【学习】第六讲激光锁模技术PPT课件

合集下载

激光的调Q与锁模

激光的调Q与锁模
在激光测量领域,调Q技术可以用于测 量距离、速度、角度等参数,具有高精 度和高分辨率的特点。
03 锁模技术
锁模技术的原理
锁模技术是一种控制激光脉冲宽度和重复频率的方法,通过在激光振荡 过程中引入周期性的相位调制,使得激光脉冲在时间上被压缩和固定。
锁模技术利用了激光的相干性,通过在激光腔内引入一个或多个调制器, 对激光的相位进行调制,使得激光脉冲在时间上呈现出周期性的变化。
锁模技术
通过在激光器中引入光学反馈,使激光器的多个纵模同时振荡并保持相位锁定状 态。通过控制反馈强度和频率,可以调节脉冲宽度和重复频率,从而实现超短脉 冲激光输出。
技术特点的比较
调Q技术
调Q激光器结构简单,脉冲能量较高 ,但脉冲宽度较大,通常在毫秒量级 。调Q技术适用于需要高功率脉冲激 光的场合,如材料加工、医疗美容等 。
激光的调q与锁模
目录
• 激光基础知识 • 调Q技术 • 锁模技术 • 调Q与锁模技术的比较 • 调Q与锁模技术的发展趋势
01 激光基础知识
激光原理简介
激光原理
激光是受激发射放大原理产生的相干光。在激光器中,通过外部激励源激发原 子或分子从低能态跃迁到高能态,再通过受激辐射放大实现光的放大。
激光产生过程
随着超快激光技术的进步,锁模技术能够实现更短脉冲宽度和更高重复频率的激光输出, 为科学研究、工业应用等领域提供更多可能性。
锁模技术的集成化与小型化
为了满足不同应用场景的需求,锁模技术将进一步实现集成化和小型化,便于携带和使 用。
锁模技术在光通信、光谱分析等领域的应用拓展
锁模技术能够产生超短脉冲激光,具有极高的时间分辨率和光谱分辨率,因此在光通信、 光谱分析等领域具有广泛的应用前景。

激光锁模技术

激光锁模技术

激光锁模技术顾朝晖宁波大学光电信息工程摘要: 锁模是激光技术中一个十分关键组成部分。

调Q技术, 受原理上限制, 其激光器输出激光脉冲宽度在1~30115之间。

伴随科学技术发展, 在遥测技术、高时间分辨率光谱学、非线性光学、光电子学、化学动力学以及受控核聚变等很多领域要求取得脉冲宽度更窄、峰值功率更高激光脉冲。

这推进了超短光脉冲技术研究, 发展了激光锁模技术。

关键词: 锁模技术, 激光脉冲--s光脉引言: 世界上是在1964年底首先对He-Ne激光器实现锁模并取得了91010~10冲列。

以后, 激光锁模理论和方法不停推陈出新, 相继出现了红宝石、Y AG、钦玻璃及有机染料等锁模激光器, 取得了ps(1210-)量级窄脉冲。

八十年代初, Fork等人又发展了碰撞锁模理论, 使锁模光脉冲进入了fs(1510-)量级, 这是至今在试验室利用其它手段尚不能实现最短时标。

这就为研究物质微观世界超快速过程提供了新工具, 并将开阔这些领域新前景。

.1.激光锁模技术原理自由运转激光器输出通常包含若干个超出阈值纵模, 如图所表示。

这些模振幅及相位都不固定, 激光输出随时间改变是它们无规则叠加结果, 是一个时间平均统计值。

假设在激光工作物质净增益线宽内包含有N个纵模, 每个纵模输出电场分量可用下式表示:)()(q q t i q q eE t E ϕω+=那么激光器输出光波电场是N 个纵模电场和, 即)()(q q t i q q e E t E ϕω+= E q 、 ωq 、 φq 为第q 个模式振幅、 角频率及初位相。

各个模式振幅E q 、 初位φq 均无确定关系,各个模式互不相干,所以激光输出是它们无规叠加结果,输出强度随时间无规则起伏。

假设有三个光波, 频率分别为v 1 v 2 和 v 3, 沿相同方向传输, 而且有以下关系: , 在未锁定时, 初相相互无关。

因为“破坏性”干涉叠加, 形成光波没有一个地方有突出加强, 输出光强只在平均光强级基础上有一个小起伏扰动。

激光器锁模技术

激光器锁模技术

脉冲的半功率点的时间间隔近似地等于 , 因而可认为脉冲宽度近似等于

为锁模激光的带宽,它显然不可能超过工作 物质的增益带宽,这就给锁模激光脉冲带来一 定的限制
实现锁模的方法
下面我就以损耗调制为例,说明振幅调制锁模的原理:
利用声光或电光调制均可实现振幅调制锁模
调制激光工作物质的增益或腔内损耗,均可使激光振幅得到调
锁模脉冲光强曲线 N=3,即 (2N+1)=7

(t ) 2 m 时,光强最大
最大光强为:
1 sin (2 N 1)( t ) 2 2 2 2 I m E0 lim (2 N 1) E0 ( t ) 2m 2 1 sin ( t ) 2
可见,相位调制与振幅调制光波类似,调制后,也存在一系 列边带,锁模机理类似
Eq (t) E0e
结果:
i[(0 q)t 0 q ]
激光器输出的总光场是(2N+1)个纵模相干叠加的
E (t)
1 sin (2 N 1)( t ) 2 E0 cos(0 t) 1 sin ( t ) 2
q N
Ee
q
N
i[(0 q ) t 0 q ]
[E0T0 T0E0cos(m t)]cos(0 t 0 )
A0[1 m cos(m t)] cos(0 t 0 )
1 1 A0 cos(0 t 0 ) mA0 cos[(0 m ) t 0 ] mA0 cos[(0 m ) t 0 ] 2 2
当调制器介质折射率按外加调制信号而周期 性改变时,光波在不同时刻通过介质,便有 不同的相位延迟
假设未调制的光场:E(t) E0 cos(0 t 0 ) 相位调制函数为: (t) cos t 则经过调制后的光场就变为: E(t) E0 cos(0 t 0 cos t) 角频率的变化量为:

第六激光锁模技术

第六激光锁模技术
段。超短脉冲技术的发展经历了主动锁模、被动锁模、同步泵浦锁模、碰撞锁 摸(CPM),以及90年代出现的加成脉冲锁模(APM)或耦合腔锁模(CCM)、自锁 模等阶段。自60年代实现激光锁模以来,锁模光脉冲宽度为皮秒(10-12s)量级, 70年代,脉冲宽度达到亚皮秒(10-13s)量级,到80年代则出现了一次飞跃,即 在理论和实践上都有一定的突破。1981年,美国贝尔实验室的R.L.Fork等人提 出碰撞锁模理论,并在六镜环形腔中实现了碰撞锁模,得到稳定的90fs的光脉 冲序列。采用光脉冲压缩技术后,获得了6fs的光脉冲。90年代自锁模技术的出 现,在钛宝石(掺钛蓝宝石)自锁模激光器中得到了小于5fs的超短光脉冲序列。
q
qq '
I (t) E2(t) 1 t1 q
t1 E 2 (t)dt
0
N N
1E 2
2
q
若振幅相同
E2(t) N Eq2
2 q N
E2 (t) (2N 1) E02 2
二、锁模的基本原理
1.锁模的概念
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极 窄、峰值功率很高的超短脉冲。
主要内容
6.1 概述 6.2 锁模的基本理论 6.3 主动锁模原理 6.4 被动锁模原理 6.5 同步泵浦锁模 6.6 自锁模
6.1 概述

目的:

压缩脉冲宽度,高峰值功
率,Q开关激光器一般脉宽达10-8s-
10-9s量级,如果再压缩脉宽,Q开关
激光器已经无能为力,但有很多实际
应用需要更窄的脉冲.(1964年后发
但若设法使 1 = 2 = 3 =0时,有
E1 = E0cos(2πν1 t) E2 = E0cos(4πν1 t) E3 = E0cos(6πν1 t)

第六讲激光的调Q与锁模

第六讲激光的调Q与锁模

该式说明了我们观察到的平均光强是各个 纵模光强之和。
11
如果我们能设法使这些各自独立振荡的 纵模在时间上同步,就需要把它们的相位相 互关联起来,使之有一确定的关系。一般说, 能使q+1 - q等于常数,我们就说该激光器各 模的相位q是按照q+1 - q=常数的关系被锁 定。
12
二、多模激光器模式锁定特性
8
激光的频 谱是由等间隔 (C/2L)的分离 谱线所组成, 每条谱线对应 一个纵模,各 纵模间彼此独 立,相位是在 -到之间随 机分布。在时 间域内,其强 度分布有噪声 特性。
振幅

0
v
振幅强度
t
9
当用接收器件来探测非锁模激光器输出 的光功率时,接收到的光强是所有满足阈值 条件的纵模光强的叠加。此时,某一瞬时的 输出光强为:
第六讲 激光的锁模 技术
1
6.1 锁模技术
前面讲过的调Q激光器可以获得巨脉冲, 但是最小脉冲宽度约秒量级。其原因是形成 激光脉冲需要一个建立时间。如果用腔倒空 技术,可以将脉宽压缩到1~2ns,并且由腔 长决定。 锁模技术可以实现更窄的脉宽和更高的 输出峰值功率。
2
锁模技术是从1964年发展起来的,由于 它能使激光脉冲的持续时间达到10-12秒,甚 至更窄(10-15秒)。所以也称为超短脉冲技 术。由于激光输出脉宽很窄,所以峰值功率 可以很高。这种窄脉冲高峰值功率的激光应 用甚广,在受控核聚变、等离子体物理学、 遥测技术、化学及物理动力学、生物学、高 速摄影、光通讯、光雷达、光谱学、全息学 及非线性光学等许多领域都有着重要的应用, 对于研究超高速现象及探索微观世界的规律 性具有极大的意义。
q 2 q 2 C C 2L L
n 0 n 第n个纵模频率为: 0为中心频率,为纵模间隔 设第n个纵模的振幅为An(t), i ( ) t 0 n An (t ) A0e n 其中,A0为振幅, n为初相位。

超短激光脉冲——锁模技术概要PPT课件

超短激光脉冲——锁模技术概要PPT课件
第2页/共23页
超短激光脉冲的应用
• 飞秒激光微加工(适用于各种类型材料)
—喷墨打印机的硅喷嘴
—激光冷烧蚀(ablation)-固体直接气化而不提高温度
—金属表面深度发黑处理(飞秒激光脉冲使金属表面改形而形成 纳米结构)
• 高精度外科切除,周围组织的损伤随脉冲持续时
间的缩短而减小。
• 眼角膜外科:飞秒激光在角膜中造成泡状物
十一模同位相
第13页/共23页
第14页/共23页
锁模方法
• 1966年,梅曼演示世界上第一台激光器6年之后De Maria.等人做出第 一台锁模激光器(可饱和吸收体自锁)
• 主动式锁模:主动式锁模通过调制腔损耗或者调制往返相位改变
实现锁模(如图)
声光调制器为最常用方法:电信号驱动的 正弦调幅(AM)对每个纵模进行调制。
式将 呈现周期性地相长干涉—产生强的光脉冲爆(burst)—
锁模或锁相。
2L (L为腔长往返时间)
脉冲的时间间隔为
c 1
• 每个脉冲的持续时间由同位相振荡的模式数目决定,如果N个 模式被锁定,频率间隔为∆‫ע‬,则整个锁模带宽为 N∆‫— ע‬该带 宽越宽,脉冲持续时间越短。
第7页/共23页
激光腔模
(2)从两个含时间的函数开始:
个例如
已知,测量 F (t)
F和' (t)
,其中一
将直接给出另一个
F (t )
G( )
F ' (t)来自其中为延时,G( )
为一阶相关函数:
G( )
F '(t)F(t )dt
要测一个时间事件需要更短的时间事件。
—对于超短 持续时间的脉冲,脉冲用于测量它自己!

第六讲激光锁模技术

第六讲激光锁模技术

11 2N1 q
可见增益线宽愈宽,愈可能得到窄的
锁模脉宽。( t=to=0时,A(t)有极大值,而上式分子(1/2) (2N+1) △ wt1=时,
A(t)=0,令 △t=t1-t0 并近似为半峰值宽,则有…)
(3)输出脉冲的峰值功率正比于 E02 (2N 1)2,因此,由于锁模,峰值
功率增大了2N+1倍。
本节将讨论超短脉冲激光器的原理、特点、实现的方法,几种典 型的锁模激光器及有关的超短脉冲技术。
6.2 锁模的基本理论
激光器的模式分为纵模和横模。锁模也分为锁纵模、锁横 模、锁纵横模三种。本节介绍纵模锁定。
一、多模激光器的输出特性
为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转
激光器的输出特性。腔长为L的激光器,其纵模的频率间隔为:
Δω ,假定第q个振荡模为
E t E cos t E cos qt q
q
0
q
q
0
0
式中,q为腔内振荡纵模的序数。
激光输出频谱
ω-5
ω-1ω0ω1 ω
ω5
N=5, 2N+1=11
激光器输出总光场是2N+1个纵模相干的结果:
N
N
E(t) Eq (t) E0 cos(0 q)t qa
出现了极大值( I = E2 = 9E02 )。当然, 对于谐振腔内存在多个纵模 的情况,同样有类似的结果。
E(t)
E0
1
0
2
-E0
3
I(t)
v3 9E02
v3=3v1,
v2
v1
v2=2v1, 初位相相同(0)
9E02
0
E(t)

激光锁模技术ppt课件

激光锁模技术ppt课件

冲在腔内往返运动,每当此脉冲行进到输出反射镜时,便有一
个锁模脉冲输出。
➢脉冲宽度,即脉冲峰值与第一个光强为零的谷值间的时间间隔
sin[(2N 1) t ] 0但sin(t ) 0 t (m n )
2
2
2
2N 1
2 T 1
为锁模激光器的线宽
(2N 1) 2N 1
4.7.1 锁模原理

所以
(t1) (t1
2L) c
,以后这束光波每次通过调制器时损耗
相同。若损耗大于增益,这部分光波终将消失,而在损耗等于
零时通过的光每次都能无损耗的通过,会不断被放大,满足阈
值条件形成振荡,如果腔内损耗和增益控制得当,最终将形成
脉宽很窄,周期为T的脉冲序列输出。
损耗内调制锁模
➢从频率域模式耦合的角度来说明损耗调制锁模的原理。假设中心 频率 ν0 处的模首先振荡,其振幅调制后的电矢量为:
彼此独立的、随机的,所以总光场是各个模式光场的非相
干叠加。输出总光强是各个振荡模式光强之和,即 I Iq
输出光强随时间无规则起伏。
q
4.7.1 锁模原理
核心思想:锁模技术让谐振腔中存在的纵模同步振荡,让各模的频率 间隔保持相等并使各模的初位相保持为常数,激光器输出在时间上有 规则的等间隔的短脉冲序列。
实现锁模的方法
在一般激光器中,各纵模振荡互不相关,各纵模 相位没有确定的关系。并且,由于频率牵引效应, 相邻纵模的频率间隔并不严格相等。因此为了得到 锁模超短脉冲,须采取措施强制各纵模初位相保持 确定关系,并使相邻模频率间隔相等。
• 主动锁模 • 被动锁模 • 自锁模
4.7.2 主动锁模
在自由运转的激光器谐振腔中加入受外界信号控制的调制器, 对激光输出进行振幅或相位调制,实现各个纵模振动同步,叫 作主动锁模。 1. 振幅调制(损耗内调制锁模) ➢如图(4-31)所示,在谐振腔中插入一个电光或声光损耗调制器。 设调制周期为 Tm 2 Ω 2L c ,调制频率 νm c 2L (恰为纵 模频率间隔)

课件6_11 调Q与锁模

课件6_11 调Q与锁模

(瞬时)激光输出功率: h h n P [nt ln (n ni )] tc 2tc ni ni 1 P 峰值: 0 nt 1 0 n n ni n nt 时 P Pmax Pmax if ni n h [nt ln t (n t ni )] 2tc ni n t : Pmax ni h 2tc
通常i =0 (假设初始无光子) 1 n 所以, [nt ln (n ni )] 2 ni
即t
t c时 , 0
nf 1 即, 0 [nt ln (n f ni )] 2 ni nf ni exp( n f ni nt )
ni when, nt 能量利用率 = ni n f ni 1
初始时刻低Q(高损耗),泵浦抽运使增益增大
dN N =R p N (t) N (1 e t / ) , 其中N R dt
① 假设矩形泵浦脉冲,当tp>>时,反转粒子数不会无限增长 而是趋近于一个常数值N。 ② 为获得大的N一般要求比较大(比如Nd, Yb, Er, Ho 掺杂在 不同基质中,其上能级寿命通常在ms量级)。
(r 1) R( )
1
11.2 Q开关
调Q原理
初始时刻低Q(高损耗),泵 浦抽运使增益增大,反转粒子 数达到峰值后,Q值迅速升高 (低损耗),受激辐射造成反 转粒子数耗尽产生“巨脉冲”
腔内光子寿命(输出脉冲 的衰减时间)
n0l tc c( l ln R1 R2 ) 10 8 s
T T T
随机相位的作用
振幅为E0, 均匀频率间隔为的N=51个纵模频率(随机初位 相)构成的时间波前。其中 L N
锁模的基本原理: 多模激光器中,各振荡模具有相同的振幅E0,共2N+1个模式, c 中心频率为0,纵模间隔为 q = ,相邻模之间的相位差恒 2nL 定为,即 i[( q ) t q ]

激光器锁模的工作原理

激光器锁模的工作原理

激光器锁模的工作原理
激光器锁模是指在激光器中通过一定的控制方法,使其输出激光波长单一、线宽窄、光能稳定的特殊工作状态。

因此,激光器锁模是一种对于一般激光器性能更高的技术。

激光器的发射是通过激发激光材料中的电子使之跃迁而形成,其发射波长相对单一,但线宽相对较宽,正常情况下,一个激光器的输出往往具有多个模式,这些模式的波长并不相同,同时线宽也存在差异。

如果将这些模式输出,将会影响到激光器的使用效果与信号传输质量。

因此,锁模技术可以使激光器的性能得到提升。

激光器锁模的实现需要通过某种方法使激光器只输出一个特定波长的光,也就是只输出一个模式,即所谓“锁定模式”。

一般来说,这种锁模是基于共振腔模式的锁模技术实现的。

共振腔模式锁模通过在激光器的两端加上反射器形成一个共振腔,将激光器中的多个谐振模式限制在共振腔内并强迫它们保持同一相位,在一定条件下可以使一个谐振模式成为优先输出的模式,从而实现锁模。

同时,激光器工作的稳定性也是锁模技术的关键问题之一,因为在工作过程中激光波长的波动会导致模式的切换,甚至出现模式竞争。

要稳定输出模式,需要通过对激光器中的温度、抽运泵浦功率、电流等参数的精确控制实现。

激光锁模技术

激光锁模技术

激光锁模技术顾朝晖 宁波大学光电信息工程 3摘要:锁模是激光技术中的一个十分重要的组成部份。

调Q 技术,受原理上的限制,其激光器输出的激光脉冲的宽度在1~30115之间。

随着科学技术的进展,在遥测技术、高时刻分辨率光谱学、非线性光学、光电子学、化学动力学和受控核聚变等许多领域要求取得脉冲宽度更窄、峰值功率更高的激光脉冲。

这推动了超短光脉冲技术的研究,进展了激光锁模技术。

关键词:锁模技术,激光脉冲引言:世界上是在1964年末第一对He-Ne 激光器实现锁模并取得了91010~10--s 的光脉冲列。

尔后,激光锁模的理论和方式不断推陈出新,接踵出现了红宝石、YAG 、钦玻璃及有机染料等锁模激光器,取得了ps(1210-)量级的窄脉冲。

八十年代初,Fork 等人又进展了碰撞锁模的理论,使锁模光脉冲进入了fs(1510-)量级,这是至今在实验室利用其它手腕尚不能实现的最短时标。

这就为研究物质微观世界超快速进程提供了新的工具,并将开阔这些领域的新前景。

.1.激光锁模技术的原理自由运转激光器的输出一般包括若干个超过阈值的纵模,如图所示。

这些模的振幅及相位都不固定,激光输出随时刻的转变是它们无规则叠加的结果,是一种时刻平均的统计值。

假设在激光工作物质的净增益线宽内包括有N 个纵模,每一个纵模输出的电场分量可用下式表示:)()(q q t i q q e E t E ϕω+=那么激光器输出的光波电场是N 个纵模电场的和,即)()(q q t i q q e E t E ϕω+= ()()q qi t q q E t E e ωφ+=∑()()q q i t q q E t E e ωφ+=∑E q 、ωq 、φq 为第q 个模式的振幅、角频率及初位相。

各个模式的振幅E q 、初位φq 均无肯定关系,各个模式互不相干,因此激光输出是它们的无规叠加的结果,输出强度随时刻无规则起伏。

假设有三个光波,频率别离为v 1 v 2 和 v 3,沿相同方向传播,而且有如下关系: ,在未锁按时,初相彼此无关。

激光锁模

激光锁模

1. 损耗内调制锁模
如图(4-31)所示,在谐振腔中插入一个电光或声光损耗调制器。设调
制周期为 Tm 2,Ω调 2制L频c 率
(恰ν为m 纵c模2L频率间隔)
由于损耗调制的周期正好是脉冲在腔内往 返一次所需的时间T0 ,因而调制器的损耗δ(t)是 一周期为T0 的函数
图(4-31) 锁模调制示意图
4.7.3被动锁模
➢被动锁模装置很简单,只需在腔内插入一个装有饱和吸收染料的“盒”即可
➢染料必须具备以下几个条件:第一,染料的吸收线应和激光波长很接近;第 二,吸收线的线宽要大于或等于激光线宽;第三,其驰豫时间应短于脉冲在 腔内往返一次的时间,否则就成为被动调Q激光器了。
信息(2004): 中科院上海光学精密机械研究所在其建所40周
4.7.2 主动锁模
在一般激光器中,各纵模振荡互不相关,各纵模相位没有确定的关系。并且,由 于频率牵引和频率推斥效应,相邻纵模的频率间隔并不严格相等。因此为了得到锁 模超短脉冲,须采取措施强制各纵模初位相保持确定关系,并使相邻模频率间隔相 等。目前采用的锁模方法可分为主动锁模与被动锁模两类。
一、主动锁模 主动锁模又可分为振幅调制锁模和相位调制锁模。
2
2
L
所以
1 2L
2 2L
t=0 , 2N 1 c , 2N 1 c
, L 2L c
是 A(t)的0 点.
2. 分母为0 的 点:
sin[1 t] 0 1 t m ,
2
2
m 0,2,3...... t 0, 2L , 4L ,L 2Ln
cc
c
3.因A(t)的分子、分母同时为零,利用罗彼塔法则可求得此时A(t)的最大值
式中M=Em/E0 称调幅系数,它的大小决定于调制信号的大小。将上式展开得

锁模光纤激光器讲义

锁模光纤激光器讲义
其它纵模上去。因所有纵模都是由优势模给予激发的,所以它 们彼此间都保持着相位的同步,并经相干叠加,形成锁模脉冲。
Байду номын сангаас
主动锁模光纤激光器
主动锁模光纤激光器的典型结构示意图
谐波锁模
主动锁模光纤激光器
输出脉冲的波形
输出脉冲的光谱
被动锁模技术(染料锁模)
利用非线性元件对光强的依赖性,来产生光脉冲的锁模方式。
E(t)的振幅极大值A(t)max=(2n+1)E0,这说明在振幅出现极值的时
刻各振荡纵模的振幅同时到达极大值。(峰值功率)Pm=N2P0 锁模后所得脉冲的宽度为Δt=[(2n+1) q]-1=1/,式中:q为
器件的纵模间隔; 为器件的振荡线宽。所以激光的带宽越宽,
则所获得的脉冲宽度越窄。(脉冲宽度)
若共有(2n+1)个纵模,则激光的电场强度可表示为:
总的光强为:
由于各纵模之间相位彼此相互独立并呈无规则变化,所以各纵 模之间相干项在时间平均下为零,平均输出光强是纵模之和,不会 出现相干加强或相干减弱时域脉冲波输出,而是呈现出存在幅度和 相位噪声的连续光输出。
锁模激光器输出特性
若使 ,即使相邻纵模间的位相差均保持为某一常 数a(通常称此为相位锁定或锁模),则第q个纵模可以表示为:
激光 输出镜 激光介质 染料盒 全反镜
1、线性放大:泵浦刚开始,工作物质对产生的诸多光脉冲进行线 性放大。 2、非线性吸收:染料被漂白,强脉冲被迅速放大,弱脉冲被吸收。 3、非线性放大:工作物质对留下的强脉冲进行非线性放大,使脉 宽被压缩。
被动锁模技术(染料锁模)
P t 线性 放大 P 非线性 吸收 t P t
锁 模 方 式
主动锁模 通过外界信号周期性调制激光器谐振腔参量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档