高一数学必修四(公式总结)

合集下载

高一数学必修公式总结大全

高一数学必修公式总结大全

一、椭圆的离心率公式椭圆的离心率公式,即e=(a-b)/a,其中a是椭圆的长轴,b是椭圆的短轴。

这个公式可以用来描述椭圆形状的数学特征,表示椭圆形平面上离心率的大小。

二、双曲线的离心率公式双曲线的离心率公式为e=±1/a。

其中a是双曲线的半焦距。

仍用这个公式可以描述双曲线的数学特征,表示其离心率的大小。

三、抛物线的离心率公式抛物线的离心率即e=[(x1-x2)/2a]^0.5,其中x1是抛物线的右顶点,x2为抛物线的左顶点,a为抛物线的横轴焦点距。

仍用这个公式可以描述抛物线的数学特征,表示其离心率的大小。

四、圆的离心率公式圆的离心率e=0 。

圆是离心率最小的,表示它的形状是无最外离心点的,是离心距的定义的最小形状。

仍用这个公式可以描述圆的数学特征,表示其离心率的大小。

五、正弦定理、余弦定理正弦定理是由泰勒法定理衍生出的,它是由半径ru以及正弦的两个角的值推导出的,即a=ru*sinA,b=ru*cosA。

由此可以推导出:a/b=tanA,余弦定理是由三边推导出的,其中a,b与c为三角形的边长,A,B,C为三角形的对应角度。

其推导公式:c2=a2+b2-2ab乘以cosC。

六、勾股定理勾股定理是指直角三角形中,两条直角边分别表示为a、b,则斜边长为c,其公式为:a2+b2=c2。

这是一个最基本的数学定理,具有重要的实用价值。

七、海伦公式海伦公式是三角形的面积的计算公式,其公式为:s = (√p(p - a)(p - b)(p - c)),其中p为三角形的周长的一半,a,b,c分别为三角形的三边边长。

海伦公式是由勾股定理进一步推算而来,它可以用来计算三角形的面积。

八、勾股恒等式勾股恒等式是指:三角形的直角边的平方和,与斜边的平方相等。

即a2+b2=c2。

它是很基本的数学定理,由此可以推出勾股定理。

九、平面向量定理平面向量定理指的是两个平面向量的和等于算出它们的叉积的外接正方形的对角线的二倍。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

高一必修四数学公式总结

高一必修四数学公式总结

高一必修四数学公式总结高一必修四数学公式总结数学公式是数学中的重要工具和方法,它们能够帮助我们分析和解决各种数学问题。

高一阶段,学生们学习了必修四的数学课程,包括函数、三角函数、平面向量等内容。

下面是高一必修四数学公式的总结。

一、函数1. 一次函数的解析式:y = kx + b2. 二次函数的标准式:y = ax² + bx + c二次函数的顶点坐标:( -b/2a , -∆/4a )二次函数的对称轴方程: x = -b/2a3. 幂函数的定义:y = x^a (a ≠ 0, x > 0)4. 指数函数的定义:y = a^x (a > 0, a ≠ 1)5. 对数函数的定义:y = loga(x) (a > 0, a ≠ 1)6. 余弦函数的定义:y = cosx7. 正弦函数的定义:y = sinx8. 余割函数的定义:y = cosecx9. 正切函数的定义:y = tanx10. 周期性函数的表示:f(x + T) = f(x) (T > 0)11. 函数的奇偶性:奇函数:f(-x) = -f(x)偶函数:f(-x) = f(x)二、三角函数1. 基本三角函数关系:正弦和余弦函数的平方和为1:sin²x + cos²x = 12. 三角函数的定义:sinx = 直角三角形的对边 / 直角三角形的斜边 cosx = 直角三角形的邻边 / 直角三角形的斜边 tanx = sinx / cosx3. 三角函数的周期性:sin(x + 2π) = sinxcos(x + 2π) = cosxtan(x + π/2) = tanx4. 三角函数的诱导公式:sin(-x) = -sinxcos(-x) = cosxtan(-x) = -tanx5. 三角函数的和差化积公式:sin(x ± y) = sinx*cosy ± cosx*sinycos(x ± y) = cosx*cosy ∓ sinx*sinytan(x ± y) = (tanx ± tany) / (1 ∓ tanx*tany)三、平面向量1. 向量的定义:向量A = (x, y) 表示平面上的一个有向线段2. 向量的模长公式:|A| = √(x² + y²)3. 等距向量的性质:向量AB = 向量CD 当且仅当 ABCD是平行四边形4. 向量的夹角公式:向量A·向量B = |A||B|cosθ5. 向量的共线与垂直判断:向量共线:向量A = k*向量B (k为常数)向量垂直:向量A·向量B = 06. 向量的加法和减法:向量A + 向量B = (x1 + x2, y1 + y2)向量A - 向量B = (x1 - x2, y1 - y2)7. 向量的数量积(内积):向量A·向量B = x1x2 + y1y28. 向量的叉积(外积):向量A x 向量B = (0, 0, x1y2 - x2y1)9. 向量的投影:向量A在向量B上的投影:P = (|A|cosθ) * 单位向量B (单位向量B = 向量B / |B|)以上是高一必修四数学公式的总结,掌握这些公式可以帮助我们更好地理解和应用数学知识,解决各种数学问题。

人教版高一数学必修一和必修四公式

人教版高一数学必修一和必修四公式

人教版高中数学必修一至必修四公式(必会)初高中连接:和平方: a 2 b 2 (ab)(ab) 和、差平方: (a b)2 a 2 2ab b 2立方和、立方差: a 3 b 3(a b)(a 2 ab b 2 ) 和、差立方: (a b)3 a 3 b 3 3a 2b 3ab 2(a b c)2 a 2 b 2 c 2 2ab 2bc 2ac ; (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ac (a bc) 2 a 2 b 2 c 22ab 2bc 2ac ; (ab c) 2 a 2 b 2c 2 2ab 2bc 2acx 1 x 2bx 1和x 2为ax 2bx c 0的两根,那么 a韦达定理:设cx 1 x 2a恒建立问题:ax 2 bx c 0( a 0)在 R 上恒建立的条件 a0且△ 0; ax 2bx c 0( a 0)在 R 上建立的条件为 a 0且△ 0指数函数:na , a 0 a m m an当 n 为奇数时:na na ;当 n 为偶数时:na n a; n 1 ( a 0, m 、 n N *,且 m 1)a , a 0 a mna mra sa r s(a, 、s ; r ) s a rs( a , 、 s ; ra rr( a,b ; Q)a 0 r Q ) (a0 r Q) ( ab)b 0 0 r对勾函数单一区间公式:对勾函数基本形式: yxp ,在 ( ,0)(0, 单一递加:( ,p ) ( p,)x) 上单一递减: ,)(,( p 0 0 p ) 对数函数 :log a a1,log a b ? log b a 1 ,log a 1, alog a N N ( N 、 a 0且 a 1),log a b1(a 、 b且 a 、 bddlog bclog ac log b 1) , log blog addaacbcablog a ( M ? N ) log a M log a Nlog a M log a M log a N (a 、 M 、 N>0, 且a ≠ 1)ln x log e x( x 0), ln e log e e 1Nlog a m nn log a m ( a 、 b 、 m 0, n R,且 a 1) , log a b log c b (a 、 b 、 c0,且 a 、 c 1) (换底公式 )nnlog a m blog a b log c am函数图像(一定熟)表1指数函数y a xa 0,a 1对数数函数ylog a x a0, a 11定义域值域图象人教版高中数学必修一至必修四公式(必会)x R x0,y 0,y R过定点 (0,1) 过定点 (1,0)减函数增函数减函数增函数x ( ,0)时, y (1, ) x ( ,0)时, y (0,1) 时,y (0, ) 时,x (0,1)x y ( ,0) x (0,时,(0,1)x (0, ) 时,y (1, ) (0,1)时,时,)yx (1, ( ,0)x (1, y (0, ))y )性质a b a b a ba b表 2 幂函数 y x ( R)p0 1 1 1qp为奇数奇函数q为奇数p为奇数q为偶数p为偶数偶函数q为奇数第一象限性增函数(01,)减函数质过定点2人教版高中数学必修一至必修四公式(必会)判断奇偶函数:若 f ( x) f ( x) 则为偶函数,若 f ( x)f ( x) 则为奇函数(奇函数 f (0) 0 )1x1 x2,化简 f (x1 ) f ( x2 ) ,若 f ( x1 ) f ( x2 ) 0即 f ( x1 ) f (x2 ) 则以为该函数在其判断单一函数:○ 在定义域内设定义域内单一递减,若 f ( x1 ) f ( x2 ) 0即f (x1 ) f (x2 ) 则以为该函数在其定义域内单一递加。

高一数学必修四公式

高一数学必修四公式

高一数学必修四公式1.二次根式与幂- 两个非负实数a和b满足√a * √b = √(ab)-(√a)^2=a-一个数的平方根不能是负数- 平方根的运算性质:√(ab) = √a * √b2.二次函数- 一般式:y = ax^2 + bx + c (a ≠ 0)- 顶点坐标:(xv, yv) = (-b/2a, f(xv))- 判别式:Δ = b^2 - 4ac (Δ > 0 时有两个不相等实根)-平移与伸缩:y=a(x-p)^2+q(a>0,(p,q)为顶点坐标)- 对称轴与焦点坐标:对称轴 x = -b/2a,焦点坐标 (xv, yv + 1/(4a))3.线性规律-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式(无穷项):Sn=a1/(1-r)(,r,<1)-等比数列求和公式(有穷项):Sn=a1(1-r^n)/(1-r)(r≠1)4.三角函数与三角恒等式- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA- 正切定义:tanA = sinA/cosA- 三角恒等式:sin(A ± B) = sinAcosB ± cosAsinB- 三角恒等式:cos(A ± B) = cosAcosB - sinAsinB- 三角恒等式:tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)5.复数- 笛卡尔复数:z = a + bi (a为实部,b为虚部)- 共轭复数:z的共轭记作z*,z* = a - bi- 复数的加减:(a + bi) + (c + di) = (a + c) + (b + d)i- 复数的乘法:(a + bi)(c + di) = (ac - bd) + (ad + bc)i6.概率统计-等可能概型中事件A发生的概率:P(A)=n(A)/n(S)- 乘法原理:从n1个事项中选一个事项,再从n2个事项中选一个事项,……,再从nk个事项中选一个事项,共有n1*n2*…*nk个事项-排列公式:An=n!-组合公式:C(n,k)=n!/(k!(n-k)!)-二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,n)b^n。

人教版高一数学必修一至必修四公式

人教版高一数学必修一至必修四公式

初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=--韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题:00)0(0ax ;00)0(0ax 22<<≠<++<>≠>++且△上成立的条件为在且△上恒成立的条件在a R a c bx a R a c bx指数函数:)00()()0()()0(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+;,;、,;、,对数函数:1log =a a ,1log log =∙a b b a ,1log =a ,)10(log ≠>=a a N N a N a 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-= ⎪⎭⎪⎬⎫-=+=∙N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、, )1,0(log log log ≠>=c a c b a ab bc c a、且、、(换底公式)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )必修二:(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。

今天小编在这给大家整理了高一数学知识点总结大全(最新版),接下来随着小编一起来看看吧!高一数学知识点总结第一章三角函数1.1任意角和弧度制1.2任意角的三角函数——阅读与思考三角形与天文学1.3三角函数的诱导公式1.4三角函数的图像与性质——探究与发现函数y=Asin(ωX+φ)及函数y=Acos(ωx+φ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用利用正切线画函数y=tanX,X∈(—2π,2π )的图像1.5函数y=Asin(ωX+φ)的图像——阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念——阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例——阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式——信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换复习参考题1.正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。

角负角:按顺时针方向旋转形成的角叫做负角。

的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}类第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α<k2360°,k∈z}(象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限.2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合s={β|β=α+k2360°,k∈z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。

高一年级数学必修四知识点(最新)

高一年级数学必修四知识点(最新)

1.高一年级数学必修四知识点⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。

a。

a。

…=a。

a。

a。

…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。

非初等函数是指凡不是初等函数的函数。

初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。

即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的'函数,称为初等函数。

非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。

是函数的一个重要的分支。

高一数学必修四知识点:三角函数诱导公式

高一数学必修四知识点:三角函数诱导公式

【导语】⼈⽣要敢于理解挑战,经受得起挑战的⼈才能够领悟⼈⽣⾮凡的真谛,才能够实现⾃我⽆限的超越,才能够创造魅⼒永恒的价值。

以下是©⽆忧考⽹⾼⼀频道为你整理的《⾼⼀数学必修四知识点:三⾓函数诱导公式》,希望你不负时光,努⼒向前,加油! 【公式⼀】 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 【公式⼆】 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 【公式三】 任意⾓α与-α的三⾓函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 【公式四】 利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 【公式五】 利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 【公式六】 π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 【⾼⼀数学函数复习资料】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版在高一数学必修四课程中,我们学习了许多重要的知识点,这些知识点对于我们建立数学基础和进一步提高数学能力非常关键。

本文将对这些知识点进行总结,帮助我们更好地复习和掌握。

一、函数与导数1.函数的概念函数是一种特殊的关系,它将自变量和因变量联系起来。

我们学习了函数的定义、函数的表示方法以及函数的性质等内容。

2.导数与函数的变化率导数是函数在某一点的变化率,它的定义是函数在该点处的斜率。

我们学习了导数的概念、导数的计算方法以及导数在几何中的应用。

3.导数的基本性质导数具有一系列的基本性质,如导数的四则运算、常用函数的导数公式以及导数与函数图像的关系等。

二、平面几何与立体几何1.向量向量是描述空间中有方向和大小的量,它具有平移、共线性和比例三个基本性质。

我们学习了向量的定义、向量的线性运算以及向量在几何中的应用等内容。

2.平面几何基本概念平面几何是研究平面上的点、线、面及其性质的数学学科。

我们学习了平面几何的基本概念,如直线、角、相似三角形等。

3.立体几何基本概念立体几何是研究三维空间中的点、线、面及其性质的数学学科。

我们学习了立体几何的基本概念,如空间几何体的分类、立体几何体的表面积和体积计算等。

三、数列与数学归纳法1.数列数列是按照一定规律排列的一串数,它是数学研究中非常重要的概念。

我们学习了数列的定义、常见数列的性质以及数列求和公式等内容。

2.数学归纳法数学归纳法是一种数学证明方法,它是通过证明某个命题对于自然数的一个特定范围成立从而证明它对于所有自然数成立。

我们学习了数学归纳法的基本思想和应用技巧。

四、概率与统计1.概率的基本概念概率是用来描述随机事件发生可能性的数值,它是数学中的一个重要分支。

我们学习了概率的定义、概率计算的方法以及概率在实际问题中的应用等。

2.统计的基本概念统计是对数据进行收集、整理、分析和解释的过程,它在现代社会的各个领域都有广泛应用。

我们学习了统计的基本概念,如数据的表示方式、统计量的计算以及统计图表的制作等。

人教版高一数学必修四第三章二倍角的正弦、余弦、正切公式

人教版高一数学必修四第三章二倍角的正弦、余弦、正切公式

3.1.3二倍角的正弦、余弦、正切公式考点学习目标核心素养二倍角的正弦、余弦、正切公式会推导二倍角的正弦、余弦、正切公式逻辑推理二倍角的正弦、余弦、正切公式的应用能够灵活运用二倍角公式解决求值、化简和证明等问题数学运算、逻辑推理问题导学预习教材P132-P134,并思考下列问题:1.在公式C(α+β),S(α+β)和T(α+β)中,若α=β,公式还成立吗?2.在上述公式中,若α=β,能得出什么结论?二倍角的正弦、余弦、正切公式名称公式推导记法正弦sin 2α=2sin__αcos__αS(α+β)――→令β=αS2αS2α余弦cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2αC(α+β)――→令β=αC2α利用sin2α+cos2α=1消去sin2α或cos2αC2α正切tan 2α=2tan α1-tan2αT(α+β)――→令β=αT2αT2α正确理解二倍角公式(1)要注意公式应用的前提是所含各三角函数有意义.(2)倍角公式中的“倍角”是相对的,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.判断(正确的打“√”,错误的打“×”) (1)10α是5α的倍角,5α是5α2的倍角.( ) (2)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (3)存在角α,使得sin 2α=2sin α成立.( ) (4)对于任意角α,总有tan 2α=2tan α1-tan 2α.( )答案:(1)√ (2)× (3)√ (4)×已知sin α=35,cos α=45,则sin 2α等于( )A.75 B.125 C.1225 D.2425答案:D计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33D.32 答案:B已知tan α=43,则tan 2α=________.答案:-247给角求值求下列各式的值. (1)sin π8cos π8;(2)cos 2π6-sin 2π6;(3)2tan 150°1-tan 2150°; (4)cos π5cos 2π5.【解】 (1)sin π8cos π8=12×2sin π8cos π8=12×sin π4=12×22=24.(2)cos2π6-sin2π6=cos⎝⎛⎭⎫2×π6=cosπ3=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3.(4)原式=2sinπ5cosπ5cos2π52sinπ5=sin2π5cos2π52sinπ5=sin4π54sinπ5=sinπ54sinπ5=14.给角求值问题的两类解法(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.1.cos4π12-sin4π12等于()A.-12B.-32C.12 D.32解析:选D.原式=⎝⎛⎭⎫cos2π12-sin2π12⎝⎛⎭⎫cos2π12+sin2π12=cos π6=32.2.求下列各式的值.(1)tan 30°1-tan2 30°;(2)1sin 10°-3cos 10°.解:(1)tan 30°1-tan230°=12×2tan 30°1-tan230°=12tan 60°=32.(2)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin (30°-10°)sin (2×10°)=4sin 20°sin 20°=4.给值求值已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos(2α+π4)的值. 【解】 因为π2≤α<3π2,所以3π4≤α+π4<7π4.因为cos ⎝⎛⎭⎫α+π4>0,所以3π2<α+π4<7π4. 所以sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. 所以cos 2α=sin ⎝⎛⎭⎫2α+π2 =2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4 =2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725.所以cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250.三角函数求值问题的一般思路(1)一是对题设条件变形,将题设条件中的角、函数名向结论中的角、函数名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)注意几种公式的灵活应用,如: ①sin 2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2⎝⎛⎭⎫π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x ; ②cos 2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x .1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan 2x =( ) A.724 B .-724 C.247D .-247解析:选D.由cos x =45,x ∈⎝⎛⎭⎫-π2,0, 得sin x =-35,所以tan x =-34,所以tan 2x =2tan x1-tan 2x =2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247,故选D.2.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A.118 B .-118 C.1718D .-1718解析:选 D.cos 2α=sin ⎝⎛⎭⎫π2-2α=sin 2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α,代入原式,得6sin ⎝⎛⎭⎫π4-α·cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α.因为α∈⎝⎛⎭⎫π2,π,所以cos ⎝⎛⎭⎫π4-α=16,所以sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1=-1718.化简与证明(1)化简2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α;(2)证明tan ⎝⎛⎭⎫π4+α-tan ⎝⎛⎭⎫π4-α=2tan 2α. 【解】 (1)原式=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π2-π4-α=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α =cos 2αsin ⎝⎛⎭⎫2×π4-2α =cos 2αcos 2α=1. (2)证明:法一:左边=sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-α-sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α-π4+αcos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α=sin 2α12sin ⎝⎛⎭⎫π2+2α=2sin 2αcos 2α=2tan 2α=右边.所以等式成立.法二:左边=1+tan α1-tan α-1-tan α1+tan α=4tan α1-tan 2α=2tan 2α=右边.故原式成立.三角函数式的化简与证明(1)化简的方法①弦切互化,异名化同名,异角化同角;②降幂或升幂;③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.(2)证明三角恒等式的方法①从复杂的一边入手,证明一边等于另一边;②比较法,左边-右边=0,左边右边=1;③分析法,从要证明的等式出发,一步步寻找等式成立的条件.1.若α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.解析:因为α为第三象限角,所以cos α<0,sin α<0, 所以1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.答案:02.求证:4sin αcos α1+cos 2α·cos 2αcos 2α-sin 2α=tan 2α.证明:左边=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α=右边.1.已知sin α=3cos α,那么tan 2α的值为( ) A .2 B .-2 C.34D .-34解析:选D.因为sin α=3cos α,所以tan α=3, 所以tan 2α=2tan α1-tan 2α=2×31-32=-34.2.已知sin θ2+cos θ2=233,那么sin θ=________,cos 2θ=________.解析:因为sin θ2+cos θ2=233,所以⎝⎛⎭⎫sin θ2+cos θ22=43, 即1+2sin θ2cos θ2=43,所以sin θ=13,所以cos 2θ=1-2sin 2θ=1-2×⎝⎛⎭⎫132=79. 答案:13 793.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin 2α,cos 2α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 解:(1)因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35. (2)由(1)知cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.[A 基础达标]1.已知sin ⎝⎛⎭⎫π4-x =35,则cos ⎝⎛⎭⎫π2-2x 的值为( )A.1925 B.1625 C.1425D.725解析:选D.因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=1-2sin 2⎝ ⎛⎭⎪⎫π4-x =725.2.已知sin α=55,则cos 4α-sin 4α的值为( ) A .-35B .-15C.15D.35解析:选D.cos 4α-sin 4α=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α=1-2sin 2α=1-25=35.3.设-3π<α<-5π2,化简1-cos (α-π)2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α2解析:选C.因为-3π<α<-5π2,-3π2<α2<-5π4,所以1-cos (α-π)2=1+cos α2=⎪⎪⎪⎪⎪⎪cos α2=-cos α2.4.已知cos ⎝⎛⎭⎫α-π4=-13,则sin(-3π+2α)=( )A.79 B .-79C.35D .-35解析:选A.易得cos ⎝ ⎛⎭⎪⎫2α-π2=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=2×⎝⎛⎭⎫-132-1=-79.又cos ⎝⎛⎭⎪⎫2α-π2=cos ⎝ ⎛⎭⎪⎫π2-2α=sin 2α,所以sin(-3π+2α)=sin(π+2α)=-sin 2α=-⎝⎛⎭⎫-79=79.故选A. 5.化简tan 14°1-tan 214°·cos 28°的结果为( )A.sin 28°2B .sin 28°C .2sin 28°D .sin 14°cos 28°解析:选A.tan 14°1-tan 214°·cos 28°=12×2tan 14°1-tan 214°·cos 28°=12tan 28°·cos 28°=sin 28°2,故选A.6.已知sin α-2cos α=0,则tan 2α=________. 解析:由sin α-2cos α=0,得tan α=sin αcos α=2,tan 2α=2tan α1-tan 2α=2×21-22=-43. 答案:-437.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.解析:sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.答案:-568.1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=________.解析:1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=(cos 20°-sin 20°)2cos 20°-sin 20°=cos 20°-sin 20°cos 20°-sin 20°=1.答案:19.已知sin 2α=513,π4<α<π2,求sin 4α,cos 4α的值.解:由π4<α<π2,得π2<2α<π. 因为sin 2α=513,所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫5132=-1213. 于是sin 4α=2sin 2αcos 2α=2×513×⎝⎛⎭⎫-1213=-120169; cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫5132=119169. 10.已知π2<α<π,sin α=45. (1)求tan 2α的值;(2)求cos ⎝⎛⎭⎫2α-π4的值. 解:(1)由题意得cos α=-35, 所以tan α=-43, 所以tan 2α=2tan α1-tan 2α=-831-169=247. (2)因为sin α=45,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫452=-725, sin 2α=2sin α·cos α=2×45×⎝⎛⎭⎫-35=-2425. 所以cos ⎝⎛⎭⎪⎫2α-π4=cos 2α·cos π4+sin 2α·sin π4=⎝⎛⎭⎫-725×22+⎝⎛⎭⎫-2425×22=-31250. [B 能力提升]11.已知tan x =2,则tan ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4等于( ) A.43B .-43 C.34 D .-34解析:选C.tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4 =tan ⎝ ⎛⎭⎪⎫2x -π2=sin ⎝ ⎛⎭⎪⎫2x -π2cos ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x sin 2x =-1tan 2x=-1-tan 2x 2tan x =4-12×2=34. 12.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3=________. 解析:1sin θ+1cos θ=22⇒sin θ+cos θsin θcos θ=22 ⇒sin θ+cos θ=22sin θcos θ⇒1+sin 2θ=2sin 22θ,因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以2θ∈(π,2π), 所以sin 2θ=-12,所以sin θ+cos θ<0, 所以θ∈⎝ ⎛⎭⎪⎫3π4,π,所以2θ∈⎝ ⎛⎭⎪⎫3π2,2π, 所以cos 2θ=32,所以sin ⎝⎛⎭⎪⎫2θ+π3=sin 2θ·cos π3+sin π3cos 2θ=12. 答案:1213.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值. 解:因为0<x <π4,所以0<π4-x <π4. 又因为sin ⎝ ⎛⎭⎪⎫π4-x =513, 所以cos ⎝ ⎛⎭⎪⎫π4-x =1213. 因为cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =2sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4-x=2cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4-x , 所以cos 2x cos ⎝ ⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x =2413. 14.(选做题)已知sin x 2-2cos x 2=0. (1)求tan x 的值;(2)求cos 2xcos ⎝⎛⎭⎫5π4+x sin (π+x )的值.解:(1)由sin x 2-2cos x 2=0, 知cos x 2≠0,所以tan x 2=2, 所以tan x =2tan x 21-tan 2 x 2=2×21-22=-43. (2)由(1)知tan x =-43, 所以cos 2x cos ⎝ ⎛⎭⎪⎫5π4+x sin (π+x ) =cos 2x-cos ⎝ ⎛⎭⎪⎫π4+x (-sin x ) =cos 2x -sin 2x ⎝⎛⎭⎫22cos x -22sin x sin x =(cos x -sin x )(cos x +sin x )22(cos x -sin x )sin x =2×cos x +sin x sin x=2×1+tan x tan x =24.。

高中数学必修四公式大全

高中数学必修四公式大全

必修四—第一章 三角函数1. ❖终边落在x 轴上的角的集合: .❖ 终边落在y 轴上的角的集合: .❖ 终边落在坐标轴上的角的集合: .2弧长公式: =l,=S .3.同角三角函数的基本关系:①平方关系: ②乘积关系:◆ 诱导公式(一)()()=+=+=+)2tan(2cos 2sin παπαπαk k k◆ 诱导公式(二) ()()()=+=+=+απαπαπtan cos sin◆ 诱导公式(三) ()()()=-=-=-αααtan cos sin◆ 诱导公式(四) ()()()=-=-=-απαπαπtan cos sin◆ 诱导公式(五)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin◆ 诱导公式(六)=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+απαπ2cos 2sin4.三角函数(x x x tan ,cos ,sin )的性质5.函数)sin(ϕ+=wx A y 的图像振幅变化:x y sin = x A y sin = 左右伸缩变化 x A y ωsin =左右平移变化)sin(ϕω+=x A y 上下平移变化 k x A y ++=)sin(ϕω第二章:平面向量1.平面向量共线定理: 一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数2.向量的一个定理的类似推广①向量共线定理: )0(≠=a a b λ②平面向量基本定理: 2211e e a λλ+=(其中21,e e 为平面内不共线的两向量)3.线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P P λ=,这时=x ,=y . 4.一般地,设向量()(),0,,,2211≠==a y x b y x a 且 ①那么如果b a // . ②如果b a ⊥,那么 .5.一般地,对于两个非零向量b a , 有 θb a =⋅,其中θ为两向量的夹角。

高一数学-必修一、四常用公式

高一数学-必修一、四常用公式

ylogc x ylogd x
3
系 指数函数与对数函 数的关系
y a x 与 y log a x ( a 0 且 a 1) 互为反函数,它们的图象关于直线 y x 对称
函数 y log a f ( x ) (a 0 ,且 a 1) 的单调性结论
当 a 1时 当 0 a 1时 6.幂函数

1 时,幂函数的图象下凸;当 0 1 时,幂函数的图象上凸; ③ 0 时, 幂函数的图象在区间 (0,) 上是减函数.在第一象限内, 当 x 从右边趋 向原点时,图象在 y 轴右方无限地逼近 y 轴正半轴,当 x 趋于 时,图象在 x 轴上方无
限地逼近 x 轴正半轴.
sin sin tan cos , cos tan
.
4
7.函数的诱导公式: (口诀:奇变偶不变,符号看象限.) (1) sin 2k sin , cos 2k cos , tan 2k tan k . (2) sin sin , cos cos , tan tan . (3) sin sin , cos cos , tan tan . (4) sin sin , cos cos , tan tan .
(5) sin cos , cos sin . 2 2 (6) sin cos , cos sin . 2 2
8.两角和与差的正弦、余弦和正切公式: (1)cos cos cos sin sin ; (2)cos cos cos sin sin ; (3) sin sin cos cos sin ; (4) sin sin cos cos sin ; (5) tan (6) tan

2016高一数学必修四公式总结

2016高一数学必修四公式总结

精心整理2016高一数学必修四公式总结高一数学公式总结复习指南12. 另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去! 希望大家还是能够做到我经常所讲的做题的“三观”:1.审题观2.思想方法观3.步骤清晰、层次分明观3.注重应用意识的培养注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。

4.知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯!5.注重平时的听课效率听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。

而有些同学则认为上课时听不到什么,索性就不听,抓紧课堂上的每一点时间做题,多做几道题,心里就踏实。

这种认识是不科学的,想象如果上课没有用的话,国家还开办学校干嘛?只要印刷课本就足够了,学生买了书就可以自己学习到时候参加考试就行了。

想想好多东西还是在课堂上聆听的,听听老师对问题的分析和解题技得出6.高考数学命题的特点之一。

不少学者认为:“传授知识”是数学的一种境界,加上“能力培养”是稍高的境界,再加上“方法渗透”是较高的境界,而再加上“提高修养(指数学文化和非智力引力的介入)”则是境界。

作为学生一定要深刻理解数学的思想方法,它是数学的精髓,只有运用数学思想方法,才能把数学的知识和技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学素养。

即使在以后我们走上社会,在工作岗位上我们的这种数学素养就会内化为自身的较深的修养,从而使得自己的气质得以升华,它对于我们今后的做人和处事有很大的指导意义,再加上我们的人文素养就可以造就自己哲学修养。

Ⅰ合:合:终边&#61677;&#61693;22&#61678;&#61694;&#61678;&#61694;360度&#61501;2&#61552;弧度l&#61501;r&#61560;11S&#61501;lr&#61501;&#61537;r2221&#61616;&#61501;&#61552;180.弧度1801弧度&#61501;度180&#61616;&#61501;&#61552;弧度&#61563;倒数关系:Sin&#61537;Csc&#61537;&#61501;1正六边形对角线上对应的三角函数之积为1平:tan&#61480;&#61537;&#61483;2k&#61552;&#61481;&#61501;tan&#6 1537;,k&#61646;z&#61558;角&#61537;与角&#61485;&#61537;关于x轴对称Sin&#61480;&#61485;&#61537;&#61481;&#61501;&#61485;Sin&#615 37;Cos&#61480;&#61485;&#61537;&#61481;&#61501;Cos&#61537;tan&#61480;&#61485;&#61537;&#61481;&#61501;&#61485;tan&#615 37;&#61559;角&#61552;&#61485;&#61537;与角&#61537;关于y轴对称37;关于称&#61561;角&#61552;2&#61485;&#61537;与角&#61537;关于y&#61501;x对称&#61670;&#61552;&#61686;Sin&#61671;&#61485;&#61537;&#61687;&#61501;Cos&#61537;Cos&#61537;&#61672;2&#61688;&#61562;&#61670;&#61552;&#61686;&#61552 ;&#61670;&#61686;Cos&#61671;&#61485;&#61537;&#61687;&#61501 ;Sin&#61537;Cos&#61671;&#61483;&#61537;&#61687;&#61501;&#61485;Sin&#61581;,A&#61502;0,&#61559;&#61502;0,T&#61501;&#61552;y&#61501; ACos&#61480;&#61559;x&#61483;&#61546;&#61481;,A&#61502;0,&# 61559;&#61502;0,T&#61501;&#61559;y&#61501;ASin&#61480;&#61559;x&#61483;&#61546;&#61481;&#614 83;b,A&#61502;0,&#61559;&#61502;0,b&#61625;0,T&#61501;2&#61 552;y&#61501;ASin&#61480;&#61559;x&#61483;&#61546;&#61481;,A&#61502;0,&#61559;&#61502;0,T&#61501;2&#61552;2&#61552;y&#61501;ACos&#61480;&#61559;x&#61483;&#61546;&#61 481;&#61483;b,A&#61502;0,&#61559;&#61502;0,b&#61625;0,T&#61 501;&#61559;&#61552;&#61559;&#61552;T&#61501;&#61558;y&#615y&#61501;Atan&#61480;&#61559;x&#61483;&#61546;&#61481;,A&#6 1502;0,&#61559;&#61502;0,T&#61501;&#61559;怎样由y&#61501;Sinx变化为y&#61501;ASin&#61480;&#61559;x&#61483;&#61546;&#61481;&#614 83;k?振幅变化:y&#61501;Sinx左右伸缩变化:y左右平移变化x&#61483;&#61546;)上下平移变化y&#61501;ASin(&#61559;x&#61483;&#61546;)&#61483;kⅥ平面向量共线定理:一般地,对于两个向量a,a&#61625;0,b,如果有.当Ⅷ向量的一个定理的类似推广向量共线定理:&#61501;&#61548;&#61625;&#61481;&#61615;推广&#61686;平面向量基本定理:a&#61501;&#61548;e&#61483;&#61548;e,&#61670;&#61671;其中e1,e2&#61687;1122&#61671;&#61687;&#61672;不共线的向量&#61688;Ⅸ量且,其中Cos&#61553;&#61501;&#61501;x1x2&#61483;y1y2x12&#61483;y12x22y222Ⅺ如果且特别的Ⅻ若正n边形A1A2&#61655;&#61655;&#61655;An的中心为O,则OA1&#61483;OA2&#61483;&#61655;&#61655;&#61655;&#61483;OAn&# 61501;三角形中的三角问题52;,A&#61483;B&#61483;C&#61501;&#61552;,&#61501;-22222abca&#61483;b&#61483;c&#61501;&#61501;&#61501;2R&#61501;SinASinBSinCSinA&#61483;S inB&#61483;SinC余弦定理:a2&#61501;b2&#61483;c2&#61485;2bcCosA,b2&#61501;a2&#61483;c 2&#61485;2acCosBc&#61501;a&#61483;b&#61485;2abCosC222:Sin&#61480;&#61537;&#61483;&#61538;&#61481;&#61501;Sin&#615 37;Cos&#61538;&#61483;Cos&#61537;Sin&#61538;,S(&#61537;&#61 483;&#61538;)Sin&#61480;&#61537;&#61485;&#61538;&#61481;&#61501;Sin&#615485;&#61538;)Cos&#61480;&#61537;&#61483;&#61538;&#61481;&#61501;Cos&#615 37;Cos&#61538;&#61485;Sin&#61537;Sin&#61538;,C(&#61537;&#61 483;&#61538;)Cos&#61480;&#61537;&#61485;&#61538;&#61481;&#68;Cos2&#61537;&#61501;2Cos&#61537;&#61485;1&#61501;1&#61485;2 Sin&#61537;&#61501;Cos&#61537;&#61485;Sin&#61537;2tan&#61537;tan2&#61537;&#61501;1&#61485;tan2&#61537;2222变:其中&#61559;半角公式:Sin&#61537;&#61501;&#61617;1&#61485;Cos2&#61483;CosCos&#61501;&#61617;222tan2&#61560;降幂扩角公式:Cos2&#61537;&#61501;1&#61483;Cos2&#61537;,Sin2&#61537;&#615 01;1&#61485;Cos2&#61537;2&#61531;Sin&#61480;&#61537;&#61483;&#61538;&#61481;&#61483; Sin&#61480;&#61537;&#61485;&#61538;&#61481;&#61533;21&#61561;积化和差公式:Cos&#61537;Sin&#61538;&#61501;&#61531;Sin&#61480;&#61537;&#21212Sin&#61537;Cos&#61538;&#61501;&#61670;&#61537;&#61483;&#615 38;&#61686;&#61670;&#61537;&#61485;&#61538;&#61686;Sin&#61537;&#61483;Sin&#61538;&#61501;2Sin&#61671;&#61687;C os&#61671;&#61687;#61538;&#61686;&#61670;&#61537;&#61485;&#61538;&#61686; Sin&#61537;&#61485;Sin&#61538;&#61501;2Cos&#61671;&#61687;S in&#61671;&#61687;&#61562;和差化积公式:&#61672;2&#61688;&#61672;2&#61688;S&#61483;S&#61501;2SC(S&#61485;S&#61501;2CS)C&#61483;C&#61501;2CC&#61686;&#61687;C&#61485;C&#61501;&#61&#61688;&#61686;&#61687;&#61688; &#61537;1&#61483;tan22&#61537;1&#61485;tan223&#61564;三倍角公式:Sin3&#61553;&#61501;3Sin&#61553;&#61485;4Sin&#61553;3tan&#61553;&#61485;tan3&#61553;tan3&#61553;&#61501;baa其中bb&#61501;a2&#61483;b2Cos&#61480;&#61537;&#61485;&#61546;&#61 481;其中,tan&#61546;&#61501;ab3.y&#61501;aSin&#61537;&#61485;bCos&#61537;&#61501;a2&#6148中,tan&#61546;&#61501;aa&#61501;&#61485;a2&#61483;b2Cos&#61480;&#61537;&#61483;&#61 546;&#61481;其中,tan&#61546;&#61501;b其中abb481;注:公式,只要记忆1.的推导即表达技巧,其它的就可以直接写出.一般是表达式第一项是正弦的就用两角和与差的正弦来靠,第一项是余弦的就用两角和与差的与弦来靠.比较容易理解和掌握.tan&#61537;&#61483;tan&#61538;,T(&#61537;&#61483;&#61538;)&#9827;补充:1.由公式1&#61485;tan&#61537;tan&#61538;tan&#61537;&#61485;tan&#61538;tan&#61480;&#61537;&#61485;&#61538;&#61481;&#61501;,T(&#615第可当在等式46;R.补充1.常见三角不等式:(1)若x&#61646;(0,(2)若x&#61646;(0,222224时2)2222.sin(&#61537;&#61483;&#61538;)sin(&#61537;&#61485;&#61538; )&#61501;sin&#61537;&#61485;sin&#61538;(平方正弦公式);),则1&#61500;sinx&#61483;cosx&#61603;|sinx|&#61483;|cosx|&#6161 9;1.cos(&#61537;&#61483;&#61538;)cos(&#61537;&#61485;&#61538;)& #61501;cos2&#61537;&#61485;sin2&#61538;.的ba3.:3&#61485;&#61553;)sin(&#61483;&#61553;).33&#61552;cos3&#61553;&#61501;4cos3&#61553;&#61485;3cos&#61553;&#6150 1;4cos&#61553;cos(&#61485;&#61553;)cos(&#61483;&#61553;).333tan&#61553;&#61485;tan3&#61553;&#61552;&#61552;tan3&#61553;&#61501;&#61501;tan&#61553;tan(&#61485;&#61553; )tan(&#61483;&#61553;).1&#61485;3tan2&#61553;334.111边222 111,有;&#61485;(A&#61483;B)C&#61552;A&#61483;B&#61659;&#61501;&#61485;&#61659;2C&#6150 1;2&#61552;&#61485;2(A&#61483;B).222(2)S&#61501;6.正弦型函数y&#61501;Asin(&#61559;x&#61483;&#61542;)的对称轴为x&#61501;k&#61552;&#61483;为(第数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?2.在三角中,你知道1等于什么吗?(这些统称为1的代换)常数“1”的种种代换有着广泛的应用.3.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)4.你还记得在弧度制下弧长公式和扇形面积公式吗?()。

高一必修四数学知识点总结

高一必修四数学知识点总结

高一必修四数学知识点总结在高一的数学学习中,必修四是一个重要的部分,其中包含了许多基础的数学知识点,对于学生来说,掌握这些知识点是非常重要的。

下面将对高一必修四的数学知识点进行总结,希望能够帮助学生更好地理解和掌握这些知识。

首先,我们来看一下高一必修四中的代数部分。

在代数部分,学生将学习到一元二次方程、二次函数、一元二次不等式、等差数列和等比数列等知识点。

一元二次方程是代数中的重要内容,学生需要掌握求解一元二次方程的方法,包括因式分解、配方法、公式法等。

而二次函数则是一元二次方程的图像,学生需要了解二次函数的性质、图像特征以及与一元二次方程的关系。

此外,一元二次不等式、等差数列和等比数列也是代数部分的重点内容,学生需要掌握它们的性质和求解方法。

接下来,我们来看高一必修四中的几何部分。

在几何部分,学生将学习到平面向量、三角形的面积、三角函数、立体几何等知识点。

平面向量是几何中的重要内容,学生需要了解平面向量的定义、性质以及运算法则。

三角形的面积则是几何中的基本内容,学生需要了解不同类型三角形的面积计算方法,如海伦公式、正弦定理、余弦定理等。

此外,三角函数和立体几何也是几何部分的重点内容,学生需要掌握它们的定义、性质和相关定理。

最后,我们来看高一必修四中的概率部分。

在概率部分,学生将学习到排列组合、事件的概率、随机变量和概率分布等知识点。

排列组合是概率中的基础内容,学生需要掌握排列组合的计算方法和应用。

事件的概率是概率中的重点内容,学生需要了解概率的定义、性质以及常见的概率计算方法。

随机变量和概率分布则是概率中的深入内容,学生需要了解随机变量的概念、性质以及概率分布的特点和应用。

总的来说,高一必修四的数学知识点涵盖了代数、几何和概率三个部分,学生需要认真学习和掌握这些知识点,才能够在数学学习中取得好成绩。

希望本文对学生们能够有所帮助,更好地理解和掌握高一必修四的数学知识。

高一数学必修四诱导公式

高一数学必修四诱导公式

高一数学必修四诱导公式篇一:高中数学必修4_三角函数诱导公式及练习zz三角函数归纳公式sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π-α)=sinαcos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotαsin (π+α)=-s inα,cos(π+α)=-cosα,tan(π+α)=tanαcot(π+α)=cotα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinαtan(3π/2-α)=cotα,cot(3π/2-α)=tanα,sin(3π/2+α)=-cosαcos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanαsin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanαcot(2π-α)=-cotα,sin(2kπ+α)=sinα,cos(2kπ+α)=cosαtan(2kπ+α)=tanα,cot(2kπ+α)=cotα(其中k∈z)精选练习一、选择题1.若是a.2.b.,的值为().c.d。

的值等于().答。

3.在△a.c。

b.c。

d.在中,以下表达式是常量() b.d。

5.已知这是方程式吗的根,那么的值等于().答。

二、填空题6.计算b。

c.d。

.7.已知,然后.8.如果,则.9.设然后10.三、回答11。

评价:12.已知角在最后的边缘有一点的坐标为.,;(1)化简下列式子并求其值:(2)一组角度。

14.如果,15.已知(1)、、是△的内角,求证:;(2)价值.16.已知价值为锐角,并且,,求一、多项选择题1、cos(?+α)=―32,123π2<α<2?,sin(2?-α)值为()3232a、卑诗省。

高一数学必修四三角函数公式

高一数学必修四三角函数公式

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

高一数学必修四(公式总结)

高一数学必修四(公式总结)

高一数学公式总结复习指南1.注重基础和通性通法在平时的学习中,应立足教材,学好用好教材,深入地钻研教材,挖掘教材的潜力,注意避免眼高手低,偏重难题,搞题海战术,轻视基础知识和基本方法的不良倾向,当然注重基础和通性通法的同时,应注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题、解决问题的能力。

2.注重思维的严谨性平时学习过程中应避免只停留在“懂”上,因为听懂了不一定会,会了不一定对,对了不一定美。

即数学学习的五种境界:听——懂——会——对——美。

我们今后要在第五种境界上下功夫,每年的高考结束,结果下来都可以发现我们宿迁市的考生与南方的差距较大,这就是其中的一个原因。

另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去!希望大家还是能够做到我经常所讲的做题的“三观”:1. 审题观2. 思想方法观3. 步骤清晰、层次分明观3. 注重应用意识的培养注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。

4.培养学习与反思的整合建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。

学习是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。

你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思和修正。

(这也就是我们经常将让大家一定要好好预习,养成自学的好习惯。

)记得有一位中科院的教授曾经给“科学”下了一个定义:科学就是以怀疑和接纳新知识作为进步的标准的一门学问,仔细想来确实很有道理!所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯!5.注重平时的听课效率听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
〈三〉易错点提示:
1. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
2. 在三角中,你知道1等于什么吗?( 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.
希望大家还是能够做到我经常所讲的做题的“三观” :
1. 审题观 2. 思想方法观 3. 步骤清晰、层次分明观
3. 注重应用意识的培养
注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。
4.培养学习与反思的整合
建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。学习是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思和修正。(这也就是我们经常将让大家一定要好好预习,养成自学的好习惯。)记得有一位中科院的教授曾经给“科学”下了一个定义:科学就是以怀疑和接纳新知识作为进步的标准的一门学问,仔细想来确实很有道理!
正弦定理:
余弦定理:
变形:
三角公式以及恒等变换
两角的和与差公式:
变形:
二倍角公式:
半角公式:
降幂扩角公式:
积化和差公式:
和差化积公式: ( )
万能公式: ( )
三倍角公式:
“三四立,四立三,中间横个小扁担”
♣ 补充: 1. 由公式
可以推导 :
在有些题目中应用广泛。
2.
3. 柯西不等式
补充
1.常见三角不等式:(1)若 ,则 .
想想好多东西还是在课堂上聆听的,听听老师对问题的分析和解题技巧,老师是如何想到的,与自己预习时的想法比较。课堂上记下比较重要的东西,更重要的是跟着老师的思路,注重老师对题目的分析过程。课后宁愿花时间去整理笔记,因为整理笔记实际上是一种知识的整合和再创造!回忆课堂上老师是怎样讲的,自己在整理时有比较好的想法,就记下来,抓住自己思维的火花,因为较为深刻的思维火花往往是稍纵即逝的。
2.注重思维的严谨性
平时学习过程中应避免只停留在“懂”上,因为听懂了不一定会,会了不一定对,对了不一定美。即数学学习的五种境界:听——懂——会——对——美。
我们今后要在第五种境界上下功夫,每年的高考结束,结果下来都可以发现我们宿迁市的考生与南方的差距较大,这就是其中的一个原因。
另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去!
Ⅲ 诱导公式终边相同的角的三角函数值相等
上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”
Ⅳ 周期问题
Ⅴ 三角函数的性质
性 质
定义域
R
R
值 域
周期性
奇偶性
奇函数
偶函数
单调性
对称中心
对称轴


性 质
定义域
值 域
R
R
周期性
奇偶性
奇函数
奇函数
单调性
对称中心
对称轴





振幅变化: 左右伸缩变化:
左右平移变化
(2) 若 ,则 . (3) .
2. (平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
3. 三倍角公式 : .
. .
4.三角形面积定理:(1) ( 分别表示a、b、c边上的高).
(2) .(3) .
5.三角形内角和定理在△ABC中,有 .
6. 正弦型函数 的对称轴为 ;对称中心为 ;类似可得余弦函数型的对称轴和对称中心;
所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯!
5.注重平时的听课效率
听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。而有些同学则认为上课时听不到什么,索性就不听,抓紧课堂上的每一点时间做题,多做几道题心里就踏实。这种认识是不科学的,想象如果上课没有用的话,国家还开办学校干嘛?只要印刷课本就足够了,学生买了书就可以自己学习到时候参加考试就行了。
在这里我再一次强调听课要做到“五得”
听得懂想得通记得住说得出用得上
6. 注重思想方法的学习
学习数学重再学习数学思想方法,它是数学知识在更高层次上的抽象和概括,它蕴含于数学知识发生、发展和应用的过程中,也是历年来高考数学命题的特点之一。不少学者认为:
“传授知识”是数学的一种境界,加上“能力培养”是稍高的境界,再加上“方法渗透”是较高的境界,而再加上“提高修养(指数学文化和非智力引力的介入)”则是最高境界。作为学生一定要深刻理解数学的思想方法,它是数学的精髓,只有运用数学思想方法,才能把数学的知识和技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学素养。即使在以后我们走上社会,在工作岗位上我们的这种数学素养就会内化为自身的较深的修养,从而使得自己的气质得以升华,它对于我们今后的做人和处事有很大的指导意义,再加上我们的人文素养就可以造就自己哲学修养。
高一数学公式总结
复习指南
1.注重基础和通性通法
在平时的学习中,应立足教材,学好用好教材,深入地钻研教材,挖掘教材的潜力,注意避免眼高手低,偏重难题,搞题海战术,轻视基础知识和基本方法的不良倾向,当然注重基础和通性通法的同时,应注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题、解决问题的能力。
上下平移变化
Ⅵ平面向量共线定理:一般地,对于两个向量
Ⅶ 线段的定比分点
点 分有向线段
.
当 时 当 时
Ⅷ 向量的一个定理的类似推广
向量共线定理:
推广
平面向量基本定理:
推广
空间向量基本定理:
Ⅸ一般地,设向量 ∥
反过来,如果 ∥ .
Ⅹ 一般地,对于两个非零向量 有 ,其中θ为两向量的夹角。
特别的,


三角形中的三角问题
真心希望我的这些忠告能够对你今后的学习有所帮助,果真如此,也就聊以欣慰了!
基本三角函数


Ⅰ、Ⅲ

Ⅰ、Ⅲ

Ⅱ、Ⅳ

Ⅱ、Ⅳ
Ⅱ终边落在x轴上的角的集合: 终边落在y轴上的角的集合: 终边落在坐标轴上的角的集合:
倒数关系: 正六边形对角线上对应的三角函数之积为1
平方关系:
乘积关系: , 顶点的三角函数等于相邻的点对应的函数乘积
相关文档
最新文档