材料力学习题册答案-第5章-弯曲应力
刘鸿文《材料力学》(第5版)课后习题(弯曲应力)【圣才出品】
图 5-10 解:对横梁进行受力分析,作出其受力简图,如图 5-11 所示。
图 5-11
7 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平
台
由梁结构和载荷的对称性可知,最大弯矩发生在梁跨中截面,且
。
抗弯截面系数:
由强度条件
则有 故许可顶压力:
,可得: 。
5.10 割刀在切割工件时,受到 F=1 kN 的切削力作用。割刀尺寸如图 5-12 所示。 试求割刀内的最大弯曲应力。
十万种考研考证电子书、题库视频学习平 台
图 5-8
解:根据梁的受力简图,由平衡条件可得支座反力: 由梁结构和载荷的对称性可知,梁上最大受的最大轧制力:
,可得: 907.4 kN。
5.8 压板的尺寸和载荷情况如图 5-9 所示。材料为 45 钢,σs=380 MPa,取安全因 数 n=1.5。试校核压板的强度。
图 5-9
解:由许用应力定义可知,该压板的许用应力:
6 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平
台
分析可知,压板上的最大弯矩发生在 m-m 截面,且:
m-m 截面的抗弯截面系数:
故最大正应力: 因此压板强度满足要求,是安全的。
5.9 拆卸工具如图 5-10 所示。若 l=250 mm,a=30 mm,h=60 mm,c=16 mm,d=58 mm,[σ]=160 MPa,试按横梁中央截面的强度确定许可的顶压力 F。
图 5-12 解:分析可知,最危险截面可能发生在 m-m 截面或 n-n 截面。 (1)m-m 截面:弯矩值 则该截面上正应力:
(2)n-n 截面:弯矩值 则该截面上正应力:
材料力学课后答案
由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m
材料力学第五章 弯曲应力分析
B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
材料力学专项习题练习-弯曲应力概要【范本模板】
(C)弯曲应力1。
圆形截面简支梁A 、B 套成,A 、B 层间不计摩擦,材料的弹性模量2B A E E =。
求在外力偶矩e M 作用下,A 、B 中最大正应力的比值maxminA B σσ有4个答案: (A )16; (B)14; (C)18; (D)110。
答:B2。
矩形截面纯弯梁,材料的抗拉弹性模量t E 大于材料的抗压弹性模量c E ,则正应力在截面上的分布图有以下4种答案:答:C3。
将厚度为2 mm 的钢板尺与一曲面密实接触,已知测得钢尺点A 处的应变为11000-,则该曲面在点A 处的曲率半径为 mm. 答:999 mm4。
边长为a 的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比max a max b ()()σσ= 。
答:2/15. 一工字截面梁,截面尺寸如图,, 10h b b t ==。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%.证:412, (d ) 1 8203B A z z zMy M Mt M y yb y I I I σ==⨯=⨯⎰ 4690z I t=, 41411 82088%3690M t M t =⨯⨯≈ (a)其中:积分限1 , 22h hB t A M =+=为翼缘弯矩6。
直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试求所需载荷,并计算最大弯曲正应力。
解:1M EIρ= 而M Fa = 4840.78510 m , 0.654 kN64d EI I F aπρ-==⨯==33max80.654100.22010167 MPa 2220.78510M d Fad I I σ--⋅⨯⨯⨯⨯====⨯⨯7。
钢筋横截面积为A ,密度为ρ一端加力F ,提起钢筋离开地面长度/3l .试问F 解:截面C 曲率为零2(/3)0, 326C Fl gA l gAlM F ρρ=-==8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用/3F 向上的拉力时,试求钢条内最大正应力。
《材料力学》 第五章 弯曲内力与弯曲应力
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学课后习题答案5章
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为
材料力学作业题解_第5-9章
1
ρ
于是,有
=
M EI EI
M=
代入弯曲正应力公式,得
ρ
σ max =
Mymax Eymax = I ρ
空心圆截面比实心圆截面最大正应力减少了
5.4 矩形截面悬臂梁如图所示,已知 l = 4 m , 确定此梁横截面的尺寸。 解:梁的最大弯矩发生在固定端处,其值为
b 3 = , q = 10 kN/m , [σ ] = 10 MPa 。试 h 5
q A
l
M max =
梁的强度条件
1 2 1 ql = ×10 × 42 =80 (kN ⋅ m) 2 2 M 80 ×106 = = ≤ [σ ] 1 2 W bh 6
m
n
8
m
22
n
13
发生,应加以比较,方可决定割刀内的最大正应力。 n-n 截面
2.5
4
1 WI = × 2.5 × 132 =70.4 (mm3 ) 6
M I = 1× 103 × 8=8 ×103 (N ⋅ mm)
σI =
n-n 截面
M I 8 ×103 = = 114 (MPa ) WI 70.4
− = σ max
C 截面
+ σ max =
10 × 106 ×158 = 26.3 (MPa)<[σ t ]=40 MPa 60.1× 106 10 × 106 × (230 − 158) = 12 (MPa)<[σ c ]=160 MPa 60.1×106
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学第五章-弯曲应力知识分享
材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学第五章 弯曲应力
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
河海大学-材料力学第5章弯曲应力作业参考解答
IZ
=
2 × ( 1 × 60 ×1403 12
+ 60 ×140 × (70 - (76.82 - 50))2 )
+ 1 × 280 ×503 + 280 ×50 × (76.82 - 50 / 2)2 = 9.9´107 mm4 12
(3)b-b 处切应力
t b-b
=
FS
S
* z
Izb
=
27.5kN ´ (60 ´100 ´ 63.18mm3 ) 9.9 ´107 ´108 mm4 ´ 60mm
解:
A
A
z
z
A
z
y
y
y
5-23 求图所示梁的最大容许荷载 q。梁的容许正应力为 3.5MPa,容许切应力为 0.7MPa,胶 结处的容许切应力为 0.35MPa。
yc
解:(1)求内力
最大剪力为 Fs max
=
0.5ql
= 0.3q ,最大弯矩为 M z max
=
1 8
ql
2
= 0.045q 。
(2)确定形心位置及计算惯性矩
£ 0.7 ´106
解得: q £ 3.97kN / m 。
(5) 粘结处应力强度条件
t max
=
Fs
max
S
* z
Izb
=
0.3q ´ 25´ 25´ 25´10-9 3.32 ´10-6 ´ 25´10-3
£ 0.35´106
解得: q £ 6.2kN / m 。
最后容许荷载为 q £ 3.97kN / m 。
第 5 章作业参考解答
本章主要公式
梁平面纯弯曲时曲率与弯矩和弯曲刚度的关系: 1 = M r EI z
《材料力学》第五章课后习题参考答案
错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。
材料力学练习册5-6详细答案
第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。
试求金属丝内的最大正应变与最大正应力。
已知材料的弹性模量为E。
解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。
试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。
已知钢的弹性模量E =200GPa ,a =1m 。
解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。
若[]MPa 160=σ,试求许可载荷F 。
5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。
如已知AB 梁高为1h ,CD 梁高为2h 。
欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。
已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。
5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。
设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。
=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。
试校核梁的强度。
解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。
材料力学典型例题及解析 5.弯曲应力典型习题解析
q
h1
h2
A
B
b l
题3图
解题分析:两板叠放在一起,在均布载荷 q 作用下,两梁一起变形,在任一截面上,两者弯 曲时接触面的曲率相等。小变形情况下,近似认为两者中性层的曲率相等。根据该条件,可 计算出各梁分别承担的弯矩。然后再分别计算两梁的最大应力。两板胶合在一起时,按一个 梁计算。 解:1、计算两板简单叠放在一起时的最大应力
= 0.5 m 2q ≤ σ Wz
解得 q ≤ W z [σ ] = 49 ×10−6 m 3 ×160 ×106 Pa = 15 680 N/m = 15.68 kN/m
0.5 m2
0.5 m2
3、BD 杆的强度条件
BD 杆横截面上各点拉伸正应力相同,强度条件为
σ
≤ [σ ] 或σ = F NBD =
F
Ay
=
3m 4
q
,
F
By
=
9m 4Leabharlann q2、梁的强度条件
画梁的弯矩图如图 b。显然,B 截面为危险截面。 M B = 0.5 m2 q ,查表知 10 号工 字钢 W z = 49 ×10−6 m 3 ,于是 B 截面上弯曲正应力强度条件为
[ ] [ ] σ m a x ≤ σ
或
σ ma x
=
M max Wz
=
I I
1 2
M
2
=( h1)3 h2
M
2
=
1M 8
2
梁中间截面弯矩为
M
=
M
1
+
M
2
=
1 ql 8
2
于是
M
1
=
1 72
材料力学简明教程(景荣春)课后答案第五章
材料力学简明教程(景荣春)课后答案第五章5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答不一定。
最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。
5-2 矩形截面简支梁承受均布载荷q作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。
5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。
设钢木之间胶合牢固不会错动,已知弹性模量EsEw,则该梁沿高度方向正应力分布为图a,b,c,d中哪一种。
思考题5-3图答(b)5-4 受力相同的两根梁,截面分别如图,图a中的截面由两矩形截面并列而成(未粘接),图b中的截面由两矩形截面上下叠合而成(未粘接)。
从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答(a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值理性和经济性。
比值请从W来衡量截面形状的合AW较大,则截面的形状就较经济合理。
图示3种截面的高度均为h,A W的角度考虑哪种截面形状更经济合理?A思考题5-5图答(c)5-6 受力相同的梁,其横截面可能有图示4种形式。
若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答(b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)*FSSz5-7 弯曲切应力公式τ=的右段各项数值如何确定?Izb答FS为整个横截面上剪力;Iz为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;Sz为横截面上距中性轴为y(所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。
5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形?答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。
材料力学第五章__弯曲应力
矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学习题册答案-第5章-弯曲应力
第五章弯曲应力
一、是非判断题
1、设某段梁承受正弯矩的作用,则靠近顶面和
2、中性轴是梁的横截面与中性层的交线。
梁发
3、在非均质材料的等截面梁中,最大正应力
max
4、等截面梁产生纯弯曲时,变形前后横截面保
√ )
5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )
6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )
7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )
二、填空题
1、应用公式y I
M z
=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力
=
S F bh
F 23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为22
6
1
6
1bH BH
-、
H
Bh BH 66132- 和
H
bh BH 66132- 。
三、选择题
1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、 如图所示的两铸铁梁,材料相同,承受相同
l 3
1l 3
2
M
A
B C
D y z
F
x
s
F
H
B
b
H h B
b
H h
B
z
( C )。
A 同时破坏;
B (a)梁先坏; C
3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )
四、计算题
1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
(a
(b
F
F
A
C B F
l
a z y K h h A B C
D
M
x
解:MPa I y M
Z C K
1.212
18.012.006.021013
3=⨯⨯⨯⨯==σ
2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。
截面对形心轴z C 的惯性矩4
10181cm I
Z
=,cm
h
64.91
=,
kN
P 44=,求梁内的最大拉应力和最大压应力。
44kN
44kN
35.2kNm
26.4kNm
A :C :
解:内力图如上所示,A 截面和C 截面为危险截
面,其应力分布如图所示。
A 截面:
MPa
I h M Z A A 3.331010181106.9102.358
2
31=⨯⨯⨯⨯==--+
σ MPa I h M Z A A
1.5310
101811036.15102.358
2
32=⨯⨯⨯⨯==---σ
C 截面:
MPa
I h M Z C C
83.3910101811036.15104.268
2
32=⨯⨯⨯⨯==--+
σ
MPa I h M Z C C
0.2510
101811064.9104.268
2
31=⨯⨯⨯⨯==---
σ
所以,最大拉应力:MPa 83.39max =+σ
最大压应力:MPa
1.53m ax
=-σ
3、图示矩形截面梁。
已知MPa 160][=σ,试确定图示
梁的许用载荷][q 。
q
4m m=2q(kNm)
2m
80
220
第四题图
2.5q
1.5q 2q
3.125q
解:内力图如上所示。
[]σσ≤=
Z
I My
max
[]y
I M Z
σ≤
312
3
6
1011010122208010160825--⨯⨯⨯⨯⨯≤q
m
kN q /33≤
故许用载荷[]m kN q /33=
4、图示T 形截面铸铁梁承受载荷作用。
已知铸铁的许用拉应力MPa 40][t
=σ,许用压应力MPa 160][c
=σ。
试按正应力强度条件校核梁的强度。
若载荷不变,将横截面由T 形倒置成⊥形,是否合理?为什么?
q =10kN/m 1m
D
B
3m
2m
E 200200
30y z C
C
y
30C
解:内力图如上所示,B 截面和E 截面为危险截面,其应力分布如图所示。
10kNm
20kNm
E:
解:以截面最下端为z 轴,计算惯性矩。
mm y C
5.15730
200302001003020021530200=⋅+⋅⋅⋅+⋅⋅= ()4
52323100215.65.573020012
20030155.42302001230200m I I I II I Z -⨯=⋅⋅+⋅++⋅⋅+⋅=+= B 截面:
MPa I y M Z B B 12.2410
0215.6105.7210205
3
31=⨯⨯⨯⨯==--+
σ MPa
I y M Z B B
39.52100215.6105.15710205
3
32=⨯⨯⨯⨯==---σ
E 截面:
MPa I y M Z E E
19.2610
0215.6105.15710105
3
32=⨯⨯⨯⨯==--+
σ
MPa I y M Z E E
06.1210
0215.6105.7210105
3
31=⨯⨯⨯⨯==---
σ
所以,最大拉应力:MPa 19.26max =+σ
最大压应力:MPa
39.52max
=-σ
如果将T 形截面倒置,则:
[]MPa
MPa I y M t Z B B
4039.52100215.6105.15710205
3
31=>=⨯⨯⨯⨯==--+
σσ
不满足强度条件,所以不合理。
5、图示工字形截面梁。
已知:m kN q /24=,
m kN m o
•=5.1,截面高mm H 180=
腹板高mm h 110=,腹板厚mm d 7=,截面面积
231cm A =,2
1660cm I Z =,cm S I Z
Z 4.15/=,
[]MPa 150=σ,[]MPa 130=τ。
试(1)按照梁的弯曲正应力强度校核梁的强度;(2)按照弯曲剪应力强度校核梁的强度。
A B
0.5m 1m 0.5m
x 第三题图
o
8c m
2c m
z
y C
6MPa 160][=σ,许用切应力
MPa 100][=τ,试选择工字钢的型号。
10k N/m
2m
A
B 4m
4k N z y
z
y
H
h
d
d
18kN
22kN
16.2kNm
4kN
8kNm
解:内力图如上所示,剪力、弯矩最大截面为
危险截面。
[]σσ≤=
Z
W M max
max
[]
3
6
3max
25.10110
160102.16cm M W Z =⨯⨯=≥
σ
选用14号工字钢,并用其计算剪应力。
此时,
cm b cm S I Z
Z
5.5,12*==
Z
Z bI S Q *
max max
=
τ
[]MPa MPa 100331012105.510222
33
max
=≤=⨯⨯⨯⨯=--ττ
说明14号工字钢剪应力强调满足强度要求,故选用14号工字钢。