC PB +取得最小值时,点P 的坐标是___________.【答案】)1【解析】 【分析】设(),P x y ,由214PA PB ⎛⎫= ⎪ ⎪⎝⎭得P 点轨迹为2216x y +=;由()22PC PB PC PA +=+可知当,,A P C 三点共线且P 在线段AC 上时取得最小值,联立圆的方程和直线AC 方程即可求得结果. 【详解】设(),P x y ,则()()222222148PA x y PB x y ⎛⎫-+== ⎪ ⎪-+⎝⎭,整理可得:2216x y +=;一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0- D .(][),20,-∞-+∞【答案】B【解析】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+,由该曲线表示圆,可知25100a a +>,解得0a >或2a <-,故选:B. 2.圆心在坐标原点,半径为2的圆的标准方程是( ) A .221x y += B .224x y += C .()()22113+++=x yD .()()22116x y +++=【来源】贵州省2021-2022学年高二下学期7月高中学业水平考试数学试题 【答案】B 圆心在坐标原点,半径为2的圆的标准方程为224x y +=.故选:B3.方程y = ).A .B .C .D .【来源】2.1 圆【答案】A :对y =()2240x y y +=≤,所以,方程表示圆心为坐标原点,半径为2的圆在x 轴及下方的部分,A 选项满足.故选:A4.若直线l 经过圆22:40C x y x ++-=的圆心,且倾斜角为56π,则直线l 的方程为( )A 0y -+= B .10x -=C 0y ++=D .50x +=【答案】B【解析】整理圆的方程可得:()(2227x y ++=,∴圆心(C -,l 倾斜角为56π,∴其斜率5tan 6k π==,l ∴方程为:)2=+y x ,即10x +-=. 故选:B.5.如图,点A ,B ,D 在圆Γ上,点C 在圆Γ内,11,12,5AB BC CD ===,若0BC CD ⋅=,且AB 与CD 共线,则圆Γ的周长为( )A .410πB .653π C .21π D .24π【来源】安徽省淮南第二中学2021-2022学年高二下学期博雅杯素养挑战赛数学试题 【答案】B【解析】以C 为原点,BC 和CD 坐在直线分别为x 、y 轴建立平面直角坐标系, 则(12,11),(12,0),(0,5)A B D ---, 设圆的一般方程为220x y Dx Ey F ++++=则144121121101441202550D E F D F E F +--+=⎧⎪-+=⎨⎪++=⎩,解得1631180D E F ⎧=⎪⎪=⎨⎪=-⎪⎩,所以656r =所以圆的周长为65652263r πππ=⨯= 故选:B6.已知从点()5,3-发出的一束光线,经x 轴反射后,反射光线恰好平分圆:()()22115x y -+-=的圆周,则反射光线所在的直线方程为( ) A .2310x y -+= B .2310x y --= C .3210x y -+= D .3210x y --=【答案】A【解析】设点A 的坐标为()5,3-,圆()()22115x y -+-=的圆心坐标为(1,1)B ,设(,0)C x 是x 轴上一点,因为反射光线恰好平分圆()()22115x y -+-=的圆周, 所以反射光线经过点(1,1)B , 由反射的性质可知:3010100512AC BC k k x x x --+=⇒+=⇒=----, 于是102131()2BC k -==--,所以反射光线所在的直线方程为: 21()231032y x x y =+⇒-+=,故选:A7.若()2,1P -为圆()22:125C x y -+=的弦AB 的中点,则直线AB 的方程是( ).A .250x y --=B .230x y +-=C .10x y +-=D .30x y --=【来源】黑龙江省大庆市大庆中学2021-2022学年高二下学期开学考试数学试题 【答案】D【解析】由圆()22:125C x y -+=,得()1,0C ,()01112PC k --∴==--, 由垂径定理可知PC AB ⊥,所以直线AB 斜率k 满足1PC k k ⋅=-,即1k =,所以直线AB 的方程为:()()112y x --=⨯-,即30x y --=, 故选:D.8.直线40x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2242x y -+=上,则ABP △面积的取值范围是( )A .[]8,12B .⎡⎣C .[]12,20D .⎡⎣【来源】四川省泸州市泸县第五中学2021-2022学年高二下学期开学考试数学(理)试题 【答案】C【解析】直线40x y ++=分别与x 轴,y 轴交于A ,B 两点, ∴A (-4,0),B (0,-4) ∴|AB设圆心(4,0)到直线40x y ++=的距离为d ,则d ==设点P 到直线40x y ++=的距离为h ,∴max h d r =+=min h d r =-==∴h 的取值范围为[,即ABP 的高的取值范围是[, 又ABP 面积为12|AB |×h ,所以ABP 面积的取值范围为[]12,20. 故选:C.9.已知直线10(0)ax by ab +-=>过圆22(1)(1)2022x y -+-=的圆心,则22a b +的最小值为( )A .12B .1CD .2【来源】安徽省宣城市2021-2022学年高二下学期期末数学试题 【答案】A【解析】由题意得圆心为(1,1),因为直线10(0)ax by ab +-=>过圆心, 所以1a b +=,即1a b =-,所以22222211(1)221222b b b b b a b ⎛⎫=-+=-+=-+ ⎪⎝+⎭,所以当12b =时,22a b +的最小值为12. 故选:A10.已知点A (1,2)在圆C :22220x y mx y ++-+=外,则实数m 的取值范围为( )A .()()3,22,--+∞B .()()3,23,--⋃+∞C .()2,-+∞D .()3,-+∞【来源】四川省泸州市泸县第五中学2021-2022学年高二下学期期中考试文科数学试题 【答案】A 由22220x y mx y ++-+=表示圆可得22(2)420m +--⨯>,点A (1,2)在圆C 外可得22122220m ++-⨯+>,求解即可 【详解】由题意,22220x y mx y ++-+=表示圆 故22(2)420m +--⨯>,即2m >或2m <- 点A (1,2)在圆C :22220x y mx y ++-+=外 故22122220m ++-⨯+>,即3m >- 故实数m 的取值范围为2m >或32m -<<- 即()()3,22,m --∞∈+故选:A11.阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.下面我们来研究与此相关的一个问题,已知圆O :x 2+y 2=1上的动点M 和定点A 1(,0)2-,B (1,1),则2|MA |+|MB |的最小值为( )A BC D 【来源】湖南省常德市临澧县第一中学2021-2022学年高二下学期入学考试数学试题 【答案】C【解析】∴当点M 在x 轴上时,点M 的坐标为(-1,0)或(1,0).若点M 的坐标为(-1,0),则2|MA |+|MB |=2×121=+若点M 的坐标为(1,0),则2|MA |+|MB |=2×324=.∴当点M 不在x 轴上时,取点K (-2,0),如图,连接OM ,MK ,因为|OM |=1,|OA |=12,|OK |=2, 所以||||2||||OM OK OA OM ==. 因为∴MOK =∴AOM , 所以△MOK ∴∴AOM ,则||||2||||MK OM MA OA ==, 所以|MK |=2|MA |,则2|MA |+|MB |=|MB |+|MK |. 易知|MB |+|MK |≥|BK |,所以|MB |+|MK |的最小值为|BK |. 因为B (1,1),K (-2,0), 所以(2|MA |+|MB |)min=|BK |<1,所以2|MA |+|MB | 故选:C12.已知圆C 的圆心在x 轴上,半径为2,且与直线20x +=相切,则圆C 的方程为A .22(2)4x y -+=B .22(2)4x y ++=或22(6)4x y -+=C .22(1)4x y -+=D .22(2)4x y -+=或22(6)4x y ++=【来源】山西省名校联考2021-2022学年高二上学期期末数学试题 【答案】D【解析】设圆心坐标(),0a ,因为圆与直线20x +=相切,所以由点到直线的距离公式可得|2|22a +=,解得2a =或6a =-.因此圆C 的方程为22(2)4x y -+=或22(6)4x y ++=.13.两条直线2y x a =+,2y x a =+的交点P 在圆()()22114x y -+-=的内部,则实数a 的取值范围是A .1,15⎛⎫- ⎪⎝⎭B .()11,5⎛⎫-∞+∞ ⎪⎝⎭,-C .1,15⎡⎫-⎪⎢⎣⎭D .()11,5⎛⎤-∞+∞ ⎥⎝⎦,-【答案】A【解析】由22y x a y x a=+⎧⎨=+⎩解得(),3P a a .∴点P 在圆()()22114x y -+-=的内部.∴()()221314a a -+-<,解得115a -<<.14.已知圆22:4O x y +=上的动点M 和定点(1,0),(2,2)A B -,则2MA MB +的最小值为A .B .C .D .【答案】D【解析】如图,取点()4,0K -,连接,OM MK , 2,1,4OM OA OK ===,2OM OKOA OM∴==, ,~MOK AOM MOK AOM ∠=∠∴∆∆,2MK OMMA OA∴==, 2MK MA ∴=,2MB MA MB MK ∴+=+,因为MB MK BK +≥,当且仅当三点共线时等号成立,2MB MA MB MK ∴+=+的最小值为BK 的长, ()()2,2,4,0B K -,BK ∴== D.15.AB 为∴C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为∴C 上一动点,则PA PB⋅的取值范围是( ) A .[0,100] B .[-12,48]C .[-9,64]D .[-8,72]【来源】安徽省安庆市第一中学2021-2022学年高二上学期1月月考数学试题 【答案】D【解析】取AB 中点为Q ,连接PQ2PA PB PQ ∴+=,PA PB BA -=221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦2214||||4PQ BA ⎡⎤=-⎣⎦,又||6BA =,4CQ ==2||9PA PB PQ ∴⋅=-,∴点P 为∴C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72]. 故选:D. 二、多选题16.直线y ax b =+ 与圆 22()()1x a y b -+-= 的大致图像可能正确的是( )A .B .C .D .【答案】AC【解析】A :直线不经过第四象限,所以0,0a b >>,所以圆的圆心在第一象限,因此本选项可能正确;B :直线不经过第一象限,所以0,0a b <<,所以圆的圆心在第三象限,因此本选项不可能正确;C :直线不经过第一象限,所以0,0a b <<,所以圆的圆心在第三象限,又因为该圆经过原点,所以有2222(0)(0)11a b a b -+-=⇒+=,在圆的方程中,令0x =, 得22222(0)()1210a y b a y by b y -+-=⇒+-+=⇒=或2y b =,因为0b <, 所以2b b <,因此本选项可能正确;D :直线不经过第二象限,所以0,0a b ><,所以圆的圆心在第四象限,又因为该圆经过原点,所以有2222(0)(0)11a b a b -+-=⇒+=,在圆的方程中,令0x =, 得22222(0)()1210a y b a y by b y -+-=⇒+-+=⇒=或2y b =,因为0b <, 所以2b b <,因此本选项不可能正确, 故选:AC17.已知直线l 与圆22:240C x y x y a ++-+=相交于A ,B 两点,弦AB 的中点为()0,1M .下列结论中正确的是( ) A .实数a 的取值范围为3a < B .实数a 的取值范围为5a < C .直线l 的方程为10x y +-= D .直线l 的方程为10x y -+=【答案】AD【解析】圆22:240C x y x y a ++-+=满足222(4)40a +--> ,可得5a < , 又由题意弦AB 的中点为()M 0,1可得点M 在圆内,将点M 坐标代入圆的方程可得:30a -+<,即3a <,故A 正确,B 错误; 根据圆的性质可得:MC l ⊥ , 由圆22:240C x y x y a ++-+=,得圆心(12)C -,,而(01)M ,,∴直线l 的斜率k 为11111MC k -=-=-, 由点斜式可得直线l 的方程为:1y x =+ ,即10x y -+=,故C 错误,D 正确; 故选:AD18.方程()()2222220x y x x y y λμ+-++-=(λ,μ不全为零),下列说法中正确的是( )A .当0λμ=时为圆B .当0λμ≠时不可能为直线C .当方程为圆时,λ,μ满足0λμ+≠D .当方程为直线时,直线方程y x = 【答案】ACD【解析】对于A ,由题可得00λμ=⎧⎨≠⎩ 或00λμ≠⎧⎨=⎩,代入得2220x y y +-=或2220x y x +-=,都是圆,故A 对;对于B ,当1,1λμ==-时,化简得y x =是直线,故B 错;对于C ,原式可化为22(+)(+)220x y x y λμλμλμ+--=,要表示圆,则必有0λμ+≠,故C 对;对于D ,只有0λμ+=时,方程表示直线y x =,故D 对. 故选:ACD.19.已知平面内到两个定点A ,B 的距离之比为定值λ(1)λ≠的点的轨迹是圆.在平面直角坐标系xOy 中,已知(2,0),(4,0)A B -,若12λ=,则下列关于动点P 的结论正确的是( )A .点P 的轨迹所包围的图形的面积等于16πB .当P 、A 、B 不共线时,∴P AB 面积的最大值是6C .当A 、B 、P 三点不共线时,射线PO 是∴APB 的平分线D .若点(3,1)Q -,则2PA PQ +的最小值为【来源】湖南省名校联考联合体2021-2022学年高二下学期3月联考数学试题 【答案】ACD【解析】设(,)P x y ,因为PA PB=12=,整理得2280x x y ++=,即()22416++=x y .A :点P 的轨迹是以(4,0)-为圆心,4为半径的圆,所求图形的面积为16π,正确;B :圆的半径为4且6AB =,当△P AB 的底边AB 上的高最大时,面积最大,所以△P AB面积的最大值是164122⨯⨯=,错误;C :当A ,B ,P 不共线时,由12PA PB=,OA =2,4OB =,即12OA OB =,故||||||||PA OA PB OB =.由角平分线定理的逆定理知:射线PO 是∠APB 的平分线,正确;D :因为12=PA PB,即2|PA =PB |,则2PA PQ PB PQ +=+,又P 在圆()22416++=x y 上,如图所示,所以当P ,Q ,B 三点共线时,2PA PQ +取最小值,此时[]22min (2||||)||4(3)(01)52PA PQ BQ +==--+-=,正确. 故选:ACD . 三、填空题20.已知圆1C :()()22129x y -+-=,2C :224210x y x y +-++=.则这两圆的连心线方程为_________(答案写成一般式方程)【来源】广东省广州市南沙区2021-2022学年高二上学期期末数学试题 【答案】350x y +-=【解析】解:圆221:(1)(2)9C x y -+-=,222:4210C x y x y +-++=即22(2)(1)4x y -++=, ∴两圆的圆心为: 1(1,2)C 和2(2,1)C -, ∴这两圆的连心线方程为:212121y x ---=--,即350x y +-=. 故答案为:350x y +-=.21.若点P 为圆22:(1)(3)4C x y ++-=上的一个动点,则点P 到直线:34100l x y --=距离的最大值为________.【来源】湖南省张家界市2021-2022学年高二上学期期末联考数学试题 【答案】7【解析】圆22:(1)(3)4C x y ++-=的圆心(1,3)C -,半径2r =,点C 到直线:34100l x y --=的距离5d ==,所以圆C 上点P 到直线l 距离的最大值为527d r +=+=. 故答案为:722.已知圆C 经过(2,4)P -,(3,1)Q -两点,且在x 轴上截得的弦长等于6,且圆C 不过原点,则圆C 的方程为___________. 【来源】2.4圆的方程B 卷 【答案】22(1)(2)13x y -+-=【解析】依题意,直线PQ 的斜率为4(1)123k --==---,线段PQ 中点为13(,)22,则线段PQ 中垂线方程为1y x =+,显然,点C 在直线1y x =+上,设(,1)+C a a ,圆C 半径r 有:222||2213r PC a a ==-+, 点C 到x 轴距离|1|d a =+,因圆C 在x 轴上截得的弦长等于6,则有2223r d =+, 因此有222213|1|9a a a -+=++,整理得2430a a -+=,解得1a =或3a =,当1a =时,圆心(1,2)C ,半径r =,圆C :22(1)(2)13x y -+-=,显然此圆不过原点, 当3a =时,圆心(3,4)C ,半径=5r ,圆C :22(3)(4)25x y -+-=,显然此圆过原点, 所以圆C 的方程为:22(1)(2)13x y -+-=. 故答案为:22(1)(2)13x y -+-=23.已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足,2PA AB ==,则动点P 运动轨迹的周长为__________.【来源】湖南省名校联盟2021-2022学年高二上学期期末教学质量检测数学试题【答案】)1π【解析】由2,2PA PB AB ==可知,正方体表面上到点A 距离最远的点为1C ,所以P 点只可能在面11ABB A ,面ABCD ,面11BB C C 上运动, 当P 在面ABCD 上运动时,如图示,建立平面直角坐标系, 则(0,0),(2,0)A B ,设(,)P x y ,由PA =得:22222[(2)]x y x y +=-+,即22(4)8x y -+=,即P 点在平面ABCD 内的轨迹是以E (4,0)为圆心,以为半径的一段圆弧,因为2EA BE == ,故4BEC π∠=,所以P 点在面ABCD 内的轨迹的长即为4π⨯=同理,P 点在面11ABB A 内情况亦为22242ππ⨯=;P 点在面11BB C C 上时,因为PA ,2PBA π∠=,所以,24PAB PB π∠==,所以此时P 点轨迹为以B 为圆心,2为半径的圆弧, 其长为1224ππ⨯⨯= ,综上述,P 点运动轨迹的周长为21)2ππ⨯+= ,故答案为:)1π.。
高中数学圆的方程专题讲解
圆的方程考纲解读 1.利用圆的几何要素,求圆的标准方程和一般方程;2.利用代数法、几何法处理圆的问题.[基础梳理]1.圆的定义、方程2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)点M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)点M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)点M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[三基自测]1.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3) D.(2,-3)答案:D2.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4答案:C3.(必修2·习题4.1A组改编)△AOB中,A(4,0),B(0,3),O(0,0),则△AOB外接圆的方程为________.答案:x2+y2-4x-3y=04.不等式组⎩⎪⎨⎪⎧x 2+y 2≤1y ≤x 表示的区域面积为________.答案:π2考点一 求圆的方程|方法突破[例1] (1)(2018·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________.(此题可用多种方法求解)[解析] (1)根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0,故选B.(2)法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎪⎨⎪⎧a =-1,b =-2,r 2=10,故所求圆的方程为(x +1)2+(y +2)2=10.法二:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为(-D 2,-E 2).由题意得⎩⎪⎨⎪⎧⎝⎛⎭⎫-D 2-2×⎝⎛⎭⎫-E 2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得⎩⎪⎨⎪⎧D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0.[答案] (1)B (2)(x +1)2+(y +2)2=10 [方法提升] 求圆的方程的方法[母题变式]1.本例(2)变为已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:设圆心为C (m,0)(m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理,得|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选A.答案:A2.本例(1)变为经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上,求圆的方程. 解析:法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上,则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=(5-2)2+(2-1)2=10. ∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r =10,故所求圆的方程为(x -2)2+(y -1)2=10.考点二 与圆有关的最值问题|方法突破[例2] (1)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞) (2)已知实数x 、y 满足x 2+y 2-4x +1=0. ①求yx 的最大值与最小值;②求y -x 的最大值、最小值; ③求x 2+y 2的最大值、最小值.[解析] (1)∵直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切, ∴圆心(1,1)到直线的距离为 d =|(m +1)+(n +1)-2|(m +1)2+(n +1)2=1,∴mn =m +n +1≤⎝⎛⎭⎫m +n 22.设t =m +n ,则14t 2≥t +1,解得t ∈(-∞,2-22]∪[2+22,+∞).选D. (2)①原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =± 3. 所以yx的最大值为3,最小值为- 3.②y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.③如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. [答案] (1)D [方法提升]1.与圆有关的最值问题的几何转化法(1)形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.2.与圆有关的参数范围问题常见思路(1)直接利用条件,画出几何图形,结合图形用几何法求参数的范围. (2)根据位置关系列不等式组,用代数法求参数范围. (3)构造关于参数的函数关系,借助函数思想求参数的范围.[跟踪训练]1.(2018·洛阳模拟)在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,由题意知⎩⎪⎨⎪⎧a <0|-a |>2|2a |>2⇒a <-2,故选A.答案:A2.(2018·聊城模拟)已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点, (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解析:①因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点, 所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22,解上式得:16-210≤t ≤16+210, 所以,所求的最大值为16+210.②记点Q (-2,3).因为n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k .由直线MQ 与圆C 有公共点, 所以|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.考点三 与圆有关的轨迹问题|模型突破[例3] (1)过原点O 作圆x 2+y 2-8x =0的弦OA ,则弦OA 中点M 的轨迹方程为________. (2)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP (O 为坐标原点),求点P 的轨迹.[解析] (1)法一:(几何法)如图,∵M 为OA 的中点,∴∠OMC =∠OAD =90°.∴动点M 在以OC 为直径的圆上,圆心坐标为(2,0),半径为2. ∴所求点的轨迹方程为x 2+y 2-4x =0.法二:(代入法)设中点M (x ,y ),A (x 0,y 0),则由中点坐标公式得x 0=2x ,y 0=2y ,将点A (x 0,y 0)代入圆的方程,并化简,得x 2+y 2-4x =0.(2)如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+4 2.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求点P 的轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,12 5和⎝⎛⎭⎫-215,28 5(此两点坐标由⎩⎪⎨⎪⎧y =-43x ,(x +3)2+(y -4)2=4解得,是点P 在直线OM 上时的情况).[答案] (1)x 2+y 2-4x =0 [模型解法]有关圆的求轨迹问题的关键点 (1)设出动点的坐标(x ,y ).(2)根据动点满足的条件,结合圆的定义,几何性质,点、直线与圆的位置关系,利用几何法、定义法、代入法、建立动点满足的等式关系(方程).(3)化简方程、得出轨迹.[高考类题](2013·高考新课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解析:(1)设P (x ,y ),圆P 的半径为r .由题设得y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0),由已知得 |x 0-y 0|2=22. 又P 在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3. 故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.1.[考点二](2014·高考北京卷)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4解析:若∠APB =90°,则点P 的轨迹是以AB 为直径的圆,其方程为x 2+y 2=m 2.由题意知圆C :(x -3)2+(y -4)2=1与圆O :x 2+y 2=m 2有公共点,所以|m -1|≤|OC |≤m +1,易知|OC |=5,所以4≤m ≤6,故m 的最大值为6.选B.答案:B2.[考点一](2016·高考全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C 的方程可化为x 2+(y -a )2=a 2+2,可得圆心的坐标为C (0,a ),半径r =a 2+2,所以圆心到直线x -y +2a =0的距离为|-a +2a |2=|a |2,所以(|a |2)2+(3)2=(a 2+2)2,解得a 2=2,所以圆C 的半径为2,所以圆C 的面积为4π.答案:4π3.[考点一、三](2017·高考全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解析:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ),圆M 的半径 r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12, 圆M 的半径为854,圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. 4.[考点三](2015·高考广东卷节选)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解析:(1)由已知得,圆C 1的标准方程为(x -3)2+y 2=4,所以圆C 1的圆心坐标为(3,0). (2)由题意可知,直线l 的斜率必存在,设直线l 的方程为y =tx ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),线段AB 的中点M (x 0,y 0)⎝⎛⎭⎫其中x 0=x 1+x 22,y 0=y 1+y 22, 将y =tx 代入圆C 1的方程,整理得(1+t 2)x 2-6x +5=0. 则有x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t 2. 因为x 20+y 20=9(1+t 2)2+9t 2(1+t 2)2=9(1+t 2)(1+t 2)2=91+t 2=3x 0,所以⎝⎛⎭⎫x 0-322+y 20=94.又因为方程(1+t 2)x 2-6x +5=0有两个不相等的实根, 所以Δ=36-20(1+t 2)>0,解得t 2<45,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝⎛⎭⎫x -3 2 2+y 2=94⎝⎛⎭⎫53<x ≤3 .。
高中数学-圆与方程试题含答案
高中数学-圆与方程试题含答案1.圆(x+2)^2+y=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)^2+y=5B。
x+(y-2)^2=5C。
(x+2)^2+(y+2)^2=5D。
x+(y+2)^2=52.若P(2,-1)为圆(x-1)^2+y=25的弦AB的中点,则直线AB的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x+y-2x-2y+1=1的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1+2√2D。
1+24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x^2+y^2+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
0或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x+y-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x^2+y^2+4x-2y+3=0相切,则此直线在y轴上的截距是 _________.2.由动点P向圆x^2+y^2=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为 _________.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为 _________.4.已知圆(x-3)^2+y^2=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为 _________.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 _________.三、解答题1.点P(a,b)在直线x+y+1=0上,求a^2+b^2-2a-2b+2的最小值。
高中数学教师备课必备(圆与方程):专题五 圆的方程典型例题 含解析
类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C∴半径204)11(22=++==ACr . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆422=+y xO :,求过点()42,P 与圆O 相切的切线.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.类型三:弦长、弧问题例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学圆的方程典型题型归纳总结类型一:巧用圆系求圆的过程在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。
常用的圆系方程有如下几种:⑴以为圆心的同心圆系方程⑵过直线与圆的交点的圆系方程⑶过两圆和圆的交点的圆系方程此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。
当时,得到两圆公共弦所在直线方程例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。
分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。
倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。
而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。
解:过直线与圆的交点的圆系方程为:,即………………….①依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得又满足方程①,则故例2:求过两圆和的交点且面积最小的圆的方程。
解:圆和的公共弦方程为,即过直线与圆的交点的圆系方程为,即依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。
即,则代回圆系方程得所求圆方程例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。
分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。
解:由原方程得m(x+2y-1)-(x+y-5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得, ∴直线过定点P (9,-4)注:方程①可看作经过两直线交点的直线系。
例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1,即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢?思考讨论类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m .变式练习:1.若直线y=x+k 与曲线x=21y -恰有一个公共点,则k 的取值范围是___________.解析:利用数形结合. 答案:-1<k ≤1或k=-2例6 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∵m ∈R ,∴得如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 类型三:圆中的最值问题例7:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是解:∵圆18)2()2(22=-+-y x 的圆心为(2,2),半径23=r ,∴圆心到直线的距离r d >==25210,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d .例8 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值. (2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t .即12--x y的最大值为433+,最小值为433-.此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-.令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.例9、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。