大学物理实验:超声声速测定
大学物理实验报告声速的测量
⼤学物理实验报告声速的测量实验报告声速的测量【实验⽬的】1.学会⽤共振⼲涉法、相位⽐较法以及时差法测量介质中的声速2.学会⽤逐差法进⾏数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进⾏声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收⼀般通过电磁振动与机械振动的相互转换来实现,最常见的⽅法是利⽤压电效应和磁致伸缩效应来实现的。
本实验采⽤的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=? (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可⽤ /v L t = (2) 表⽰,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振⼲涉法实验装置如图1所⽰,图中和为压电晶体换能器,作为声波源,它被低频信号发⽣器输出的交流电信号激励后,由于逆压电效应发⽣受迫振动,并向空⽓中定向发出以近似的平⾯声波;为超声波接收器,声波传⾄它的接收⾯上时,再被反射。
当和的表⾯近似平⾏时,声波就在两个平⾯间来回反射,当两个平⾯间距L为半波长的整倍数,即(3)时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表⾯振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增⼤。
从⽰波器上观察到的电信号幅值也是极⼤值(参见图2)。
图中各极⼤之间的距离均为,由于散射和其他损耗,各级⼤致幅值随距离增⼤⽽逐渐减⼩。
我们只要测出各极⼤值对应的接收器的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位⽐较法波是振动状态的传播,也可以说是位相的传播。
沿波传播⽅向的任何两点同相位时,这两点间的距离就是波长的整数倍。
大学物理实验声速测量实验报告
大学物理实验声速测量实验报告一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位法测量声速。
3、掌握示波器、信号发生器等仪器的使用方法。
4、培养实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,会在介质的界面上产生反射。
当声源和接收器之间的距离恰好等于半波长的整数倍时,会形成驻波。
驻波的特点是在某些位置上,介质的振动幅度最大,称为波腹;在另一些位置上,介质的振动幅度为零,称为波节。
相邻两个波腹或波节之间的距离等于半波长。
通过测量相邻两个波腹或波节之间的距离,就可以计算出声波的波长,进而计算出声速。
2、相位法声源发出的声波经过一定距离的传播后,到达接收器。
由于声波的传播需要时间,所以接收器接收到的声波与声源发出的声波之间存在相位差。
通过测量相位差,并结合声波的频率和传播距离,可以计算出声速。
三、实验仪器1、示波器用于观察声波的波形和相位差。
2、信号发生器产生一定频率的正弦波信号作为声源。
3、超声实验装置包括发射器和接收器,用于发射和接收声波。
4、游标卡尺测量发射器和接收器之间的距离。
四、实验步骤1、驻波法按照实验装置图连接好仪器,将信号发生器的输出频率调整到一定值,例如 35kHz。
缓慢移动接收器,观察示波器上的波形,当出现驻波时,记录下相邻两个波腹或波节之间的距离。
改变信号发生器的输出频率,重复上述步骤,测量多组数据。
2、相位法连接好仪器,将信号发生器的输出频率调整到一定值,例如35kHz。
观察示波器上两个通道的波形,通过调节示波器的相位旋钮,使两个波形的相位差为零。
缓慢移动接收器,记录下相位差再次为零时接收器移动的距离。
改变信号发生器的输出频率,重复上述步骤,测量多组数据。
五、实验数据记录与处理1、驻波法实验数据记录表格|频率(kHz)|相邻波腹(节)距离(mm)|波长(mm)|声速(m/s)||::|::|::|::||35 |_____ |_____ |_____ ||40 |_____ |_____ |_____ ||45 |_____ |_____ |_____ |计算波长和声速:根据相邻波腹(节)距离计算波长,波长等于相邻波腹(节)距离的两倍。
大学物理实验教程:声速的测量
之间有以下关系
四、实验原理
1. 声波在空气中的传播速度 由波动论可知, 波的频率ƒ、波速v和波长
可见, 只要测量出声波的频率和波长, 就可以求出声速。
2.声速的理论值计算方法 声波在理想气体中的传播可认为是绝热过程, 传播速度为
Байду номын сангаас
是空气定压比热容和定容比热容之比(
), R是摩尔气体常数, M是气
体的摩尔质量, T是热力学温度。从式可以看出, 温度是影响空气中声速的主要
2. 共振干涉法(驻波法)测量波长 游标卡尺放至10cm左右, 观察示波器, 找到任意接收波的最大值(波腹位置), 然后, 移动游标卡尺, 这时波形的幅度会发生变化, 记录振幅最大时的位置Li, 再向发射端移动, 当接收波形振幅再次达到最大时, 记录此时的位置Li+1。 波长
连续记录6次, 填入表2-1。, 用逐差法处理数据, 根据
一、实验目的
实验 声速的测量
1.了解超声波的产生、发射、传播和接收,压电陶瓷的声电转换功能
2.熟悉低频信号发生器、数字频率计和示波器的使用
3.掌握用共振干涉法、相位比较法测量超声波的传播速度
二、实验仪器
声速测量仪、示波器。其中声速测量仪装置如图2-1(a)(b)所示:
1 . 幅度调节旋钮 2 . 频率调节旋钮 3 . 4 . 发射信号输出端口 5 . 6 . 连接示波器端口 7 .超声发 射端 8 . 超声接收端 9 . 接收信号输出端 10.12.锁紧螺丝 11.微调螺母 13.游标卡尺 14.主尺 15.发射信号输入端口
其中A1 = A2 = A。
声压
由可知, 当
(k = 1, 2…)位置上, 为驻波的 波腹, 声振动的振幅最大。
超声波测量声速
实验原理 2 实验原理 声波是在弹性媒质中传播的一种机械波。当声波的振动频 率超过20kHz的时候称为超声波,它具有波长短、指向性好等 优点。超声波在科学研究、生产、生活中应用非常广泛,如 超声无损检测、超声波测距和定位、测量气体温度瞬间变化、 测液体流速、测材料弹性模量等等。 超声波在医学方面应用非常广泛,可以对物品进行杀菌消毒。
产生超声波
接受超声波
实验原理 2 实验原理 测声波频率 (可通过频率计测得)
测波长用公式
υ =λ f
因此本实验的主要任务是测超声波的波长。
测超声波的波长的方法
1 共振干涉法(驻波法) 2 相位比较法(行波法)
实验原理 2 实验原理
当换能器S1与S2的表面平行时,由换能器S1的震动产生的超声波在S1、S2两
。
(2)用逐差法计算共振干涉法测出的超声波波长:
2 共= L10 L5 L9 L4 L6 L1 25
V共=共 f
(4)将V共 与 V认 比较求相对误差:
(3)计算共振干涉法测出的超声波在空气中的传播速度:
E共
V共 -V认 V认
100%
(5)用逐差法计算计算位相比较法测出的超声波波长:
压电换能器是指利用压电 材料的正逆压电效应制成的换 能器,换能器顾名思义就是指 可以进行能量转换的器件。通 常我们所说的为电声换能器, 能够发射声波的换能器叫发射 器;用来接收声波的换能器叫 接收器。
实验原理 2 实验原理 压电换能器的工作原理 即如果在极化方向加上电压,电场强度的作用下会在极化该方向 产生应力,该应力使压电材料在极化方向的长度伸长或收缩。如果加 上的电压是频率 f 超过20kHz的交流电,压电材料就会产生频率为 f 的周期性纵向伸缩,从而压迫空气成为超声波的波源。同样,也可以 使声压的变化转变成电压的变化,用来接收信号。
大学物理实验超声光栅测声速
从图1-图3中我们
反 射
可以看到驻波在T/2
板
个周期内各质点处密
度变化情况,从图中
看出奇数点不发生振
动,这样的点为波节,
反
且波节与波节处相距
射 板
λ/2,即条纹间距对
应于超声波的半波长
v—1
—v2
—v3
—v4
.
22
这4次超声波波速平均值
4
vi
v i1 4
vA
4
(vi v)2
i 1
12
vB 0.02 3
v vA2vB2
Ev
v100% v
.
23
注意事项
1、先向液槽内加水,再加超声波信号(注意顺 序!)。防止发射探头内的压电陶瓷片在空气中强 行振动而损坏。 2、建议调细明条纹宽度,记录明条纹通过叉丝的 数目(厂商建议)。调节方法:将狭缝宽度调窄 3、每组测量时,只能沿一个方向旋转读数鼓轮, 避免空程误差 4、提取液槽应拿两端面,不要触摸两侧表面通光 部位,以免污染,如已有污染,可用酒精清洗干净, 或用镜头纸擦净。
实验目的
1.了解超声致光衍射的原理; 2. 掌握利用声光效应测定液体中声速的方
法;
1、横波与纵波
横波也称“凹凸波”,是质点的振动方向与波的传 播方向垂直。在横波中突起的部分为波峰,凹下部 分叫波谷。波长通常是指相邻两个波峰或波谷之间 的距离。电磁波、光波都是横波。 纵波是质点的振动方向与传播方向平行的波。在纵 波中波长是指相邻两个密部或疏部之间的距离。如 敲锣时,锣的振动方向与波的传播方向就是平行的。 常见的纵波有声波(Sound wave)和地震引起的P 波(P-waves,含义是Primary wave,因为P波是地 震波中传播最快的一种,地震时最先到达震中)。
大学物理实验声速测量实验报告
⼤学物理实验声速测量实验报告声速测量⼀、实验项⽬名称:声速测量⼆、实验⽬的1.学会测量超声波在空⽓中的传播速度的⽅法2.理解驻波和振动合成理论3.学会逐差法进⾏数据处理4.了解压电换能器的功能和培养综合使⽤仪器的能⼒三、实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。
可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。
根据超声波的特点,实验中可以采⽤⼏种不同的⽅法测出超声波的波长:1. 驻波法(共振⼲涉法)如右图所⽰,实验时将信号发⽣器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送⼊⽰波器观察。
由声波传播理论可知,从发射换能器发出⼀定频率的平⾯声波,经过空⽓传播,到达接收换能器。
如果接收⾯和发射⾯严格平⾏,即⼊射波在接收⾯上垂直反射,⼊射波与反射波相互⼲涉形成驻波。
此时,两换能器之间的距离恰好等于其声波半波长的整数倍。
在声驻波中,波腹处声压(空⽓中由于声扰动⽽引起的超出静态⼤⽓压强的那部分压强)最⼩,⽽波节处声压最⼤。
当接收换能器的反射界⾯处为波节时,声压效应最⼤,经接收器转换成电信号后从⽰波器上观察到的电压信号幅值也是极⼤值,所以可从接收换能器端⾯声压的变化来判断超声波驻波是否形成。
移动卡尺游标,改变两只换能器端⾯的距离,在⼀系列特定的距v f fv λ=f λf离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最⼤电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空⽓中的传播速度,其中超声波的频率可由信号发⽣器直接读得。
2.相位⽐较法实验接线如下图所⽰。
波是振动状态的传播,也可以说是位相的传播。
09 大学物理实验 声速的测量
/2 /2 /2 /2 /2
声压驻波分布
L
2、相位比较法 S2接收声波并转换为电信号,该电信号与输 入到S1的电信号频率相同,仅相位有所延迟, 相位延迟量与超声波在S1和S2之间传播的距 离有关:
2
L
如果将发射端和接收端输出的电信号分别分 别输入到示波器的x,y轴,这两个信号在示 波器上将显示出李萨如图形。
二、实验装置介绍
本实验使用信号发生器输出一个高频交流电信 号到超声发生器,用于产生超声波,超声接收 器接收到超声波后通过换能器转变为电信号, 并输出到示波器,进行观察测量。 超声声速测定仪
信号发生器
发射换能器 接收换能器
Y 示波器
S1
S2
超声声速测定仪由两个换能器(一个发射端, 一个接收端)、鼓轮和标尺组成。转动鼓轮可 使一个换能器在导轨上移动,移动距离可由标 尺和鼓轮读出。
2.计算超声波在空气中传播速度的公认值,对共 振干涉法和相位比较法测得的声速分别计算定 值误差。
三、波长的测定
1、共振干涉法
超声发生器(S1)发出的声波,经空气传播到接 收器(S2),S2在接收声波信号的同时反射部分 声波信号。如果S2与S1严格平行,入射波即在接 收面上垂直反射,当S1和S2之间的距离L满足下 式:L= n /2 (n=1、2..)时,形成驻波。
L
S1发射
S2反射
当S1和S2之间的距离L连续改变时,示波器 上的信号幅度呈现周期性的变化,振幅从最 大变到另一个最大说明接收器移动了λ/2的距 离 ,而S2移动的距离可由标尺和鼓轮读出, 从而计算出波长λ 。
超声波在空气中的传播速度是温度的函数,其 理论值计算公式为:
t 0
t ( C ) 1 273.15
大学物理实验报告声速的测量
实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为: v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S 2为超声波接收器,声波传至它的接收面上时,再被反射。
当S 1和S 2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即L =n ×λ2, n =0,1,2, (3)时,S 1发出的声波与其反射声波的相位在S 1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S 2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S 2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
大学物理实验声速测量实验报告(1)
大学物理实验声速测量实验报告(1)大学物理实验声速测量实验报告一、实验目的本实验的主要目的是通过测量声波的传播时间和距离,计算出空气中的声速,并且借此掌握声波在介质中传播的相关知识和技能。
二、实验原理声波的传播速度与介质密度、压强以及温度有关。
本实验中,通过一段已知长度的玻璃耳管和可以发出超声波的脉冲发生器,将脉冲信号通过耳管传输到另一端,在经过接收装置后产生回响信号,并自动停止脉冲发生,记录下声波传播的时间t。
同时,测量被测介质温度以及用光学仪器测量出耳管长度L,即可利用以下公式计算出声速v:v=2L/t三、实验仪器超声波发生器、玻璃耳管、声波接收器、计时器、光学仪器、温度计等。
四、实验步骤1.将玻璃耳管放置在实验台上,测量其长度L;2.将发生器与接收器分别连接到耳管的两端,使其相离5cm左右,打开发生器的电源;3.按下发生器上的按钮,让发生的声波波段传输至接收器,并记录下传输时间t;4.多次重复上述步骤,取平均值,得到声波传播时间t及其标准差;5.测量被测介质温度;6.利用公式v=2L/t计算出声速,写入实验记录表中。
五、实验注意事项1.实验中要注意保持实验环境的安静和稳定,防止外界干扰;2.使用超声波发生器时要确保其正确接线,并调整合适的发射频率以避免信号干扰;3.测温时要注意温度计的准确度和可靠性。
六、实验结果及分析本实验中取得的数据如下:玻璃耳管长度L=0.35m声波传播时间t=0.002s被测介质温度T=25℃根据公式v=2L/t,代入上述数据可得声速v=350m/s。
与理论值相比较,误差很小,说明实验数据的可靠性比较高。
七、实验结论通过本实验的探究,可以得出空气中声速的测量值,并且掌握了声波在介质中传播的相关知识和技能。
在实验中要吸收并掌握科学的实验方法,注意数据积累与分析过程中的细节,以得到准确的结论。
大学物理实验超声波声速的测量(含数据)
大学物理实验超声波声速的测量(含数据)
一、实验目的
1、测量水中超声波的传播速度;
二、实验器材
2、水槽;
3、测量卡尺。
三、实验原理
超声波声速可以通过测量超声波在介质中传播的时间和距离来确定。
假设超声波在水中的传播速度为v,声波从超声波发射器发出后,在经过水中的传播距离L后,到达超声波接收器所需的时间为t,则有:
v = L/t
四、实验步骤与数据处理
1、将超声波发射器和接收器分别固定在水槽的两侧边缘,距离为L = 100.0 cm。
2、开始实验前,先开启超声波声速测量仪,待其进入正常工作状态后再进行后续步骤。
3、将水箱中的水注满,保证水面平整,不产生涟漪。
4、在超声波声速测量仪屏幕上调节并观察渐进式扫描波形直到找到超声波信号。
然后在屏幕上调节幅度使其在2/3波形范围内。
这个范围内的任何波形变化都可能导致声波时间测量误差。
5、在超声波声速测量仪屏幕上记录观察到的第一个波峰(应为正弦波的正向部分)的位置,这标志着声波的发射时刻。
7、重复实验三次,并将每组实验数据记录在下表中。
实验次数时间t(ms)
1 0.270
2 0.267
3 0.269
8、计算各次实验的平均时间t和超声波速度v:
t = (0.270 ms + 0.267 ms + 0.269 ms) / 3 = 0.269 ms
五、实验结论
本实验测量得到的水中超声波的传播速度为3.72 km/s。
实验结果和实际值(约为1.5 km/s)存在较大的偏差,可能是由于实验误差和水中的水质、温度等因素的影响。
大学物理实验声速的测量实验报告
大学物理实验声速的测量实验报告一、实验目的1、学会用驻波法和相位法测量声速。
2、了解声速测量的基本原理和方法。
3、加深对波动理论的理解,提高实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,入射波与反射波叠加形成驻波。
在驻波中,相邻两波节之间的距离为半波长的整数倍。
通过测量相邻两波节之间的距离,就可以计算出声波的波长,进而求得声速。
设声源的振动频率为 f,波长为λ,声速为 v,则有 v =fλ。
在驻波法中,我们使用超声换能器作为声源和接收器。
当两个换能器之间的距离等于半波长的整数倍时,接收端的信号幅度达到最大,此时两个换能器之间的距离 L 与波长λ之间的关系为:L =nλ/2(n =1,2,3,)。
2、相位法声源和接收器作相对运动时,接收器接收到的声波频率会发生变化,这种现象称为多普勒效应。
在相位法中,我们利用多普勒效应来测量声速。
设声源的频率为 f,声源和接收器的相对运动速度为 v',接收器接收到的声波频率为 f',则有:f' = f (1 + v'/v) 。
当声源和接收器相向运动时,v'为正;当声源和接收器相背运动时,v'为负。
通过测量声源和接收器的相对运动速度 v'以及声源的频率 f,就可以计算出声速 v。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将超声换能器 S1 和 S2 分别连接到声速测量仪的发射端和接收端。
(2)打开信号发生器和示波器,调整信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动 S2,观察示波器上的信号幅度变化。
当信号幅度达到最大时,记录此时 S2 的位置 L1。
(4)继续移动 S2,当信号幅度再次达到最大时,记录此时 S2 的位置 L2。
(5)重复步骤(3)和(4)多次,测量多组数据。
(6)根据测量数据计算出声波的波长λ,进而求得声速 v。
大学物理实验超声波测声速中国地质大学长城学院
实验仪器(2)- 双踪示波器
Y (X) 轴位移
X轴位移
扫描 频率 微调
扫描频 率调节
触发 电平
Y轴 增益 Y (X) 轴增益
Y (X) 轴输 入
Y轴 位移
Y轴 输入
实验仪器(3)- 信号发生器
波形选择 波段选择
频率显示
频率调 节
输出振幅调节
实验原理
1.声波在空气中的传播速度(温度为t):
0
改变两只换能器间的距离,同时用示波器监测接收器 上的输出电压幅度变化,可观察到电压幅度随距离周期性 的变化。 相邻两次最大电压之间的位置差的绝对值应等于声波 波长的二分之一。
2
实验原理
2、相位比较(行波)法测声速 当接收器和发射器的距离变化等于一个波长时,则发射与 接收信号之间的相位差也正好变化一个周期(即ΔΦ=2π),相 同的图形就会出现。所以,当准确观测相位差变化一个周期时 接收器移动的距离,即可得出其对应声波的波长λ,再根据声 波的频率,即可求出声波的传播速度
3、用逐差法计算出波长值,数据记录与计算用列表法进 行,对实验结果进行不确定度估算。记下室温,在此 温度下空气中声速的理论值,实验结果与理论值比较, 计算百分误差。最后,实验结果用标准形式表示。
思考题及注意事项
1、实验时怎样找到超声换能器的谐振频率? 2、用相位比较法和共振干涉法测量波长时有什么区别? 3、用弦振动法可以测量波在弦上传播的速度,比较好的 办法是测量形成驻波时波节间的距离,而不是测量波 腹间的距离,为什么? 4、实验中采用逐差法处理数据有什么好处?怎样用作图 法和最小二乘法处理数据?
超声波测声速
实验目的
1.了解超声换能器的工作原理和功能; 2.学习不同方法测定声速的原理和技术; 3.熟悉测量仪和示波器的调节使用; 4.测定声波在空气的传播速度。
大学物理实验:超声声速测定
超声声速测定声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。
特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。
例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。
“声速的测量”是一个综合性声学实验。
实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。
通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。
(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。
(3)数据处理方法:求声波波长的逐差法。
(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。
【实验目的】1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。
2.了解压电换能器的功能。
3.学习用逐差法处理数据。
【实验仪器】SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等【实验原理】频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
根据声波各参量之间的关系可知f ⋅=λυ,其中υ为波速, λ为波长,f 为频率。
图4-5-1共振法测量声速实验装置在实验中,可以通过测定声波的波长λ和频率f 求声速。
声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。
图4-5-2 相位比较法测量声速实验装置1.相位比较法实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。
大学物理实验 超声波声速的测量(含数据)
超声波声速的测量
实验目的
(1) 进一步熟悉示波器的基本结构和原理。
(2) 了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。
(3) 学习几种测定声波传播速度的原理和方法。
声波是一种弹性媒质中传播的纵波,波长、强度、传播速度等是声波的重要参数,超声波是频率大于20 kH 的机械
波,本实验利用声速与振动频率f 和波长λ之间的关系v = λ f 来测量超声波在空气中的传播速度。
SV5 型声速测量组合实验仪(含专用信号源),可以做时差法测定超声波传播速度的实验;配以示波器可完成利用
共振干涉法,双踪比较法和相应比较法测量声速的任务。
本声速测量仪是利用压电体的逆压电效应而产生超声波,利用
正压电效应接收超声波,测量声速的四种实验方法如下:(由于声波频率可通过声源的振动频率得出,所以测量声波波
长是本实验主要任务。
)
双踪相位比较法
直接比较发信号和接收信号,同时沿传播方向移动接受器位置,寻找两个波形相同的状态可测出波长
数据采集与处理(f=37 kHz)。
超声声速的测量——【大学物理实验】
求出v 声速f。
v v Uv ?
U
S
2
2仪
Uv v
U
2
U f
f
2
U f 0.2% f
S
1 n 1
(i )2
仪
2 0.02 5
0.008 mm
结束
谢谢大家!
一、 超声波在空气中传播速度的计算公式:
vt 331.45
1
t 273.15
1
0.31
rps p
m/s
其中参数
t,
r,
p 根据实验室的实际环境因数情况确定。 s
p 760mmHg
二、实验测试系统:
压电陶瓷换能器
实验装置连接示意图
三、 超声声速测量
测试内容
v f
vt 331.45
方向键区域
信号输出端
SG1005SP型 双路数字功率信号发生器面板图
前言
声波是一种在弹性媒质中传播的机械波。 振动频率在20Hz ~ 20KHz的声波称为可闻声 波,频率低于20Hz的声波称为次声波,频率超 过20KHz的声波称为超声波。对于声波特性的 测量(如频率、波长、波速、位相和声压衰减 等)是声学技术的重要内容,声速的测量在声 波定位、探伤和测距中有较广泛的应用。
2、 值的测量:
(1) 驻波法测量:
L
Ln1
Ln
2
(2) 相位法测量:
压电陶瓷换能器
(相位法时:示波器设置在X-Y的工作方式)
2
2
L Ln1 Ln 2
2
四、 数据处理提示
用完整的式子表示测量结果
i
1 2 3 4 5 6 7 8 9 10
大学物理仿真实验实验报告 超声波测声速
3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。
4)示波器 示波器的 x, y 轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器
上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。
三 实验内容
i
1(i cm)
1 9.060
2
9.574
3 10.122
4 10.652
5 11.178
6 11.700
表1
i+6 7 8 9 10 11 12
驻波法测量声速数据
1i+6(cm) 12.232 12.774
λi= (1i+6-1i) /3(cm) 1.057 1.067
13.316
1.065
13.820
五 实验思考题
1.固定距离,改变频率,以求声速。是否可行? 答: 能。因为 v = f λ,已知频率 f,而且波长λ也能通过示波器图像读 出
所以可以用驻波法测量出声速。 2.各种气体中的声速是否相同?为什么? 答:不同。声波在不同介质中有不同的波长、频率和速度。
.
14
22.532
1.107 1.099 1.ቤተ መጻሕፍቲ ባይዱ99 1.105 1.100
λ的平均值:
1 7
7
i
i 1
1.1041(cm)
λ的不确定度:
S
7
(i )2
i 1
=0.002(cm)
i(i 1)
因为,λi= (1i+7-1i) /7,Δ仪=0.02mm
所以, u
7
2 3
仪=0.000233(cm)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声声速测定
声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。
特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。
例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。
“声速的测量”是一个综合性声学实验。
实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。
通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。
(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。
(3)数据处理方法:求声波波长的逐差法。
(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。
【实验目的】
1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。
2.了解压电换能器的功能。
3.学习用逐差法处理数据。
【实验仪器】
SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等
【实验原理】
频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
根据声波各参量之间的关系可知f ⋅=λυ,其中υ为波速, λ为波长,f 为频率。
图4-5-1共振法测量声速实验装置
在实验中,可以通过测定声波的波长λ和频率f 求声速。
声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。
图4-5-2 相位比较法测量声速实验装置
1.相位比较法
实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。
当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:
22见图长λS1、S2之间距离改变半个波长2/λ=∆L ,则ϕ∆=π。
2.共振干涉(驻波)法测声速
由声源S 1发出的声波(频率为f ),经介质(空气)传播到S 2,S 2在接收声波信号的同时反射部分声波信号。
如果接收面(S 2)与发射面(S 1)严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波。
反射面处是位移的波节,声压的波腹。
改变接收器与发射源之间的距离L ,在一系列特定的距离上,空气中出现稳定的驻波共振现象。
此时L 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。
通过压电转换,产生的电信号的电压值也最大(示波器显示波形的幅值最大)。
因此,若保持频率不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离ΔL ,即可得到该波的波长λ(λ=2Δx),并用f ⋅=λυ计算出声速。
3. 压电陶瓷换能器
压电陶瓷换能器根据它的工作方式,可分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。
图4-5-4所示为纵向换能器的结构简图。
【实验内容及步骤】
1.声速测试仪系统的连接与调试
接通电源,信号源自动工作在连续波方式,选择的介质为空气的初始状态,预热15min。
声速测试仪和声速测试仪信号源及双踪示波器之间的连接如图
4-5-2所示。
1)测试架上的换能器与声速测试仪信号源之间的连接
信号源面板上的发射端换能器接口(S1),用于输出相应频率的功率信号,接至测试架左边的发射换能器(S1);仪器面板上的接收端的换能器接口(S2),请连接测试架右边的接收换能器(S2)。
2)示波器与声速测试仪信号源之间的连接
信号源面板上的发射端的发射波形(Y1),接至双踪示波器的CH1(X),用于观察发射波形;信号源面板上的接收端的接收波形(Y2),接至双踪示波器的CH2(Y),用于观察接收波形。
2.共振频率的调试测量
只有当换能器S1和S2发射面与接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到发射换能器S1谐振频率点处,才能较好地进行声能与电能的相互转换,提高测量精度,以得到较好的实验效果。
超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节声速测试仪信号源输出电压(100mV~500mV之间),调节信号频率(在25~45kHz),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5~37.5kHz之间)电压幅度最大,同时声速测试仪信号源的信号指示灯亮,此频率即是压电换能器S1、S2相匹配的频率点,记录频率νi ,改变S1和S2之间的距离,适当选择位置(即:至示波器屏上呈现出最大电压波形幅度时的位置),再微调信号频率,如此重复调整,再次测定工作频率,共测5次,取平均值 0 。
3.用相位比较法(李萨如图形)测量波长
1) 将测试方法设置到连续波方式,连好线路,把声速测试仪信号源调到最佳工作频率f。
2)调节示波器:把“扫描时间”旋扭旋至“X-Y”方式;
3)移动S2,依次记下示波器上波形由图3中(a)变为图4-5-3中(e)时,读数标尺位置的读数L1、L2…共10个值;
4)记下室温t;
5)用逐差法处理数据。
4.干涉法(驻波法)测量波长
1) 按图4-5-1所示连接好电路;
2) 将测试方法设置到连续波方式,把声速测试仪信号源调到共振工作频率(根据共振特点观察波幅变化进行调节)。
3) 在共振频率下,将S 2移近S 1处,依次记下各振幅最大时的读数标尺位置L 1、L 2… 共10个值;
4) 记下室温t ; 5) 用逐差法处理数据。
【数据记录及处理】 1. 驻波法
t= 0
C v 0=331.45m/s f = Hz
5
∑∆=
∆i
l l 5
2l ∆⨯
=λ λυ⋅=f 15.273100t
v +=υ
0υυυ-=∆ %1000
⨯∆=υυ
υE
2. 相位法
t= 0
C =0v 331.45m/s f = Hz
5
∑
∆=
∆i
l l 5
2l
∆⨯=λ
λυ⋅=f 15
.273100t
v +
=υ 0υυυ-=∆ %1000
⨯∆=υυ
υE
【预习要求】
1、理解驻波法和相位比较法测量声速的基本原理。
2、了解形成驻波和李萨如图形的基本理论。
3、了解函数信号发生器和示波器的调整和使用方法。
4、理解测量波长的驻波法和相位比较法。
5、熟悉实验的具体内容。
6、列出测量数据记录表。
【注意事项】
1、必须仔细阅读教材中各仪器说明书,熟悉各个旋钮的功能,方可进行调节。
2、信号发射器的信号输出幅度不要过大,避免仪器过热而损坏。
3、调节仪器旋钮要轻缓,以免损坏。
4、实验时要使函数信号发生器的输出频率等于换能器的谐振频率,并且在实验过程中保持不变。
5、使用游标尺测量移动距离时,必须轻而缓慢地调节,手勿压游标尺。
6、换能器发射面和接受面要保持相互平行。
【思考题】
1、驻波法测量声速的原理和方法是什么?
2、相位比较法测量声速的原理和方法是什么?
3、实验中信号发生器和示波器各起什么作用?
4、实验中通过什么来发射和接收声波?
5、实验中为什么要在压电换能器谐振状态下测量空气中的声速?
6、实验时怎样找到超声换能器的谐振频率?
7、实验中为什么要使换能器发射面和接受面要保持相互平行? 8、实验中怎样才能知道接收换能器接收面的声压为极大值? 9、实验中为什么要记录室温?
10、本实验采用逐差法处理数据有什么好处?
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。