无穷限的广义积分
无穷限的广义积分.
cos
x 0
.
极限不存在
sin xdx
是发散的
若认为积分区间关于原点对称,被积函数为
奇函数,按定积分公式③计算就错了.
例3 计算广义积分 ex sin xdx . 0
解 先计算定积分 Aex sin xdx 0
A
0
e
x
sin
xdx
A 0
sin
xd
ex
ex
sin
x
A 0
A ex cos xdx
a
f xdx
lim Ft Fa F Fa; t
b
f xdx
Fb lim Ft Fb F ; t
f
xdx
lim
t
F
t
lim
t
F
t
F F .
(2)当
f x为奇函数时,
f
x
dx
不能按积
分区间关于原点对称的定积分处理为零。因为
f
xdx
lim
A
B
A
f
xdx,
B
这里A与B是相互独立的.
3.例题
例1
计算广义积分
0 e
x
dx
.
解
0exdx
ex
0
1.
y
这个广义积分值的几
何意义是,当t
时,图5-7中阴影部
1
y ex
分向左无限延伸,但 其面积却有极限值1 .
t
ox
图5-7
例2 计算广义积分 sin xdx .
解
sin
xdx
0 sin
xdx
0
sin
xdx
积分区间为无穷区间的广义积分
存在,
记作:
,
即:
=
此时也就是说广义积分
收敛。如果上述即先不存在,则说广义积分
时虽然用同样的记号,但它已不表示数值了。
类似地,设函数 f(x)在区间(-∞,b]上连续,取 a<b.如果极限
. 发散,此
则此极限叫做函数 f(x)在无穷区间(-∞,b]上的广义积分,
存在,
此时也就是说广义积分
如果广义积分
广义积分
在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的 积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是———广义积分。 一:积分区间为无穷区间的广义积分
设函数 f(x)在区间[a,+∞)上连续,取 b>a.如果极限
则此极限叫做函数 f(x)在无穷区间[a,+∞)上的广义积分,
和
(-∞,+∞)上的广义积分,
记作:
,
即:
=
收敛。如果上述极限不存在,就说广义积分
. 发散。
都收敛,则称上述两广义积分之和为函数 f(x)在无穷区间
记作:
,
即:
=
上述广义积分统称积分区间为无穷的广义积分。
例题:计算广义பைடு நூலகம்分 解答:
无穷限的广义积分的审敛法
定理5 设函数 f ( x) 在区间 [a,) 上连续,
如果
f ( x) dx 收敛;则
f
(
x
)dx
也收敛.
a
a
证 令 ( x) 1 ( f ( x) f ( x) ).
2
( x) 0,且 ( x) f ( x) , f ( x)dx 收敛, a
(
x
)dx
也收敛
.
但 f ( x) 2 ( x) f ( x) ,
一、判别下列广义积分 的收敛性:
1.
0
x4
x2 x2
dx; 1
2 dx
3. 1 (ln x)3 ;
2.
1
sin
1 x2
dx;
2
dx
4.
;
1 3 x2 3x 2
二、用 函数表示下列积分,并 指出这些积分的 收敛范围:
1. e xn dx (n 0); 0
2. 1(ln 1 ) p dx. 0x
f
(
x
)dx
也发散.
a
a
证
设 a b ,由 0 f ( x) g( x)及
g( x)dx
a
收敛,得
b
b
f ( x)dx g( x)dx g( x)dx.
a
a
a
即 F (b) b f ( x)dx 在 [a,) 上有上界. a
第3页,共21页。
由定理1知
f
(
x
)dx
收敛.
a
第2页,共21页。
定理2 (比较审敛原理 ) 设函数 f ( x)、g( x) 在
区间[a,) 上连续,如果 0 f ( x) g( x) (a
第五节 广义积分
1 1
例2. 计算广义积分
2
x2 sin x dx.
解:
2
1 x2
sin 1 dx x
2
sin
1 x
d
1 x
lim b
b1
sin
2
x
d
1 x
lim
b
cos
1 b x 2
lim
b
t
f (x) d x
t
t a
例1. 计算广义积分
解:
dx 1 x2
0
dx 1 x2
0
dx 1 x2
lim a
01 a 1 x2
dx lim b
b1 0 1 x2 dx
y
y
1 1 x2
lim a
基本问题: (1)将定积分的概念推广至积分区间 为无限区间; (2)考虑被积函数在积分区间上无界的情形。
一、无穷限的广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积 可记作
A
dx 1 x2
其含义可理解为
A
lim
b
b 1
dx x2
lim b
lim
0
arcsin
x a
a
0
lim
0
arcsin
a
a
0
2
.
原式
arcsin x a
无穷限广义积分的计算
指导教师:陈一虎作者简介:陈雪静(1986-),女,陕西咸阳人,数学与应用数学专业2008级专升本1班.无穷限广义积分的计算陈雪静(宝鸡文理学院 数学系,陕西 宝鸡 721013)摘 要: 文章归纳总结了利用数学分析、复变函数、积分变换、概率论统计理论等知识计算无穷限广义积分的几种方法.在学习中运用这几种方法可开拓视野,激发学习数学的兴趣.关键词: 广义积分;收敛;计算方法广义积分是《高等数学》学习中的一个难点知识,广义积分的概念不仅抽象,而且计算方法灵活,不易掌握.广义积分包括两大类,一类是积分区间无穷型的广义积分,另一类是积分区间虽为有穷,但被积函数在该区间内含有有限个无穷型间断点(瑕点)的广义积分.一般的判别法是对积分区间无穷型的广义积分,先将积分限视为有限的积分区间按常义积分处理,待积分求出原函数后再考查其极限是否存在,在用此极限去判定原积分是否收敛.对于第二类广义积分,我们可将积分区间改动,使被积函数在改动后的积分区间内成为有界函数再按常义积分处理,求出原函数之后考查它在原积分区间上的极限是否收敛.但是有些被积函数的原函数不易求出或无法用初等函数表示,使得广义积分无法用常规方法计算,因此需寻求其它的计算方法.本文主要研究无穷限广义积分的计算方法,主要方法包括利用广义积分定义、参量积分、变量代换、二重积分、留数定理、级数展开、概率论知识以及拉普拉斯变换等方法.1 无穷限广义积分的定义定义1 设函数()f x 在区间[,)a +∞上连续,取t a >.如果极限lim ()d tat f x x →+∞⎰存在,则称此极限为函数()f x 在无穷区间[,)a +∞上的反常积分(也称作广义积分),记作()d af x x +∞⎰,即()d af x x +∞⎰=lim ()d tat f x x →+∞⎰;这时也称反常积分()d a f x x +∞⎰收敛;如果上述极限不存在,函数()f x 在无穷区间[,)a +∞上的反常积分()d af x x +∞⎰就没有意义,习惯上称为反常积分()d af x x +∞⎰发散,这时记号()d af x x +∞⎰不再表示数值了.类似地,设函数()f x 在区间(,]b -∞上连续,取t b <. 如果极限lim ()d btt f x x →-∞⎰存在,则称此极限为函数()f x 在无穷区间(,]b -∞上的反常积分,记作()d b f x x -∞⎰,即()d bf x x -∞⎰=lim ()d btt f x x →-∞⎰;这时也称反常积分()d b f x x -∞⎰收敛;如果上述极限不存在,就称反常积分()d bf x x-∞⎰发散.设函数()f x 在无穷区间(,)-∞+∞内连续,如果广义积分()d cf x x -∞⎰和()d cf x x +∞⎰(c 为常数)都收敛,则称上述两个反常积分之和为函数()f x 在无穷区间(,)-∞+∞内的广义积分,记作()f x dx +∞-∞⎰,即()d f x x +∞-∞⎰=()d cf x x -∞⎰+()d cf x x +∞⎰=lim ()d ctt f x x →-∞⎰+lim ()d tct f x x →+∞⎰这时也称广义积分()d f x x +∞-∞⎰收敛;否则就称反常积分()d f x x +∞-∞⎰发散.上述反常积分统称为积分区间为无穷区间的广义积分或无穷限广义积分.2 无穷限广义积分的计算方法2.1利用广义积分的定义求无穷限广义积分由定义计算可以分两步:1求定积分()d Aaf x x ⎰=()F A .需要说明的是原函数()F A 均指有限形式.2取极限lim ()d AaA f x x →+∞⎰=lim A →+∞()F A .例1[1]计算23121()d 1x x x+∞++⎰解 =23121lim()d 1bb x x x →+∞++⎰231121lim[d d ]1b b b x x x x→+∞=++⎰⎰ 2111lim[2arctan ]2bbb x x →+∞=-211lim[2arctan arctan1]22b b b →+∞=--+ 2π11lim 2arctan lim 222b b b b →+∞→+∞=--+ π122=+ 2.2利用含参量积分的理论求无穷限广义积分含参量积分:10()e d s x s x x +∞--Γ=⎰(0s >)1110(,)(1)d p q p q x x x --B =-⎰ (0,0p q >>)统称为欧拉积分.其中()s Γ称为格马函数.(,)p q B 称为贝塔函数.且有递推公式(1)()s s s Γ+=Γ 及 1(,)(,1)1q p q p q p q -B =B -+-.因此在计算广义积分时看所给广义积分当,,s p q 为何值时对应的欧拉积分,然后用欧拉积分公式直接算出广义积分的值.例2[5] 求220e d n x x x +∞-⎰(n 为正整数)解 此广义积分与表达式相似,因此可用Γ函数法求解.220ed n x x x +∞-⎰=limA →+∞220ed An x x x -⎰2t x =21201lim e d 2A n t A t t --→+∞⎰=12112e d n t t t +∞+--⎰==121()2n Γ+=121[()1]2n Γ-+ =121()2n -1()2n Γ-=121()2n -3()2n -3()2n Γ-17(21)2n n +-注:1()2Γ=2.3利用变量代换法求无穷限广义积分有些函数的原函数不易求出或直接积分不出来,但如果对被积函数施以变量代换,在辅以一定的技巧就可以求出这类积分.作变量带换时,首先要对被积函数的结构进行分析,然后再看积分限与被积函数的关系.变换的方向是求出原函数或求出一个含原积分的方程,从而求得所含广义积分的值.例3[2] 求I=401d 1x x +∞+⎰解 令x=1t ,则I=204d d 11t t x t +∞-+⎰上式加上I=04d 11t t +∞+⎰ 得2I=2401d 1t t t +∞++⎰=202211d 1t t t t +∞++⎰=021d()1()2t t t t +∞--+⎰故2.4利用二重积分理论计算无穷限广义积分.利用二重积分理论计算广义积分时,应分两步: 1把广义积分巧妙的化为一个二重积分.2计算二重积分,从而间接的计算出广义积分的值. 例4[5]计算广义积分2ed x x +∞-⎰解 由于20ed x x +∞-⎰=2e d y y +∞-⎰所以22[ed ]x x +∞-⎰=22ed ed x y x y +∞+∞--⋅⎰⎰而22e d e d x y x y +∞+∞--⋅⎰⎰=22()e d d xy Dx y -+⎰⎰ 其中D=[0,)[0,)∞⨯∞故()22ed x x +∞-⎰=22()e d d x y Dx y -+⎰⎰而22()e d d xy Dx y -+⎰⎰=π42ed x x +∞-⎰=2. 例5[3]计算广义积分I=0sin sin e d pxbx axx x+∞--⎰ 解 因为sin sin bx ax x-=cos()d ba xy y ⎰ 所以I=0sin sin e d px bx ax x x+∞--⎰=0e (cos()d )d bpx axy y x +∞-⎰⎰=0d e cos()d b px ax xy y +∞-⎰⎰=0d e cos()d b px ay xy x +∞-⎰⎰=22d bap y p y +⎰=arctan b p -arctan ap. 2.5积分号下求导法计算无穷限广义积分.收敛因子法:此方法是对被积函数引入一个收敛因子,因子中有一个参数, 对参数(不一定是收敛因子中的参数)求导,有时可求得原积分的值.在此情况下引入的收敛因子加强了原积分的收敛性(如条件收敛的成为绝对收敛,或求导后发散的,变成一致收敛).这样使积分号下求导条件得以满足.一般采用e kx -(k>0)作为收敛因子.例65]求积分0sin d axx x+∞⎰(0a ≥) 解 引入积分因子e px -(p >0)作积分()F p =0sin e d px axx x+∞-⎰ ()F p '=0e cos d px ax x +∞-⎰=22pp a+ 故 ()F p = arctana p +C =arctan ap(显然C =I(0)=0)由此有 0lim arctanp a p +→=π2所以 I=π2 故同样可得 0sin d ax x x +∞⎰=-π2(0)a <2.6积分号下求积分法算无穷限广义积分这种方法是将被积函数中某一因子表为一个适当的积分.于是将原积分化成二次积分.交换这两个积分的顺序,就可求出所给的积分.例7[2]求积分I=2cos d 1xx x β+∞+⎰(0)β> 解 由201e sin d 1xy y y x+∞-=+⎰,于是 I=0cos d e sin d xy x x y y β+∞+∞-⋅⎰⎰=0sin d e cos d xy y y x x β+∞+∞-⋅⎰⎰=22sin d y yy yβ+∞+⎰y t β==2sin d 1t tt t β+∞+⎰由20d sin d d 1I x x x x ββ+∞=-+⎰,有d d I β=I -所以 I =C e β-为了确定C ,令0β=. 得 020d π12x I C x +∞===+⎰故πe 2I β-=.2.7利用复变函数理论中的留数定理计算无穷限广义积分.定理1[5] 设函数()f z 在实轴上处处解析,在上半平面Im 0z >除有限个孤立奇点1,2z z ⋅⋅⋅n z 外处处解析,且存在常数00R >,0M >,0δ>,使得当0z R >,且Im 0z >时, 1()M f z zδ+≤,则1()d 2πi [(),]nk k f x x Res f z z +∞-∞==∑⎰推论 1[5]设()()()P z f z Q z =是有理函数,()P z 与()Q z 为z 的n ,m 次多项,多项式()Q z 的次数比()P z 至少高2次,()Q z 在实轴上没有零点,1,2z z ⋅⋅⋅n z 是()f z 在上半平面Im 0z >的孤立奇点,则1()d 2πi [(),]nk k f x x Res f z z +∞-∞==∑⎰例84]计算广义积分22222d ()()x x x a x b +∞-∞++⎰解 因为22222()()()z f z z a z b =++,显然()f z 满足推论的条件,且1z =i a ,2z =i b 是()f z 在上半平面的孤立奇点,这两个点都是()f z 的一级极点,因此有22222ai Re [(),i]lim[(i)]()()z z s f z a z a z a z b →=-++ 2222i()a ab a -=- 222i()aa b =- 同理Re [(),i]s f z b =222i()bb a - 故22222d ()()x x x a x b +∞-∞++⎰=2πi [222()a i a b -+222()bi b a -] =πa b+ 2.8级数展开法求广义积分利用无穷级数计算广义积分也是常用的一种技巧.常有两种方法. 其一是将被积函数展成级数以求积分;其二是将无穷区间上的广义积分表示成级数的形式以求积分.例92]求积分I=2e cos 2d x bx x +∞-⎰解 利用余弦函数的幂级数展开以及指数函数的展开式0e !nxn x n ∞==∑ (2)!2!(21)!n n n n =⋅-我们有2ecos 2d x bx x +∞-⎰=22200(1)(2)ed (2)!n n x n n b x x n ∞+∞-=-∑⎰=22200(1)(2)e d (2)!n n x nn b x x n ∞+∞-=-∑⎰=0n ∞=20()2!nn b n ∞=-∑2b - 例10[5]计算广义积分1ln d (1)xx x x +∞-⎰. 解 由于1ln d (1)xx x x +∞-⎰=211n n∞=-∑ 而211n n∞=∑=2π6 故原式=-2π6.利用级数展开求积分,展开的仅是被积函数的某个因子,“展开因子”选择应是其展开的级数形式比较简单;展开的级数连同被积函数剩下的因子可逐项积分;这些积分容易求出.因此记住一些常用函数的展开式及一些数项级数的和对积分计算是有益的.2.9利用概率统计知识求无穷限广义积分.例11[5] 计算广义积分I=0sin sin e d pxbx axx x+∞--⎰. 解因为22()x f x -=为标准的正态分布密度函数所以()d f x x +∞-∞⎰= 1.即22d x x +∞--∞⎰=1.所以2201d 2xx +∞-=⎰即22ed x x +∞--∞⎰令222x u -=⇒u =⇒20e d uu +∞-⎰220e d x x +∞-2 2.10用拉普拉斯变换求无穷限广义积分定义2[6] 设()f t 在0t ≥上有定义,且积分0()()e d st F s f t t +∞-=⎰(s 是复变参量)关于某一范围内的s 收敛,则由这个积分确定的函数0()()e d st F s f t t +∞-=⎰称为函数()f t 的拉普拉斯变换.并记做[()]L f t ,即[()]L f t =0()()e d st F s f t t +∞-=⎰,其中的()F s 称为()f t 的像函数,()f t 称为()F s 的像原函数.定理 2[5] (Laplace 变换存在定理) 设函数()f t 在0t ≥的任何有限区间内分段连续,并且当t →+∞时, ()f t 的增长速度不超过某一指数函数,即存在常数0M >,和00s >,使得在[0,]+∞上,0()e s t f t M ≤,则在半平面0Re s s >上,[()]L f t 存在,且()F s =[()]L f t 是s 的解析函数.其中0s 称为()f t 的增长指数.性质1[1](积分性质)若[()]()L f t F p =,则0()[()d ]tF p L f t t p=⎰(p 为复数) (1)性质2[1](终值性质) 若[()]()L f t F p =,且()p F p 的所有奇点全在p 平面的部0lim ()lim ()t p f t p F p →+∞→=⋅ (2)性质3[1] 若[()]()L f t F p =,()F p 在Re 0p >上解析,且0()d n t f t t +∞⎰收敛,则0(1)lim ()n n p F p →-存在,且(1)lim ()()d n nn p F p t f t t +∞→-=⎰(3)证明 [()]()L f t F p = 由微分性知 ()n F p =[()()]n L t f t -[()]n L t f t =(1)()n n F p -由性质1 0(1)()[()d ]n n t nF p L t f t t p-=⎰所以由性质2 00(1)()lim[()d ]lim n n t nt p F p t f t t p→+∞→-=⎰即 0()d n t f t t +∞⎰=0(1)lim ()n n p F p →-特别的,0n =时,有()d lim ()p f t t F p +∞→=⎰. (4)性质4[1](象函数的积分性质)若[()]()L f t F p =,且积分()d F p p ∞⎰收敛()[]()d p f t L F p p t∞=⎰. (5)性质 5[1]设[()]()L f t F p =,且()d F p p ∞⎰与0()d f t t t∞⎰皆收敛,则 0()()d d f t F p p t t∞∞=⎰⎰(6) 证明 由(5)式,()[]()d p f t L F p p t∞=⎰ 由(4)式,()d f t t t∞⎰=0lim ()d p p F p p ∞→⎰()d F p p ∞=⎰例12[4] 求sin ()tf t t =的拉普拉斯变换,并求积分0sin d t t t+∞⎰.解 由定理2,因为0()1e f t ≤⋅,故在s 的实部大于零上, 拉普拉斯变换存在,且esin d stt t ω+∞-⎰=22e [sin cos ]st s t t s ωωωω---+=22s ωω+于是 22[sin ]L t s ωωω=+ (在s 的实部大于零) 那么 2sin 1[]1t L t s =+ 由命题4知 sin []t L t =21d 1s s s +∞+⎰=πarctan 2s -在利用命题5知0sin d t t t +∞⎰=201d 1s s +∞+⎰=π2. 例13[6] 计算下列积分30e sin d t t t t +∞-⎰ 解 21[sin ]1L t s =+, 由微分性质知, 22212[sin ]()1(1)s L t t s s '=-=++ 但是另一方面 0[sin ]sin e st L t t t t dt +∞-=⋅⎰当3s =时,即30e sin d t t t t +∞-⎰=2232(1)s s +=350致谢:本文在写作过程中得到陈一虎老师的指导.在此表示感谢!参考文献:[1] 白水周.无穷限广义积分的几种有效解法[J].开封大学学报,2000,14(1):49-50.[2] 李绍成.论广义积分的计算[J].绵阳农专学报:自然科学版,1996,13(2):65-70.[3] 数学分析.华东师范大学数学系[M].高等教育出版社,2001.[4] 宋叔尼,孙涛.复变函数与积分变换[M].北京:科学出版社,2006.[5] 刘开生,杨钟玄.无穷限广义积分的几种计算方法[J].天水师范学院学报:自然科学版,2002,22(2):9-10.[6] 盖云英,包革军.复变函数与积分变换学习指导[M].科学出版社,2004.Ways of calculating limitless generalized integralCHEN Xue-Jing(Department of Mathematic,Baoji University of Arts and Science Baoji 721013,Shaanxi ,China) Abstract:ways of calculating generlazed integral are given by using maths analysis, complex variable and integral transform, complex function and proabability statistical theroy. In the study the use of these methods can broaden their horizons, stimulate interest in learning mathematics.Key words:generalized integration; convergence; calculation method.。
广义积分
b→ +∞
∫
b a
f ( x )d x
此时也称广义积分收敛 此时也称广义积分收敛, 收敛,若上述极限不存在, 若上述极限不存在,则称广义 积分发散 积分发散。 发散。
定义2
设函数 f ( x) 在 ( −∞ , b ] 上连续, 上连续,极限
a → −∞
lim
∫
b a
f ( x )d x
存在, 存在,称此极限为在区间 ( −∞ , b ] 上的广义积分, 记作
−t b 0
b→ +∞
∫
b
b 0
te
−t
dt
lim {[ − te = b → +∞
] + ∫ 0 e − t dt }
= lim ( − be b → +∞
→ +∞
−b
− e −b + 1)
= 1 .
若广义积分收敛可以直接用“ 若广义积分收敛可以直接用“=”.
例2 计算 ∫− ∞ sin xdx.
讨论
∫
1 − 1
1 d x 的收敛性. 2 x
∫
1 −1
dx = 2 x
1 0
∫
0 −1
dx + 2 x
∫
1 0
dx x2
其中 ∫
1 dx 1 dx = lim 2 2 + ∫ε ε → 0 x x
1 1 1 = lim [ − ]ε = lim ( −1 + ) + + ε →0 ε →0 x ε = +∞
a →+∞
∴ ∫ sin xdx = 0.
−∞
∵ ∫ 0 sin xdx 发散 −∞ ∴ ∫− ∞ sin xdx 发散.
无穷限的广义积分
a
F(x)bF(b)F(a). a
若 F(x) 是 f (x) 的一个原函数, 则定义 4,5,6 中的广义积分可表示为
例 7 判断
解 故积分收敛.
1 dx
0 1 x
1 dx 收 敛 性.
1 x 1
2 1x 2.
0
0
例 8 讨论广义积分
解 当 p = 1 时,
1 dx
0 xp
的 收 敛 性 .
e xln x
解 故该积分发散.
1
1 x p dx,
dx lnx
1x
1
例 6 证明广义积分 当 p > 1 时,收敛;当 p ≤ 1 时,发散 . 证 p = 1 时,则 所以该广义积分发散.
当 p > 1 时, 综合上述,
该广义积分收敛. 当 p ≤ 1 时,
该广义积分发散. 1 时,则
a
c
都收敛, 则称这两个广义积分之和为函数 f (x) 在区
间 [a, b] 上的广义积分,记作
b
f (x)dx,
即
a
b
c
b
af(x )d xaf(x )d x cf(x )d x .
这时也称广义积分收敛, 否则,称广义积分发散.
F(x) F(b)F(a) b
bcb
af(x)dxaf(x)dxcf(x)dx
取实数 b
b
lim f(x)dx
b a
存在, 则称此极限为函数 f (x) 在无穷区间[a, + )
上的广义积分, 记作
f(x)dx,
即
a
b
f(x)dxlim f(x)dx.
a
b a
这时也称广义积分收敛,
无穷区间上的广义积分.
b
a
f
(
x
)dx
.
或 b f ( x)dx F ( x) b F (b) lim F (a) F(b) F(a)
a
a
xa
当极限存在时,称广义积分收敛;当极限不存在
时,称广义积分发散.
例1 计算广义积分
例题
41
41
1) 0
x dx , 2) 0 x2 dx
解 1) 因为 lim 1 , 所以 1 在x 0的右邻域无界.
x2
1 x
2
dx
1 3
2
1 x 1
1 x
1
dx
1 3
ln
x
1
ln
x
1 2
1 3
lim
b
ln
b1 b2
ln 4
1 3
ln 4.
例题
例6
证明广义积分
1
1 xp
dx
当
p
1时收敛,
当 p 1时发散.
证
(1)
p
1,1
1 xp
dx
1
1 x
dx
ln
x
1
,
(2)
p
1,
1
1 xp
dx
x1 p 1 p1
b
f ( x)dx
a
0 a
或
b f ( x)dx F ( x) b lim F ( x) F (a)
a
a xb
3)设 f ( x)在[a,b]上除点c (a c b)外连续,
lim
xc
f
(x)
.则
b
a
f
( x)dx
广义积分
二、无界函数的广义积分
【例7】
二、无界函数的广义积分
【例8】
下列算式是否正确?
二、无界函数的广义积分
二、无界函数的广义积分
二、无界函数的广义积分
思考
(1)本节学习了几种不同类型的广义积分?它与定积分有何 区别与联系?
(2)为什么要学习广义积分?什么情况下要用广义积分?
谢谢聆听
广义积分
一、无穷区间的广义积分
定义1
设f(x)在区间[a,+∞)内连续,任取b>a,若极限 limb→+∞ 存在,则称此极限为f(x)在区间[a,+∞)上的广义积 分,记作∫+∞af(x ,即
(5-7) 此时称广义积分∫+∞af(x 存在或收敛;否则称广义积分 ∫+∞af(x 没有意义或发散. 类似地,可定义f(x)在区间(-∞,b]上的广义积分
一、无穷区间的广义积分
注意分
【例3】
这个广义积分的几何意义是:当a→-∞,b→+∞时,虽然 图5-8中阴影部分向左、右无限延伸,但其面积却有极限值π.
图 5-8
二、无界函数的广义积分
定义3
此时称广义积分
存在或收敛;否则称广义积分
没有意义或发散.这种广义积分又称为瑕积分,a为瑕点.
类似地,可定义f(x)在区间[a,b)上的广义积分
二、无界函数的广义积分
定义4
否则,称其没有意义或发散.
二、无界函数的广义积分
【例4】
二、无界函数的广义积分
图 5-9
二、无界函数的广义积分
【例5】
注意
该题的结论一般要记住,可作为定理使用.
二、无界函数的广义积分
【例6】
广义积分的审敛法
二、无界函数的广义积分的审敛法
定理6 (比较审敛法2) 设函数 f ( x) 在区间(a,b]
上连续,且 f ( x) 0, lim f ( x) .如果存在 xa0
常数
M
0及
q
1,使得
f
(x)
M ( x a)q
(a
x
b), 则广义积分 b f ( x)dx 收敛;如果存在常数 a
N
0及
广义积分的审敛法
一、无穷限的广义积分的审敛法
不通过被积函数的原函数判定广义积分收 敛性的判定方法.
定理1 设函数 f ( x) 在区间[a,) 上连续,
且 f ( x) 0.若函数 F ( x)
x
f (t)dt
a
在 [a,) 上有界,则广义积分
f
(
x
)dx
收敛
.
a
由定理1,对于非负函数的无穷限的广义积 分有以下比较收敛原理.
三、 函数
定义 (s) ex xs1dx (s 0) 0
特点: 1.积分区间为无穷;
2.当 s 1 0 时被积函数在点 x 0 的 右领域内无界.
设 I1
1 e x x s1dx,
0
I2
e x x s1dx,
1
(1) 当 s 1 时, I1 是常义积分; 当 0 s 1 时,
x
x
f
(
x
)dx
发
散.
a
例2 判别广义积分 dx 的收敛性. 1 x 1 x2
解 lim x2 1 1, 所给广义积分收敛.
x
x 1 x2
例3
判别广义积分
1
x3 1
/2
《无穷限的广义积分》课件
瑕积分的定义
这是对于含瑕点函数的积分,它可以被分成瑕点和良好积分两个部分。
瑕积分的判定
同样有相应的分析判定方法。
技巧
1
分部积分法
将一个积分式子分成两个部分,做出新的代表性表达式,这种方法叫做分部积分 法。
2
换元积分法
更换成代表性更强的太极变量,可以大幅度简化积分式子。
无穷限积分的收敛与发散
2
穷限积分则将该积分的上限或下限设置 为无穷大或负无穷大,从而使积分具有
无穷限积分只有在区间内的函数满足一
物理意义。
定的条件时,才会有收敛的情况。若不
满足条件,则是发散的。
判定
比较判定法
与积分值相对比的方法
极限判定法
与极限值相对比的方法
积分判定法
对函数的其他方法
瑕积分
什么是瑕积分
Publications.
《无穷限的广义积分》 PPT课件
欢迎来到本课程,今天我们将学习无穷限广义积分的概念、定义、收敛性测 试、技巧和应用。
引言
广义积分是对于微积分基础学习的进一步拓展,而无穷限积分指的是积分区 间上界或下界为无穷大的积分。在本节中,我们将学习广义积分和无穷限积 分的相关概念。
定义
1
无穷限积分的定义
定义一个物理意义不明确的积分,而无
3
三角函数积分法
高等数学以及微积分课程中讲解了三角函数的复杂性,这种方法可以使用求导知 识对三角函数进行积分。
应用
计算无穷限积分
我们有许多种计算无穷限积分的方法
计算瑕积分
在计算瑕积分中,就需要运用这些积分技巧。
高数 反常积分 知识点与例题精讲
例1
计算广义积分
2
1 x2
sin
1 x
dx.
解
2
1 x2
sin
1 x
dx
2
sin
1 x
d
1 x
lim b
b
2
sin
1 x
d
1 x
lim
b
cos
1b x 2
lim
b
cos
1 b
cos
2
1.
例2
计算广义积分
1
dx x
2
.
解法1:
dx 1 x2
0
dx 1 x2
dx 0 1 x2
lim a
0
a1
1 x2
dx
lim
b
b1 0 1 x2 dx
lim arctan
1 p
0
e
pt
d
t
机动 目录 上页 下页 返回 结束
二、无界函数的广义积分
引例:曲线
与 x 轴, y 轴和直线
开口曲边梯形的面积 可记作
所围成的
其含义可理解为
A
lim
0
1
dx x
lim
0
2
1 x
lim 2(1 ) 2
0
机动 目录 上页 下页 返回 结束
注意: 对反常积分, 只有在收敛的条件下才能使用 “偶倍奇零” 的性质否, 则会出现错误 .
无穷限广义积分的数值计算[文献综述]
毕业论文文献综述信息与计算科学无穷限广义积分的数值计算一.前言部分定积分的数值近似称为数值求积.[1]它起源于古代用铺贴小方块近似计算不规则图形或曲边形的面积.在近似积分中,主要从定义积分的黎曼和出发,用被积函数在积分区间上有限个点上值的加权和来近似计算积分.我们一般使用牛顿-科茨求积公式,梯形公式及其复合公式,辛普森公式及其复合公式,Gauss 求积公式,切比雪夫求积法,三次样条函数求积法,自适应积分法等方法来进行数值求积.在讨论积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”.根据函数的变化率,利用定积分我们可以计算函数在指定区间上的增量,利用变限定积分可以把握函数变化区间上增量的变化,为了把握函数在无穷区间上增量的变化,我们还需要引进并讨论无穷限积分[2].比如现在人类要发射人造地球卫星或发射完成星际航行的飞行器,就要摆脱地球强大的引力,那如何离开地球呢?地球上的物体要脱离地球引力成为环绕太阳运动的人造行星,需要的最小速度是第二宇宙速度.第二宇宙速度为11.2公里/秒,是第一宇宙速度的2倍.地面物体获得这样的速度即能沿一条抛物线轨道脱离地球.我们可以运用无穷限广义积分解决第二宇宙速度问题.在黎曼积分的定义中,被积函数和积分区间都是有界的.若被积函数或积分区间无界,则称为广义积分.对无界区间,如[)∞,a ,如果对任何有限的b ,f 在区间[]b a ,上可积,并且下列极限存在且为有限数,则广义积分的定义为()()⎰⎰∞∞→=alim bab dx x f dx x f .对无界的积分区间,可以使用有限区间上的标准求积程序计算广义积分,具体方法如下:•用有限的积分区间代替无限的积分区间.选择积分范围时要注意所截掉的部分应是极小的,另外应对这一部分在整个积分中所占的份额作出估计.同时这个有限区间也不应太大,以免在利用自适应求积程序时,陷入无休止的积分函数调用之中.•通过适当的变换将无界区间变成有界区间.典型的变换包括,t x ln -=或者()t tx -=1.但是在变换的时候一定要注意不要引入新的奇异点或产生其它问题. 还有一种方法就是采用专门计算无界区间积分的求积公式,比如说高斯-拉盖尔(Gauss-laguerre )或者高斯-艾尔米特求积公式.一般采用变量替换,无穷区间的截断,无穷区间上的高斯求积公式,极限过程等方法去解决无穷限广义积分的数值计算.二.主题部分2.1数值积分的一般方法许多定积分都无法用解析方法求出.对于那些并不知道函数()f x 的表达式只能通过实验得到()f x 在一系列点上的值的积分问题也只能用数值方法.[3]2.1.1梯形法则[4]把以曲线()f x 为曲边的曲边梯形分解成小曲边梯形以后,估计小曲边梯形面积的一个方法是用左矩形或右矩形面积代替小曲边梯形面积;但是这时误差会比较大.事实上,这种方法相当于用一系列的水平线逼近曲线()f x .我们可以把这些水平线看成是函数的零次插值多项式.一个更好的方法就是用一条折线逼近曲线()f x ;事实上,我们让小矩形的上边连续倾斜直到最好地拟合曲线.得到相应的求积公式是()()()2bab af x dx f a f b -≈+⎡⎤⎣⎦⎰, ()2.1.1 对所有1f ∈∏(即次数最多是1次的全体多项式)公式精确成立.此外,它的误差项是()()31''12b a f ξ--, 其中(),a b ξ∈.通过多项式逼近中的误差()()()()()1''x f x p x f x a x b ξ-=--积分,再利用积分中值定理,可以确定梯形法则的误差项. 2.1.2复合梯形法则如果划分区间[],a b 为:01n a x x x b =<<⋅⋅⋅<=.那么在每个子区间上可应用梯形法则.这时结点未必是等距的.这样,我们得到复合梯形法则()()()()()1111112ii nnbx i i i i ax i i f x dx f x dx x x f x f x ---==-=≈-+⎡⎤⎣⎦∑∑⎰⎰.()2.1.2 对等间距()h b a n =-及结点i x a ih =+,复合梯形法则具有形式()()0''nbai f x dx h f a ih =≈+∑⎰, ()2.1.3其中求和符号上的两撇表示求和式中的第一项和最后一项都被减半.复合梯形法则的误差项是()()21''12b a h f ξ--, 其中(),a b ξ∈.对于每个子区间上的误差项求和并利用以下事实:在[],a b 内存在一点ξ使得()()()1''1''nii f n f ξξ==∑,其中()1,i i i xx ξ-∈以及()1n b a h =-,即平均值,这样便得到总误差项. 2.1.3辛普森法则[5]对任意区间[],a b 的类似计算可得到熟悉的辛普森法则:()()()462bab a a b f x dx f a f f b -⎡+⎤⎛⎫≈++ ⎪⎢⎥⎝⎭⎣⎦⎰. ()2.1.4 从它的推导过程可知,对于所有次数2≤的多项式辛普森法则是精确成立的.出乎意料的是, 对于所有次数3≤的多项式它也精确成立.与辛普森法则联系在一起的误差项是: ()()()541290b a f ξ--⎡⎤⎣⎦, 其中(),a b ξ∈. 2.1.4 Gauss 公式[6]设有计算()()baI f f x dx =⎰ ()2.1.5的求积公式()()0nn kkk I f A f x ==∑, ()2.1.6其中求积节点()0,1,k x k n =L ,求积系数()0,1,k A k n =L .如果其代数精度为()21n +,则称为求积公式为Gauss-Legendre 公式(简称Gauss 公式),称相应的求积节点为Gauss 点.由代数精度的定义知,式()2.1.6为Gauss 公式的充分必要条件是求积节点{}0nk k x =和求积系数{}0nk k A =满足下列方程组:022212101n b k a k n b k k a k nb k k ak nbn n k k ak A dx x A xdxx A x dx x A x dx===++=⎧=⎪⎪⎪=⎪⎪⎪⎨=⎪⎪⎪⎪⎪=⎪⎩∑⎰∑⎰∑⎰∑⎰M . ()2.1.7 Gauss 积分不但具有高精度,而且是稳定的,其原因是由于它的求积系数具有非负性.Gauss 公式()()0nbkkak f x dx A f x =≈∑⎰的求积系数()0,1,kA k n =L 全是正的.高斯求积公式,[7]它不但具有最高的代数精度,而且收敛性和稳定性都有保证.因此是高精度的求积公式,高斯公式的主要缺点是节点和系数无规律,所以不便编程实现,在实际应用中,可以把低阶高斯公式进行复化. 2.2 无穷积分的敛散性判别[8]无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件.由定义知道,无穷积分()af x dx +∞⎰收敛与否,取决于函数()()uaF u f x dx=⎰在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷积分的柯西准则.无穷积分()af x dx +∞⎰收敛的充要条件是:任给0ε>,存在G a ≥,只要1u 、2u G >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.()2.2.1 我们知道,[9]无穷限反常积分和数项级数两者之间有很多结论是相似的.在数项级数里面,当数项级数收敛时,其通项是收敛于零的.那么在无穷限反常积分里是不是也有相似的结论呢.首先我们看看无穷限反常积分在收敛时的几何意义:()af x dx +∞⎰收敛时的几何意义:若()f x 是[),a +∞上的非负连续函数,则()af x dx +∞⎰是介于曲线()y f x =,直线x a =以及x 轴之间那一块向右无限延伸的阴影区域的面积J .从而可知:()af x dx +∞⎰实际上是表示曲线()y f x =与坐标轴所围成的面积的代数和.而当()af x dx +∞⎰收敛时,是否()f x 在无穷远处的极限一定为零时,图形的面积才可以计算呢?如果回答否定,那么在哪些情况下,被积函数在无穷远处的极限才等于零呢?经过对若干例子的研究,我们得出结论:上述第一个问题的回答是否定的,并且有这样的事实:()af x dx +∞⎰收敛时()f x 在无穷远处的极限并不一定为零.被积函数在无穷远处极限为零的充分条件: 当()af x dx +∞⎰收敛时,在无穷远处的极限为零.以下就是经过对()f x 作某些限制而得出的几个结论,而这些结论就是对引言中的问题的回答.定理1. 若()a f x dx +∞⎰收敛且()lim x f x →+∞存在,则有()lim 0x f x →+∞=;定理2. 若()a f x dx +∞⎰收敛且()f x 单调,则()lim 0x f x →+∞=;定理3. 若()a f x dx +∞⎰收敛且()f x 一致连续,则有()lim 0x f x →+∞=;定理4. 若()af x dx +∞⎰收敛且导函数()f x 有界,()lim 0x f x →+∞=.2.3无穷区间上的积分的计算方法考虑无穷区间上的积分 ()()aI f f x dx ∞=⎰, ()2.3.1其中a 为有限值或-∞.常用的无穷区间上的积分的求解方法:[10]2.3.1变量替换对于式()2.3.1,作变量替换xt e -=,可将区间[)0,+∞变为区间()0,1.因此有()()()110001ln g t f x dx f t dt dt t t∞=-=⎰⎰⎰. ()2.3.2这样就把无穷区间上的一个积分化成为了有限区间上的积分.若()g t t在0t =的邻域内有界,那么式()2.3.2的右边是一个正常积分,反之,积分是一个反常积分,上述变换只是把一种困难装换成另一个困难.变量替换还有很多不同类型. 例 计算积分22111sin dx x x∞⎰. 解 令1y x=,那么有12221011sin sin dx y dy x x∞=⎰⎰, 对2sin y 泰勒级数展开,有122210111111sin sin 342132075600dx y dy x x ∞==-+-+⎰⎰L 0.310268≈. 2.3.2无穷区间的截断将被积函数的“尾巴”略去,可使无穷区间化为一个有限区间,此方法要求事先用某种简单的解析方法估算出尾部的量值.选取R a >,使()0f x dx ε∞<⎰, ()2.3.3其中ε为允许误差,那么无穷区间上的积分()2.3.3可以用()Raf x dx ⎰来近似.例 计算2x e dx ∞-⎰.解:当x R ≥时有2x Rx ≥,所以有估计式221x Rx R RRedx e dx e R∞∞---≤=⎰⎰. 对于4R =,则28110R e R--≈.因此对于允许误差为710-来说,只要计算240x e dx -⎰就可以了.2.3.3无穷区间上的高斯求积公式无穷区间上的积分.高斯-拉盖尔求积公式和高斯-艾尔米特求积公式是最广泛实用的.下面作些补充.将插值型求积公式()()()()()()00,,nbk k a k n bi k a i k i i k x f x dx A f x x x A x dx x x ρρ==≠⎧≈⎪⎪⎨-⎪=∏⎪-⎩∑⎰⎰ ()2.3.4 中的[],a b 换为半无穷区间[)0,+∞,权函数()xx e ρ-=,并取节点()0,1,,k x k n =L 为1n +次拉盖尔多项式()()1111n xn xn n d L x e x e dx ++-++=的零点,称这样的高斯求积公式为高斯-拉盖尔求积公式,其表示形式为()()0,nxk k k e f x dx A f x +∞-=≈∑⎰()2.3.5系数k A 为()()122'1!n k k k n A x L x ++⎡⎤⎣⎦=⎡⎤⎣⎦()0,1,2,,k n =L , ()2.3.6 截断误差为[]()()()()2221!22!n n R f f n ζ++⎡⎤⎣⎦=+, ()0,ζ∈+∞. ()2.3.7 高斯-艾尔米特求积公式是全无穷区间上的高斯型求积公式()()2nx k k k ef x dx A f x +∞--∞=≈∑⎰, ()2.3.8其中节点()0,1,,k x k n =L 为(),-∞+∞上带权()x x e ρ-=正交的1n +次艾尔米特多项式()()()2211111n n x x n n d H x e e dx++-++=-的零点,系数k A 为 ()()22'121n k n k n A Hx +++=⎡⎤⎣⎦, ()2.3.9截断误差为[]()()()()2211222!n n n R f f n ζ+++=+,(),ζ∈-∞+∞. ()2.3.10 在实际应用中有时希望一个或几个节点预先固定,然后确定其他节点和系数以使求积公式具有尽可能高的代数精度,这种固定部分节点的高斯型求积公式理论上总是可以按代数精度的等价定义[11].2.3.4极限过程()()0lim r f x dx f x dx ∞∞→∞=⎰⎰,提供了极限过程.令010r r <<<L 是趋向于∞的数列.记()()()()0121r r r r r f x dx f x dx f x dx f x dx ∞=+++⎰⎰⎰⎰L ,右端每个积分都是正常积分,当()1n nr r f x dx ε+<⎰时,计算终止.2.4无穷限广义积分的新方法最近提出了一种基于进化策略算法的广义积分计算新方法,[12-15]该方法根据被积函数的变量区间任意选取分割点,作为进化策略的初始的群体,通过进化策略算法来优化这些分割点,最终可得到一些最优的分割点,然后再求和,再根据和函数定义适应度函数,在给定的终止条件下,可获得精度较高的积分值.最后,以广义积分(无穷限广义积分)为例,仿真结果表明,该算法相比传统的一些方法,具有计算精度高,自适应性强等特点.三、总结部分定积分的积分区间是有限的,但在实际问题中,往往需要突破这个限制,把积分区间从有限的推广到无限区间,形成了无穷限广义积分,因此,无穷限广义积分的基本性质、计算方法与定积分相类似[16].在工程计算中也会遇到广义积分的数值计算问题,尤其是在近代物理等领域中会经常遇到广义积分(无穷限广义积分)的数值计算问题,不同的理论和方法的难易程度不同,我们应该注意观察总结,举一反三、巧妙地应用这些方法.同时也应该积极探索更新更有效的理论和方法去解决这些问题.四、参考文献[1]Michael T.Health.Scientific Computing: An Introductory Survey[M].第2版影印版.北京 :清华大学出版社,2001.10:297-311.[2]李国莹,姜诗章,杨平,王国清.应用数学基础[M].第2版.上海:复旦大学出版社,2003.2:97-97.[3]Leader J.J.Numerical Analysis and Scientific Computation[M].影印版.北京:清华大学出版社,2008.5:314-314.[4]Curtis F.Gerald Partrick O.Wheatley著,吕淑娟译.应用数值分析[M].第7版.北京:机械工业出版社,2006.9:22-223.[5]David Kincaid,Ward Cheneny著,王国荣,俞耀明,徐兆亮译.数值分析[M].第3版.北京:机械工业出版社,2005.9:385-386.[6]孙志忠,袁慰平,闻震初.数值分析[M].第2版.南京:东南大学出版社,2002.1:203-211.[7]李桂成.计算方法[M].北京:电子工业出版社,2005.10:186-186.[8]华东师范大学数学系.数学分析上册[M].第3版.北京:高等教育出版社,2001.6:264-270.[9]戴培亮.无穷限积分的被积函数在无穷远处的极限[J].常熟理工学院学报.2006.11,20(6) :1-4.[10]《代应用数学手册》编委会.现代应用数学手册-计算与数值分析卷[M].北京:清华大学出版社,2005.1:227-230.[11]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001.9:118-118.[12]郭德龙,周永权.基于进化策略的广义积分计算方法研究[J].计算机工程与设计. 2008.10,29(19):5026-5028.[13]张艳红.一种工程实用的数值积分方法[J].工程力学报.2005.6,22(3):39-45.[14]陈泽文,朱玉灿.高阶奇异积分的小波逼近及数值计算[J].数学物理学报.2002.6,22(2):281-288.[15]张新育,杨松华.矩形域上非正常积分的一种数值算法[J].郑州工业大学报. 1999.3,12(4):101-102.[16]李承家,胡晓敏.数学分析导教.导学.导考[M].第3版.陕西:西北工业大学出版社,2003.6:234-234.。
第四节 反常积分 无穷限广义积分 无界函数的广义积分
例 3 证明广义积分 当 p 1 时发散.
1 x
p
1
dx 当 p 1 时收敛,
证 (1) p 1,1
1 x
dx p
1
1 x
dx ln x 1 ,
, p 1 1 x ( 2) p 1, dx p 1 , p1 1 x 1 p 1 p1 1 因此当 p 1 时广义积分收敛,其值为 ; p1 当 p 1 时广义积分发散.
即当 p 0 时收敛,当 p 0 时发散.
二、无界函数的广义积分
定义 2 设函数 f ( x ) 在区间( a , b] 上连续,而在 点 a 的 右 邻 域 内 无 界 . 取 0 , 如 果 极 限
0 a
lim
b
f ( x )dx 存在,则称此极限为函数 f ( x )
2
sin
1 x
dx .
1 x
2
sin 2
b
1 x
dx 2 sin
1 1 d x x
b
lim
b
2
1 1 1 sin d lim cos b x2 x x
1 lim cos cos 1. b b 2
a
f ( x )dx .
a
f ( x )dx lim
a f ( x )dx b
b
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
类似地,设函数 f ( x ) 在区间( , b] 上连续,取
第十章广义积分§1无穷限的广义积分
第十章 广义积分 §1 无穷限的广义积分定积分()baf x dx ⎰有两个明显的缺陷:其一,积分区间[],a b 是有限区间;其二,若[,]f R a b ∈,则0M ∃>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。
这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中都要去掉这两个限制,把定积分的概念拓广为: (i )无限区间上的积分;(ii )无界函数的积分。
一、无穷限广义积分的概念定义1 设()f x 在[,)a +∞上有定义,且对于任意的A ()A a >在区间[],a A 上可积。
当极限lim()AaA f x dx →+∞⎰存在时,称这极限值I 为()f x 在[,)a +∞上的广义积分。
记作()lim()AaaA f x dx f x dx +∞→+∞=⎰⎰。
如果上述的极限不存在,就称()af x dx +∞⎰发散。
类似可定义()af x dx -∞⎰。
当()af x dx -∞⎰和()af x dx +∞⎰都收敛时,就称()f x dx +∞-∞⎰收敛,并且有()()()aaf x dx f x dx f x dx +∞+∞-∞-∞=+⎰⎰⎰。
这是显然有:()()''limAA A A f x dx f x dx +∞-∞→+∞→+∞=⎰⎰。
如果上述的极限不存在,就称()f x dx +∞-∞⎰发散。
定理1 如果()f x 在[),a +∞连续,()F x 是()f x 的原函数,则 ()()()af x dx F F a +∞=+∞-⎰。
例:讨论1p dxx+∞⎰的收敛情形。
无穷限积分的性质性质1 若函数)(x f 在[),a +∞上可积,k 为常数,则)(x kf 在[),a +∞上也可积,且()()aakf x dx k f x dx ++∞=⎰⎰。
即常数因子可从积分号里提出(注意与不定积分的不同)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
c
b
f ( x )dx
16
思考题
积分 ∫0
1
ln x dx 的瑕点是哪几点? x −1
2010-1-4
广义积分(22)
17
思考题解答 积分 ∫0
1
ln x dx 可能的瑕点是 x = 0, x −1
x =1
ln x 1 = lim = 1, ∵ lim x →1 x x →1 x − 1
ln x ∵ lim =∞ x →0 x − 1
∴ x = 1 不是瑕点,
是瑕点,
∴ x=0
∴ ∫0
2010-1-4
1
ln x dx x −1
的瑕点是 x = 0.
广义积分(22) 18
2010-1-4 广义积分(22) 12
a −ε
1 例 6 证明广义积分 ∫0 q dx 当q < 1时收敛,当 x q ≥ 1时发散.
1
11 1 dx = ∫0 dx = [ln x ]1 = +∞ , 证 (1) q = 1, ∫0 q 0 x x ⎧+ ∞, q > 1 1− q 1 1 1 ⎡x ⎤ ⎪ ( 2) q ≠ 1, ∫ q dx = ⎢ ⎥ = ⎨ 1 ,q<1 0 x ⎣1 − q ⎦ 0 ⎪ ⎩1 − q 1 因此当q < 1时广义积分收敛,其值为 ; 1− q 当q ≥ 1时广义积分发散.
广义积分(22)
10
设函数 f ( x ) 在区间[a , b]上除点 c (a < c < b ) 外连 续,而在点 c 的邻域内无界.如果两个广义积分
∫a f ( x )dx 和 ∫c
b
c
b
f ( x )dx 都收敛,则定义
c b
∫a f ( x )dx = ∫a f ( x )dx + ∫c
b
π⎤ ⎡ 1 = lim ⎢cos − cos ⎥ = 1. b→ +∞ ⎣ b 2⎦
2010-1-4 广义积分(22) 6
例 3 证明广义积分 敛,当 p ≤ 1时发散.
∫
+∞
a
1 dx (a > 0) p 当 p > 1 时收 x
+∞ 1 1 dx = [ln x ]+∞ = +∞ , dx = ∫ 证 (1) p = 1, ∫a p a a x x + ∞, p < 1 1− p +∞ ⎧ +∞ 1 ⎡ x ⎤ ⎪ 1− p ( 2) p ≠ 1, ∫a p dx = ⎢ ⎥ = ⎨ a , p >1 x ⎣1 − p ⎦ a ⎪ p − 1 ⎩
广义积分(22) 15
三、小结
无穷限的广义积分
∫−∞ f ( x )dx
+∞
∫−∞ f ( x )dx
b
∫a
+∞
f ( x )dx
b
无界函数的广义积分(瑕积分)∫a f ( x )dx
(注意:不能忽略内部的瑕点)
∫a f ( x )dx = ∫a f ( x )dx + ∫c
2010-1-4 广义积分(22)
= lim [ln(ln 2) − ln(ln(1 + ε ))]
= ∞.
2010-1-4
故原广义积分发散.
广义积分(22) 14
例8 计算广义积分 ∫0 解
3
dx ( x − 1)
2 3
.
3
x = 1瑕点
dx ( x − 1)
2 3
2 3
∫0
1
3
dx ( x − 1) dx
2 3 2 3
=∫
1
dx ( x − 1)
b→ +∞
− pa − pb
b − px
⎛e e ⎞ ⎟ = lim ⎜ − b→ +∞ p ⎠ ⎝ p
⎡ e ⎤ dx = lim ⎢ − b→ +∞ p ⎥a ⎣ ⎦ ⎧ e − ap , p>0 ⎪ =⎨ p ⎪∞ , p<0 ⎩
8
− px
b
即当 p > 0 时收敛,当 p ≤ 0 时发散.
2010-1-4 广义积分(22)
∫a
2010-1-4
+∞
f ( x )dx = lim ∫a f ( x )dx
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
广义积分(22) 2
类似地,设函数 f ( x ) 在区间( −∞ , b]上连续,取
a < b ,如果极限 lim
b
∫a f ( x )dx 存在,则称此极 a → −∞
0 +∞
f ( x )dx 都收敛,则
+∞
称上述两广义积分之和为函数 f ( x ) 在无穷区间
( −∞ ,+∞ ) 上的广义积分,记作 ∫− ∞ f ( x )dx .
∫−∞ f ( x )dx = ∫−∞ f ( x )dx + ∫0
= lim
+∞
0
+∞
f ( x )dx
∫a f ( x )dx + blim ∫0 a → −∞ → +∞
∫a f ( x )dx = εlim0 ∫a +ε →+
b
2010-1-4 广义积分(22)
b
f ( x )dx
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
9
类似地,设函数 f ( x ) 在区间[a , b ) 上连续, 而在点 b 的左邻域内无界.取 ε > 0 ,如果极限
1
2010-1-4 广义积分(22) 13
例7 计算广义积分 解
∫
2
1
dx . x ln x
∫1
2
dx 2 dx = lim ∫1+ε x ln x ε →0+ x ln x
2
= lim ∫1+ε
ε → 0+
ε → 0+
d (ln x ) 2 [ln(ln x )]1+ε = lim ε → 0+ ln x
(a > 0).
∵ lim
x →a − 0
1 = +∞ , 2 2 a −x
dx 2 2 a −x
∴ x = a 为被积函数的无穷间断点.
∫0
a
a −ε dx = lim ∫0 2 2 ε → +0 a −x
x⎤ a−ε ⎡ ⎤ = π. ⎡ = lim ⎢arcsin ⎥ = lim ⎢arcsin − 0⎥ ε → +0 ⎣ a ⎦ 0 ε → +0 ⎣ a ⎦ 2
ε → +0
lim ∫a
b −ε
f ( x )dx 存在,则称此极限为函数 f ( x )
b b −ε
在区间[a , b )上的广义积分, 记作 ∫a f ( x )dx = lim ∫a
ε → +0
f ( x )dx .
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
2010-1-4
+∞
π
1 1 sin dx . 2 x x
∫
+∞
2 π
1 1 +∞ 1 ⎛1⎞ sin dx = − 2 ∫π2 sin x d ⎜ x ⎟ x x ⎝ ⎠
= − lim
b → +∞
∫
b
2 π
1 ⎛1⎞ ⎡cos 1 ⎤ sin d ⎜ ⎟ = lim ⎢ x ⎝ x ⎠ b→ +∞ ⎣ x⎥π ⎦2
= lim [arctan x ] + lim [arctan x ]
a → −∞ 0 a b→ +∞
b 0
⎛ − π ⎞ + π = π. = − lim arctan a + lim arctan b = − ⎜ ⎟ a → −∞ b→ +∞ ⎝ 2⎠ 2
2010-1-4 广义积分(22) 5
例2 计算广义积分 ∫2 解
b
限为函数 f ( x ) 在无穷区间 ( −∞ , b] 上的广义 积 分,记作 ∫− ∞ f ( x )dx .
∫−∞ f ( x )dx
b
= lim
∫a f ( x )dx a → −∞
b
当极
2010-1-4 广义积分(22) 3
设函数 f ( x ) 在区间 ( −∞ ,+∞ ) 上连续,如果 广义积分 ∫− ∞ f ( x )dx 和 ∫0
一、无穷限的广义积分
定义 1 设函数 f ( x ) 在区间[a ,+∞ ) 上连续,取
b > a ,如果极限 lim
分,记作 ∫a
+∞
∫a f ( x )dx 存在,则称此极 b→ +∞
b
限为函数 f ( x ) 在无穷 区间 [a ,+∞ ) 上 的广义 积
f ( x )dx .
b b→ +∞
广义积分(22)
0
b
f ( x )dx
极限存在称广义积分收敛;否则称广义积分发散.
2010-1-4 4
例1 计算广义积分 ∫− ∞ 解
+∞
+∞
dx . 2 1+ x
0 +∞ dx dx dx ∫−∞ 1 + x 2 = ∫−∞ 1 + x 2 + ∫0 1 + x 2 b 1 1 = lim ∫a dx + lim ∫0 dx 2 2 b→ +∞ a → −∞ 1 + x 1+ x 0