初中数学《反证法》课后练习

合集下载

反证法小练习含答案

反证法小练习含答案

1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°答案 B3.(2014·山东卷)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.4.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交答案 D5.已知a是整数,a2是偶数,求证a也是偶数.证明(反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.1.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是()①与已知条件矛盾②与假设矛盾③与定义、公理、定理矛盾④与事实矛盾A.①②B.①③C.①③④D.①②③④答案 D2.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.3.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有()A.0个B.1个C.2个D.3个答案 B解析①错:应为a≤b;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.4.用反证法证明命题:“a、b∈N,ab可被5整除,那么a,b 中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除答案 B解析“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”.5.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中存在偶数”时,否定结论应为________答案a,b,c都不是偶数解析a,b,c中存在偶数即至少有一个偶数,其否定为a,b,c都不是偶数.6.“任何三角形的外角都至少有两个钝角”的否定应是________.答案存在一个三角形,其外角最多有一个钝角解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.。

反证法含答案.doc

反证法含答案.doc

3 a,b,c中至少有一个大于一。

6、已知a,b,c E R,a + b-^c = 0, abc = 1,求证:27、若函数/'(x)在区间[a.b]±.是增函数,那么方程/(.x) = 0在区间[a.b]±.至多只有一个实数根。

8、已知a.b,c 6(0,1),求证:(1 -a)/>,(1 -Z?)c,(1 -c)a 不能同时大于9、已知函数/(%) = «' +^^(a>l)x + 1⑴、证明:函数f(x)在(-1,+8)上为增函数;(2)、用反证法证明方程/(.r) = 0没有负数根。

10、组装甲、乙、丙三种产品,需要A、B、。

三种零件,每件甲产品用零件A、。

各2个,每件乙产品用零件A 2个,零件8 1个,每件丙产品用零件8、C各1个,如组装10件甲,5件乙,8件丙,则剩下2个A零件,1个C零件,B零件恰好用完,试证无论如何改变甲、乙、丙的件数,都不能将零件A、B、C用完。

反证法1、已知下列三个方程:x2 + 4ax - 4a + 3 = 0, x2 + (a - l)x + tz2 = 0, x2 + 2ax-2a = 0 f 至少有一个方程有实数根,求实数。

的取值范围。

2、已知函数/*(/)是(-oo,+oo)上的增函数,a,b G R ,对命题"若。

+ Z?20,贝ljf(o)+f0)2f(-。

)+/(2尸,写出其逆命题,判断其真假并证明你的结论。

3、已知Q,b,c,d e R ,且Q +Z? = c + d =1,。

+ /?』〉1 ;求证:a,b,c,d中至少有一个是负数。

4、已知面肱内有两条相交直线。

,力(交点为p)和面N平行;求证:面M 〃面N。

5、若a,b,c均为实数,Ka = x2 -2y — = y2 -2z + — ,c = z2 -2x-^- —;求证:2 3 6Q,b,c中至少有一个大于0.:.a-^-b + c >0 ,这与tz+Z? + c <0相矛盾;?.假设不成立;a,b,c中至少有一个大于0.36、假设Q,b,C都小于等于一2abc = 1;.\ a,b,c三者同为正或一正两负;a +b +c = 0;:. a,b f c中只能是一正两负;不妨设a > Q,b <Q,c <0 ,则b + c = -a,be =—,即b,c 为方程x1 + ax+ — = 0 的两个a a负根;A = a2-->0;.-.fl>V4>3 —=-,这假设相矛盾;a V 8 23Q,b,c中至少有一个大于二o27、假设方程/(.x) = 0在区间[,麟]上至少有两个根。

浙教版八年级数学下册《4.6反证法》同步练习(含答案)

浙教版八年级数学下册《4.6反证法》同步练习(含答案)

4.6反证法A练就好基础基础达标1.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是(B) A.5B.2C.4D.82.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,第一步应先假设(D) A.a不垂直于c B.b不垂直于cC.c不平行于b D.a不平行于b3.用反证法证明命题“若a>b,b>c,则a>c”时应先假设(D)A.a≠c B.a<cC.a=c D.a≤c4.下列命题宜用反证法证明的是(C)A.等腰三角形两腰上的高相等B.有一个外角是120°的等腰三角形是等边三角形C.两条直线都与第三条直线平行,则这两条直线互相平行D.全等三角形的面积相等5. 在证明“在△ABC中至少有两个锐角”时,第一步应假设这个三角形中(C)A. 没有锐角B. 都是直角C. 最多有一个锐角D. 有三个锐角6.用反证法证明“树在道边而多子,此必苦李”时,应首先假设:__李子为甜李__.7.用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.解:已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B.∵∠1是△ABC的一个外角,∴∠1+∠2=180°,∴∠A+∠B+∠2≠180°这与三角形内角和为180°相矛盾,∴假设∠1≠∠A+∠B不成立,∴∠1=∠A+∠B.8. 阅读下列文字,回答问题.题目:在Rt△ABC中,∠C=90°,若∠A≠45°,则AC≠BC.证明:假设AC=BC,因为∠A≠45°,∠C=90°,所以∠A≠∠B.所以AC≠BC,这与假设矛盾,所以AC≠BC.上面的证明有没有错误?若没有错误,指出其证明的方法;若有错误,请予以纠正.解:有错误.改正:假设AC=BC,则∠A=∠B.∵又∠C=90°,∴∠B=∠A=45°,这与∠A≠45°矛盾,∴AC=BC不成立,∴AC≠BC.B更上一层楼能力提升9.用反证法证明(填空):两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1__∥__l2.证明:假设l1__不平行于__l2,即l1与l2相交于一点P.则∠1+∠2+∠P__=__180°(__三角形内角和定理__),所以∠1+∠2__<__180°,这与__∠1+∠2=180°__矛盾,故__假设__不成立.所以结论成立,l1∥l2.10.已知命题“在△ABC中,若AC2+BC2≠AB2,则∠C≠90°”,用反证法,其步骤为:假设__∠C=90°__,根据__勾股定理__,一定有__AC2+BC2=AB2__,但这与已知__AC2+BC2≠AB2__相矛盾,因此假设是错误的,故原命题是真命题.11.用反证法证明下列问题.如图,在△ABC中,点D,E分别在AC,AB上,BD,CE相交于点O.求证:BD和CE不可能互相平分.证明:连结DE,假设BD和CE互相平分,则四边形EBCD是平行四边形.∴BE∥CD.∵在△ABC中,点D,E分别在AC,AB上,∴AC不可能平行于AB,与BE∥CD矛盾.故假设不成立,原命题正确,即BD和CE不可能互相平分.12.反证法证明:在一个三角形中,至少有一个内角大于或等于60°证明:假设在一个三角形中,没有一个内角大于或等于60°,即均小于60°,则三内角和小于180°,与三角形中三内角和等于180°矛盾,故假设不成立.原命题成立.13图1将此命题改写成符号语言.已知:如图1,在△ABC中,D是AB边上的中点,DE∥BC交AC于点E.求证:AE=CE.【分析】“反证法”是一种间接证明的方法.其实还有一种间接证明的方法叫“同一法”,具体做法是:先作出一个符合结论特性的图形,然后证明图2所作的图形与已知条件其实是同一个图形,从而间接地证明出已知条件的图形具有这种性质.请你从完成下列不完整的证明过程中,体会这种证明方法的妙处.证明:如图2,取AC边的中点F,连结DF.∴DF是△ABC的__中位线__,∴__DF∥BC__(三角形的中位线定理).∵DE∥BC,由基本事实“过直线外一点有且只有一条直线平行于这条直线”得:DF 与DE 重合,即点__F __与点__E __重合,∴__AE =CE __.C 开拓新思路 拓展创新14.能否在图中的四个圆圈内填入4个互不相同的数,使得任意两个圆圈中所填的数的平方和等于另外两个 14题图14题答图解:不能填.理由如下:设所填的互不相同的4个数为a ,b ,c ,d ;则有⎩⎪⎨⎪⎧a 2+c 2=b 2+d 2,①a 2+d 2=c 2+b 2,②a 2+b 2=c 2+d 2,③①-②得c 2-d 2=d 2-c 2,∴c 2=d 2.因为c ≠d ,只能是c =-d ,④同理可得c 2=b 2,因为c ≠b ,只能c =-b ,⑤比较④,⑤得b =d ,与已知b ≠d 矛盾,所以题设要求的填数法不存在.。

新思维系列华师大版九下数学2反证法课后拓展训练

新思维系列华师大版九下数学2反证法课后拓展训练

反证法1.用反证法证明命题“在△ABC中,若AB=AC,则∠B必为锐角”的第一步是2.已知命题“在△ABC中,若AC2+BC2≠AB2,则∠C≠90°”,要证明这个命题是真命题,可用反证法,其步骤为:假设根据,一定有,但这与已知相矛盾,因此假设是错误的,于是可知原命题是真命题.3.已知命题“四边形中至少有一个角不小于90°”,先写出已知,求证,可采用法证明,先假设.4.在证明三角形三个内角中至少有一个内角小于或等于60°,用反证法证明时应假设.5.求证:垂直于同一条直线的两条直线平行.6.已知直线l1,l2,l3在同一平面内,且l1∥l2,l1与l3相交,求证l3与l2相交.7.求证:直线与圆最多只有两个交点.8.如图29-147所示,已知△ABC为不等边三角形(任意两边都不相等),AD⊥BC于点D,求证点D到AB,AC边的距离必不相等.9.已知一个数小于它的绝对值,证明这个数必是负数.10.求证:形如4n+3的整数P(n为整数)不能化为两个整数的平方和.参考答案1.假设∠B为直角或钝角 2.∠C=90°勾股定理AC2+BC2=AB2AC2+BC2≠AB2 3.略 4.三个内角都大于60°5.已知:直线a,b,c,a⊥c,b⊥c.求证:a∥b.证明:假设垂直于同一条直线‘的两条直线a与b不平行,则a与b相交,设交点为P,则过P有两条直线a,b与已知直线c 垂直,这与“过一点有且只有一条直线与已知直线垂直”相矛盾.∴假设不成立.∴a∥b. 6.证明:假设l3与l2不相交,则l3∥l2.∵l1∥l2,∴l3∥l1,这与已知相矛盾.∴假设不成立,∴l3与l2相交.7.已知:直线l和⊙O.求证:直线l和⊙O最多只有两个交点.证明:假设直线l与⊙O至少有三个不同的交点A,B,C,M,N分别是弦AB,BC的中点.∵OA=OB=OC,∴在等腰三角形AOB和等腰三角形OBC中,OM⊥AB,ON⊥BC,从而过点O有两条直线都垂直于l,这与“过一点有且只有一条直线与已知直线垂直”矛盾,∴假设不成立.∴直线与圆最多只有两个交点.8.证明:如图29-148所示,作DE⊥AB于E,DF⊥AC于F假设DE=DF,则∠1=∠2.∵AD⊥BC,∴∠B=∠C.∴AB=AC,这与△ABC为不等边三角形矛盾.∴假设不成立,∴点D 到AB,AC边的距离必不相等.9.证明:假设这个数是a,且a≥0.①当a>0时,|a|=a,与已知矛盾.②当a=0时, |a|=0,与已知矛盾.故假设不成立,所以a一定是负数.10.证明:假设P=4n+3可以表示为两个整数a和b的平方和,则P=4n+3=a2+b2,则a与b必一个为奇数,一个为偶数,不妨设a=2s+1,b=2t(s,t为整数),则P=4n+3=a2+b2=(2s+1)2+(2t)2=4(s2+s+t2)+1,即P即是4n+3形式的数,又是4m+1形式的数,出现矛盾,所以4n+3形式的数化不成两个整数的平方和.。

《反证法》练习题

《反证法》练习题

A 9.用反证法证明:“一个三角形中至多有一个钝角”时,应假设( ) A.一个三角形中至少有两个钝角 B.一个三角形中至多有两个钝角 C.一个三角形中至少有一个钝角 D.一个三角形中没有钝角
10.试证明命题“两直线相交有且只有一个交点”.并将下列过程补充完 整:
已知直线a,b,求证:直线a,b相交时只有一个交点P. 证明:假设a,b相交时___不__止__一__个__交__点__P___, 不妨设其他交点中有一个为P′,则点P和点P′既在直线a上又在直线b上,那 么经过P和P′的直线__________,这与___________________相矛盾,因此假 设不成立,所以两条直线相就交有只两有条一个交点.两点确定一条直线
7.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.
求证:假设l1__不__平__行___l2,即l1与l2相交于一点P,
则∠1+∠2+∠P=____,所以∠1+∠2____180°, 这与______________1_8_0_°____矛盾,故假设<不成立,所以____.
11.试用举反例的方法说明下列命题是假命题. 举例:如果ab<0,那么a+b<0. 反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0. 所以,这个命题是假命题. (1)如果a+b>0,那么ab>0; (2)如果a是无理数,b是无理数,那么a+b是无理数; (3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.
第四章 平行四边形
4.6 反证法希伯索斯 发现了无理数 2,导致了第一次数学危机, 2是无理数的证明如下:
假设 2是有理数,那么它可以表示成qp(p 与 q 是互质的两个正整数).

反证法练习题

反证法练习题

反证法练习题证明题1.求证:两组对边的和相等的四边形外切于一圆.2.已知△ABC与△A′BC有公共边BC,且A′B+A′C>AB+AC.求证点A′在△ABC 的外部.3.求证:相交两圆的两个交点不能同在连心线的同侧.4.用反证法证明:直角三角形斜边上的中点到三顶点的距离相等.5.已知△ABC中,AB>AC,∠ABC和∠ACB的平分线相交于O点.求证:AO与BC不垂直.6.在同圆中,如果两条弦的弦心距不等,那么这两条弦也不等.7.求证:两条直线相交,只有一个交点.8.求证:一直线的垂线和非垂线一定相交.9.在四边形ABCD中,已知AB≠CD,求证AC,BD必不能互相平分.10.已知直线l1∥直线l2,直线m1∥直线 m2,且l1,m1相交于点P.求证l2与m2必相交.11.求证:若四边形的一组对边的中点连线等于另一组对边的和的一半,则另一组对边必互相平行.12.已知△ABC中,∠ACB=90°,以AB为直径作⊙O.求证C点必在⊙O上.13.已知△ABC与△A′BC有公共边BC,且∠BA′C<∠BAC.求证点A′在△ABC的外部.14.求证:梯形必不是中心对称图形.15.已知如图7-399,在△ABC中,AB=AC,P是△ABC内部的一点,且∠APB≠∠APC.求证PB≠PC.练习题提示证明题1.提示:设四边形ABCD中AB+CD=BC+DA.假设它不外切于圆,可作⊙O与AB,BC,CD 相切,则⊙O必不与DA相切.作D′A与⊙O相切并与射线CD相交于D′,则AB+CD′=BC+D′A.与已知条件左右各相减,得DD′=|DA-D′A|,但在△ADD′中这不可能;所以四边形ABCD外切于圆.2.提示:假设A′在△ABC内部,由练习题(已知:P为△ABC内任意一点,连接PB,PC.求证:BC<PB+PC<AB+AC)可知A′B+A′C<AB+AC,这与已知矛盾;所以A′不在△ABC 内部.设A′在边AB或AC上,显然有A′B+A′C<AB+AC,这也与已知矛盾.所以点A′在△ABC的外部.3.提示:设⊙O与⊙O′相交于点A,B.假设A,B在连心线OO′同侧.由于∠OO′B=∠OO′A,∠O′OB=∠O′OA,显然B与A重合,即⊙O与⊙O′相交于一点,这与已知矛盾;所以A,B不能同在连心线的同侧.4.提示:设直角△ABC的斜边AB的中点为D.假设AD=BD<CD,设法证出∠C为锐角,这与已知矛盾.假设AD=BD>CD,设法证出∠C为钝角,这也与已知矛盾.所以只有AD=BD=CD.5.提示:假设AO⊥BC.由于O是∠B、∠C的平分线的交点,所以AO是∠A的平分线.这样就有AB=AC,这与已知矛盾;所以AO与BC不垂直.6.提示:设AB,CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F,且OE≠OF.假设AB=CD,则OE=OF,这与已知OE≠OF矛盾.所以假设不成立.所以AB≠CD.7.提示:设直线AB,CD相交于M.假设直线AB,CD另有一个交点N,这说明经过M,N两点有两条直线AB和CD,这与公理经过两点有且只有一条直线矛盾.故假设不成立.所以AB,CD只有一个交点.8.提示:设直线a⊥直线l,直线b不垂直于l.假设a和b不相交,则a∥b,从而b⊥l,但这与已知矛盾;所以a和b相交.9.提示:假设AC和BD互相平分,则可推出AB=CD,但这与已知矛盾;所以AC和BD 不能互相平分.10.提示:假设l2与m2不相交,则l2∥m2.因为l1∥l2.所以l1∥m2.因为m1∥m2,所以l1∥m1.这与已知l1与m1相交于点P矛盾.所以假设不成立.所以l2与m2必相交.11.提示:设M和N分别是四边形ABCD的边AB和CD的中点,并而MP+PN=MN.但假定AD不平行于BC,P不会在MN上,所以上面这个等式不成立;从而AD∥BC.12.提示:假设点C不在⊙O的圆周上,则点C在⊙O的内部或外部.(1)若C在⊙O内部,延长AC交⊙O于D,连接BD,则∠D=90°.因为∠ACB是△CDB 的外角,所以∠ACB>∠D.所以∠ACB>90°.这与已知∠ACB=90°矛盾.(2)若C在⊙O外部,设AC交⊙O于E,连接BE,则∠AEB=90°.因为∠AEB是△CEB 的外角,所以∠AEB>∠ACB,就有∠ACB<90°.这与已知∠ACB=90°矛盾.综合(1),(2)可知假设不成立.所以C点必在⊙O上.13.提示:假设A′在△ABC内部,由几何一第三章§8第5题可知∠BA′C>∠BAC,这与已知矛盾;所以A′不在△ABC内部.设A′在边AB或AC上,显然有∠BA′C>∠BAC,这也与已知矛盾.所以点A′在△ABC的外部.14.提示:设在梯形ABCD中,AD∥BC,AB不平行于CD.假设它是中心对称图形,O为对称中心.作A和B关于O的对称点A′和B′.则线段A′B′是边AB的对称图形.A′B′或位于BC上,或CD上,或AD上.但A′B′平行于AB,所以或BC或CD或AD平行于AB,这与已知矛盾;所以梯形ABCD不是中心对称图形.15.提示:假设PB=PC,则∠PBC=∠PCB.因为AB=AC,所以∠ABC=∠ACB,所以∠ABP=∠ACP.因为AB=AC,PB=PC,AP=AP,所以△ABP≌△ACP.所以∠APB=∠APC.这与已知∠APB≠APC矛盾.所以假设不成立,就有PB≠PC.。

华东师大版数学 八年级上册 3. 反证法 课后练习题

华东师大版数学 八年级上册 3. 反证法 课后练习题

一、单选题1. 用反证法证明“四边形中至少有一个角是钝角或直角”时,第一步应先假设命题不成立,则下列各备选项中,第一步假设正确的是()A.假设四边形中没有一个角是钝角或直角B.假设四边形中有一个角是钝角或直角C.假设四边形中每一个角均为钝角D.假设四边形中每一个角均为直角2. 用反证法证明命题“在直角三角形中,必有一个锐角不小于45°”时,首先应假设这个直角三角形中()A.两个锐角都大于45°B.两个锐角都小于45°C.两个锐角都不大于45°D.两个锐角都等于45°3. 用反证法证明“三角形中至少有一个内角不小于”,应假设这个三角形中()A.有一个内角小于B.每一个内角都小于C.有一个内角大于D.每一个内角都大于4. 利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形的每一个内角都是钝角或直C.四边形中所有内角都是锐角D.四边形中所有内角都是直角5. 用反证法证明“若,则a为负数”应先假设()A.a为非负数B.a为正数C.a为整数D.a为负数二、填空题6. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设___.7. 用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:______.8. 用反证法证明“在中至多有一个直角或钝角”时,应假设______.三、解答题9. 如图,已知直线,,E、F在线段上,且满足,平分,.(1)与是否平行?说明理由;(2)求的度数;(3)若平行移动线段,是否存在?若存在,求出的度数;若不存在,请说明理由.10. 数学是一门充满思维乐趣的学科,现有的数阵A,数阵每个位置所对应的数都是1,2或3.定义a b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以32=3.(1)对于数阵A,23的值为;若23=2x,则x的值为(2)若一个的数阵对任意的a,b,c均满足以下条件:条件一:a a=a;条件二:;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足12=2,试计算21的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a b=b a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.11. 已知:在△ABC中,AB=AC.求证:∠B,∠C不可能等于90°.。

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)1.求证:在△ABC中至多有两个角大于或等于60°.2.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.3.用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”证明:假设所求证的结论不成立,即∠A _________ 60°,∠B _________ 60°,∠C _________ 60°,则∠A+∠B+∠C>_________ .这与_________ 相矛盾.∴_________ 不成立.∴_________ .4.用反证法证明(填空):两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1_________ l2证明:假设l1_________ l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P _________ 180°_________所以∠1+∠2 _________ 180°,这与_________ 矛盾,故_________ 不成立.所以_________ .5.完形填空:已知:如图,直线a、b被c所截;∠1、∠2是同位角,且∠1≠∠2,求证:a不平行b.证明:假设_________ ,则_________ ,(两直线平行,同位角相等)这与_________ 相矛盾,所以_________ 不成立,故a不平行b.6.求证:在△ABC中,∠B≠∠C,则AB≠AC(提示:反证法)7.用反证法证明一个三角形中不能有两个角是直角.8.反证法证明:如果实数a、b满足a2+b2=0,那么a=0且b=0.9.如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)10.证明已知△ABC中不能有两个钝角.11.举反例说明下列命题是假命题.(1)一个角的补角大于这个角;(2)已知直线a,b,c,若a⊥b,b⊥c,则a⊥c.12.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.13.用反例证明命题“一个锐角与一个钝角的和等于一个平角”是假命题.14.用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.15.已知直线a,b,c,且a∥b,c与a相交,求证:c与b也相交.16.用反证法证明:(1)已知:a<|a|,求证:a必为负数.(2)求证:形如4n+3的整数k(n为整数)不能化为两个整数的平方和.17.用反证法证明:等腰三角形两底角必为锐角.18.求证:两个三角形有两条边对应相等,如果所夹的角不相等,那么夹角所对的边也不相等.19.用反证法证明下列问题:如图,在△ABC中,点D、E分别在AC、AB上,BD、CE相交于点O.求证:BD和CE不可能互相平分.20.在线段AB上依次取C、D、E三点,将AB分为四段,试说明至少有一段不小于AB,同时,至少有一段不大于AB.21.如图所示,在△ABC中,AB>AC,AD是内角平分线,AM是BC边上的中线,求证:点M不在线段CD上.22.已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1.求证:这四个数中至少有一个是负数.23.设a,b,c是不全相等的任意整数,若x=a2﹣bc,y=b2﹣ac,z=c2﹣ab.求证:x,y,z中至少有一个大于零.24.用反证法证明:一条线段只有一个中点.25.如图,在△ABC中,D、E两点分别在AB和AC上,求证:CD、BE不可能互相平分.26.能否找到7个整数,使得这7个整数沿圆周排成一圈后,任3个相邻数的和都等于29?如果能,请举一例.如果不能,请简述理由.27.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.28.已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.29.已知:△ABC的三个外角为∠1,∠2,∠3.求证:∠1,∠2,∠3中至多有一个锐角.30.已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.参考答案:1.证明:假设一个三角形中有3个内角大于60°,则∠A>60°,∠B>60°,∠C>60°;∴∠A+∠B+∠C>180°,这与三角形内角和等于180°相矛盾,故在△ABC中至多有两个角大于或等于60°2.解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c >>,c >>0故a2+ab+c=+(c ﹣)>03.解:证明:假设所求证的结论不成立,即∠A>60°,∠B>60°,∠C>60°,则∠A+∠B+∠C>180°.这与内角和为180°相矛盾.则假设不成立.则求证的命题正确.故答案为:>,>,>,180°,内角和180°,假设,求证的命题正确4.证明:假设l1不平行l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l1∥l25.证明:假设a∥b,∴∠1=∠2,(两直线平行,同位角相等.),与已知∠1≠∠2相矛盾,∴假设不成立,∴a不平行b6.证明:假设AB=AC,则,∠B=∠C,与已知矛盾,所以AB≠AC 假设三角形的三个内角A、B、C中有两个直角,不妨设∠A=∠B=90°,则A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,∴∠A=∠B=90°不成立;所以一个三角形中不能有两个直角8.证明:假设如果实数a、b满足a2+b2=0,那么a≠0且b≠0,∵a≠0,b≠0,∴a2>0,b2>0,∴a2+b2>0,∴与a2+b2=0出现矛盾,故假设不成立,原命题正确9.证明:①假设PB=PC.∵AB=AC,∴∠ABC=∠ACB.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠ACB﹣∠PCB,∴∠ABP=∠ACP,在△ABP和△ACP中∴△ABP≌△ACP,∴∠APB=∠APC.这与题目中给定的∠APB>∠APC矛盾,∴PB=PC是不可能的.②假设PB>PC,∵AB=AC,∴∠ABC=∠ACB.∵PB>PC,∴∠PCB>∠PBC.∴∠ABC﹣∠PBC>∠ACB﹣∠PCB,∴∠ABP>∠ACP,又∠APB>∠APC,∴∠ABP+∠APB>∠ACP+∠APC,∴180°﹣∠ABP﹣∠APB<180°﹣∠ACP﹣∠APC,∴∠BAP<∠CAP,结合AB=AC、AP=AP,得:PB<PC.这与假设的PB>PC矛盾,∴PB>PC是不可能的.综上所述,得:PB<PC10.证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°;所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾;所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角11.解:(1)如果设∠A=100°,那么∠A的补角=80°<100°,所以命题:“一个角的补角大于这个角”是假∵a⊥b,∴∠1=90°,∵b⊥c,∴∠2=90°,∴∠1=∠2,∴a∥c.故命题:“已知直线a,b,c,若a⊥b,b⊥c,则a⊥c”是假命题12.证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;又∵AB=AC,∴∠ABC=∠ACB;∴∠ABP=∠ACP;∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC13.解:设一个锐角为30°,一个钝角为200°;则它们的度数和为230°≠180°,因此不是平角;故原命题是假命题14.解:假设a∥c不成立,则a,c一定相交,假设交点是P;则过点P,与已知直线b平行的直线有两条:a、c;与经过一点有且只有一条直线与已知直线平行相矛盾;因而假设错误.故a∥c15.证明:假设c∥b;∵a∥b,∴c∥a,这与c和a相交相矛盾,假设不成立;所以c与b也相交16.证明:(1)假设a≥0,则|a|=a,这与已知|a|>a 相矛盾,因此假设不成立,所以a必为负数;(2)假设4n+3的整数部分k能化成两个整数的平方和,不妨设这两个整数为α,β,则4n+3=α2+β2,因为(n+2)2+(﹣n2﹣1)≠α2+β2,所以假设不成立,故4n+3的整数k不能化为两个整数的平方和17.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.已知:AB=A′B′,BC=B′C′,∠B≠∠B′,求证:AC≠A′C′.证明:假设AC=A′C′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SSS),∴∠B=∠B′,∴与已知,∠B≠∠B′矛盾,则假设不成立,∴AC≠A′C′.19.证明:连接DE,假设BD和CE互相平分,∴四边形EBCD是平行四边形,∴BE∥CD,∵在△ABC中,点D、E分别在AC、AB上,∴AC不可能平行于AC,与已知出现矛盾,故假设不成立原命题正确,即BD和CE不可能互相平分20.解:假设每一段都小于AB,则四段之和小于AB,这与已知四段之和等于AB相矛盾,假设错误,所以至少有一段不小于AB ,同时,至少有一段不大于AB21.解:假设点M不在线段CD上不成立,则点M在线段CD上.延长AM到N,使AM=MN,连接BN;在△AMC和△NMB中,BM=CM,∠AMC=∠BMN,AM=MN,∴△AMC≌△NMB(SAS);∴∠MAC=∠MNB,BN=AC;∴BN>AB,即AC>AB;与AB>AC相矛盾.因而M在线段CD上是错误的.所以点M不在线段CD上22.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数23.证明:假设x,y,z都小于0,∵x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,∴2(x+y+z)=2a2﹣2bc+2b2﹣2ca+2c2﹣2ab=(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)=(a﹣b)2+(b﹣c)2+(c﹣a)2<0,∴这与(a﹣b)2+(b﹣c)2+(c﹣a)2≥0矛盾,故假设不成立,∴x,y,z中至少有一个大于零24.已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又因为AM=AB=AN=AB,这与AM<AN矛盾,所以线段AB只有一个中点M25.证明:假设CD、BE可以互相平分.则连接DE.则四边形BCED是平行四边形.∴BD∥CE与△ABC相矛盾所以:CD、BE不可能互相平分26.解:不能.理由:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排则a1+a2+a3=29,a2+a3+a4=29,a3+a4+a5=29,a4+a5+a6=29,a5+a6+a7=29,a6+a7+a1=29,a7+a1+a2=29.将上述7式相加,得3×(a1+a2+a3+a4+a5+a6+a7)=29×7.所以,与a1+a2+a3+a4+a5+a6+a7为整数矛盾!所以不存在满足题设要求的7个整数27.解:假设所有相邻的三个数,它们的和都小于33,则它们的和小于等于32.∴这21个数的和的最大值小于等于:32×21÷3=224,但是实际上,1+2+3+…+21=(1+21)×21÷2=231>224,所以假设不成立,则命题得证,∴将自然数1,2,3…21这21个数,任意地放在一个圆周上,其中一定有相邻的三个数,它们的和大于等于3328.证明:用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3不整除b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾;(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2,=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾;同理分别设a=3m±2,b=3n±1或a=3m,b=3n±2,或a=3m±2,b=3n±2,代入a2+b2会得到相同的结论.由此可知,a,b都是3的倍数29.证明:因为三角形的每一个外角都与相邻的内角互补,因为当相邻的内角是钝角时,这个外角才是锐角,又因为三角形中最多只有一个内角是钝角,所以三角形的三个外角中最多只有一个锐角30.证明:能.(1)如图a,若四点A,B,C,D构成凸四边形.则必有一个内角≤90°.不妨设为∠A.这是因为,假设四个内角都大于90°,则360°=∠A+∠B+∠C+∠D>4×90°=360°.矛盾.则∠BAC+∠CAD≤90°.则∠BAC与∠CAD 中必有一个≤×90°=45°.故结论成立.(2)如图b.若四点A,B,C,D构成四边形.则△ABC 中必有一个内角≤×180°=60°.不防设∠A≤60°.又∠A=∠BAD+∠CAD≤60°.则∠BAD与∠CAD值中必有一个≤×60°<45°.故结论成立。

数学北师大版选修2-2教材基础 第一章§3反证法 含答案

数学北师大版选修2-2教材基础 第一章§3反证法 含答案

§3 反证法反证法是一种间接证明的方法,它是通过证明原命题的否定的真实性来确立原论题的真实性的证明方法,在应用反证法证明问题的过程中以找它的逆否命题然后推出矛盾为根本.本节内容就开始学习反证法.高手支招1细品教材1.间接证明间接证明是不同于直接证明的又一类证明方法,不是直接从原命题的条件逐步推得命题成立的方法.反证法就是一种常用的间接证明方法.2.反证法(1)概念:假定命题结论的反面成立.在这个前提下,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而断定命题结论的反面不可能成立,由此断定命题的结论成立.这样的证明方法叫做反证法(有时也叫归谬法).(2)形式:由证明p⇒q转向证明:⌝q⇒r⇒…⇒t,t与假设或与某个真命题矛盾,⌝q为假,推出q为真.状元笔记反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p则q”的过程可以用框图表示为:3.反证法的证题步骤包括以下三个步骤:(1)作出否定结论的假设(反设)——假设命题的结论不成立,即假定原命题的反面为真;(2)逐步推理,导出矛盾(归谬)——从假设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)否定假设,肯定结论(存真)——由矛盾结果,断定假设不真,从而肯定原结论成立.【示例】p>0,q>0,p3+q3=2.试用反证法证明:p+q≤2.思路分析:此题直接由条件推证p+q≤2是较困难的,由此用反证法证之.证明:假设p+q>2,∵p>0,q>0,∴(p+q)3=p3+3p2q+3pq2+q3>8.又∵p3+q3=2,代入上式得:3pq(p+q)>6,即pq(p+q)>2.①又由p3+q3=2,得(p+q)(p2-pq+q2)=2.②由①②得pq(p+q)>(p+q)(p2-pq+q2),∵p+q>0.∴pq>p2-pq+q2⇒p2-2pq+q2<0⇒(p-q)2<0.但这与(p-q)2≥0相矛盾.∴假设p+q>2不成立.故p+q≤2.状元笔记归谬矛盾的几种情况:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;(3)自相矛盾;(4)与客观事实矛盾.4.反证法的适用情况(1)结论以否定形式出现;(2)结论以“至多……”“至少……”形式出现;(3)唯一性、存在性问题;(4)结论的反面是比原结论更具体,更容易研究的命题.高手支招2基础整理本节的内容主要讲述了反证法的概念、形式及其证明步骤.反证法作为间接证明的一种重要形式,为证明题的解决开辟了一条重要途径,提供了便利.本节的知识结构如下:。

2017年春浙教版八年级下4.6反证法同步练习含答案(pdf版)

2017年春浙教版八年级下4.6反证法同步练习含答案(pdf版)

∴ ∠B 一定是锐角.
16. 已知:如图,直线 AB,CD 相交.
求证:AB,CD 只有一个交点.
证明:假设 AB,CD 相交有两个交点 O 与 O′,那么过 O,O′ 两点就有

矛盾,∴ 假设不成立,∴

17. 用反证法证明” 在三角形中,至少有一个内角大于或等于 60◦ 时”,应先假设
18. 小聪,小玲,小红三人参加“普法知识竞赛”,其中前 5 题是选择题,每

(写
14. 用反证法证明“在直角三角形中,至少有一个角不大于 45◦”时,一般应先假设

第 1 页,共 3 页
15. 如图,在 △ABC 中,若 ∠C 是直角,则 ∠B 一定是锐角.
证明:假设结论不成立,则 ∠B 是


当 ∠B 是
时,
,这与
相矛盾;
当 ∠B 是
时,
,这与
相矛盾.
综上所述,假设不成立.
∴ x+y+z >0 . 这与 x + y + z ⩽ 0 相矛盾, ∴ 假设不成立,即 x,y,z 中至少有一个数大于 0 . 25. 假设 BE,CD 互相平分,则 BF = EF ,CF = DF .
在△BDF 和 △CEF 中, BF = EF ,
∵ ∠DBFF=DC=F∠,EF C,
∴ △BDF △ECF ( SAS). ∴ ∠BDF = ∠ECF . ∴ BD EC . 这与 △ABC 是三角形相矛盾, ∴ 假设不成立,即 BE,CD 不能互相平分.
A. a b
B. a 与 b 垂直
C. a 与 b 不一定平行 D. a 与 b 相交
6. 用反证法证明“三角形中至少有一个内角不小于 60◦”时,应先假设这个三角形中 ( ) A. 有一个内角小于 60◦ B. 每一个内角都小于 60◦ C. 有一个内角大于 60◦ D. 每一个内角都大于 60◦

数学:29.2《反证法》同步练习(华师大版九年级下)

数学:29.2《反证法》同步练习(华师大版九年级下)

29.2反证法◆随堂检测1、写出下列结论的反面:(1)a ∥b ______________(2)a ≥0 _______________2、用反证法证明“一个三角形中不能有两个直角”时,第一步应假设__________.3、用反证法证明“垂直于同一条直线的两条直线平行”时,第一步应__________.4、用反证法证明命题:“如果AB ∥CD ,AB ∥EF ,那么CD ∥EF .”证明的第一个步骤应是( )A .假定CD ∥EFB .假定CD 不平行于EFC .假定AB ∥EFD .假定AB 不平行于EF◆典例分析用反证法证明:四边形的四个内角不能都是锐角.分析:根据题意写出适当的已知求证,假设“四边形有四个内角都是锐角”,推出矛盾,从而证明原结论正确.已知:四边形ABCD ,求证:∠A 、∠B 、∠C 、∠D 不能都是锐角.证明:反证法假设:四边形有四个内角都是锐角∵∠A 、∠B 、∠C 、∠D 是锐角 ∴∠A+∠B+∠C+∠D 0360<这与“四边形的内角和是360°”矛盾 ∴假设不存在 ∴原命题成立◆课下作业●拓展提高1、试写出下列命题的反面:(1)a 大于2 _____________(2)a ⊥b _______________2、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________.3、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角.证明:假设结论不成立的,则∠B 是__________或_________.①当∠B 是_______时,则__________,这与____________________矛盾;②当∠B 是_______时,则__________,这与____________________矛盾.综上所述,假设不成立.∴∠B 一定是锐角. 4、反证法证明命题:若⊙O 的半径为r ,点P 到圆心O 的距离为d>r ,则点P 在⊙O 的外部.首先应假设( )A.d<r B.d≤r C.点P在⊙O 内 D.点P在⊙O上或点P在⊙O内5、用反证法证明:三角形的三个内角中,总有一个角不大于60°.6、用反证法证明:等腰三角形的底角都是锐角.参考答案◆随堂检测1、(1)直线a、b相交(2)a小于02、一个直角三角形一定有两个直角3、垂直于同一条直线的两条直线相交4、B◆课下作业●拓展提高1、(1)a小于等于2(2)a不垂直于b2、假设a=b3、直角钝角①直角∠A+∠B+∠C>1800三角形内角和180°②钝角∠A+∠B+∠C>1800三角形内角和180°4、D5、证明:假设三角形的三个内角都大于60,∵三角形的三个内角都大于60,∴三个内角的和大于1800,这与三角形内角和180°矛盾,所以原命题正确。

反证法练习题

反证法练习题

反证法精选题26道一.选择题(共18小题)1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾.②因此假设不成立.∴∠B<90°.③假设在△ABC中,∠B≥90°.④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②5.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1 6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=27.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°8.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.810.用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角11.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b12.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°13.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°14.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°15.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角( )A .小于60°B .等于60°C .大于60°D .大于或等于60°16.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于15,先要假设这五个正数( )A .都大于15B .都小于15C .没有一个小于15D .没有一个大于1517.下列说法正确的个数( )①近似数32.6×102精确到十分位: ②在√2,−(−2)2,√83,﹣|−√2|中,最小的数是√83③如图所示,在数轴上点P 所表示的数为﹣1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”⑤如图②,在△ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点A .1B .2C .3D .418.用反证法证明“a >0”时,应先假设结论的反面,下列假设正确的是( )A .a <0B .a =0C .a ≠0D .a ≤0二.填空题(共8小题)19.用反证法证明命题“三角形中至少有一个内角大于或等于60°“,应假设 .20.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是 .21.用反证法证明“如果|a |>a ,那么a <0.”是真命题时,第一步应先假设 .22.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设 .23.用反证方法证明“在△ABC 中,AB =AC ,则∠B 必为锐角”的第一步是假设 .24.用反证法证明“内错角相等,两直线平行”时,首先要假设 .25.如图,直线AB 、CD 被直线EF 所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB 与CD不平行.用反证法证明这个命题时,应先假设:.26.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的基本事实:.。

九年级数学下册 29.2 反证法精练习精析 华东师大版

九年级数学下册 29.2 反证法精练习精析 华东师大版

反证法(30分钟 50分)一、选择题(每小题4分,共12分)1.用反证法证明“直线a,b,c在同一平面内,且a⊥c,b⊥c,则a∥b”时,应假设( )A.a与b不平行B.a不垂直于cC.a,b都不垂直于cD.a垂直于b2.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°3.如图,等腰梯形ABCD中,AB∥CD,点E,F,G,H分别为各边中点,对角线AC=5,则四边形EFGH的周长为( )A.2.5B.5C.10D.20二、填空题(每小题4分,共12分)4.用反证法证明命题“如果a∥b,b∥c,那么a∥c”时,应假设________.5.(2013·呼和浩特中考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为________.6.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,则EG2+FH2=________.三、解答题(共26分)7.(8分)如图所示,在△ABC中,AB>AC,AD是内角平分线,AM是BC边上的中线,求证:点M不在线段CD上.8.(8分)用反证法证明:两条直线被第三条直线所截,如果同旁内角不互补,那么这两条直线不平行.已知:如图,直线l1,l2被l3所截,∠1+∠2≠180°.求证:l1与l2不平行.【拓展延伸】9.(10分)如图,在△ABC中,中线BD,CE相交于点O,F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形.(2)当AB=AC时,判断四边形DEFG的形状.(3)连结OA,当OA=BC时,判断四边形DEFG的形状,并证明你的结论.答案解析1.【解析】选A.a与b的位置关系有a∥b和a与b不平行两种,因此用反证法证明“a∥b”时,应先假设a 与b不平行.2.【解析】选C.用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都大于60°.3.【解析】选C.连结BD,∵E,F,G,H是等腰梯形ABCD各边中点,∴EF=GH=AC,EH=GF=BD,∵四边形ABCD为等腰梯形,∴BD=AC,∴四边形EFGH的周长=4EF=2AC=10.4.【解析】用反证法证明命题“如果a∥b,b∥c,那么a∥c”时,应假设a不平行于c.答案:a不平行于c5.【解析】∵点E,F分别为四边形ABCD的边AD,AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,∴四边形EFGH为平行四边形.又∵AC⊥BD,∴EF⊥FG,∴四边形EFGH是矩形,∴四边形EFGH的面积=EF·EH=3×4=12,即四边形EFGH的面积是12.答案:126.【解析】如图,连结EF,FG,GH,EH,设EG与HF交于点O,∵E,H分别是AB,DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.答案:367.【证明】假设点M不在线段CD上不成立,则点M在线段CD上.延长AM到N,使AM=MN,连结BN,在△AMC和△NMB中,BM=CM,∠AMC=∠BMN,AM=MN,∴△AMC≌△NMB(S.A.S.),∴∠MAC=∠MNB,AC=BN,根据M在线段CD上,则∠BAM>∠MAC,∴∠MNB<∠BAM,∴BN>AB,即AC>AB,与AB>AC相矛盾.因而M在线段CD上是错误的,所以点M不在线段CD上.8.【证明】假设l1∥l2,则∠1+∠2=180°(两直线平行,同旁内角互补),这与∠1+∠2≠180°矛盾,故假设不成立.所以l1与l2不平行.【归纳整合】反证法是一种间接证明的方法,通常在直接证明比较困难时采用这种证法.应注意的是:推论应从假设出发,即把这个假设当作已知条件对待.常见的反设表述如:至少有一个与一个也没有;至多有一个与至少有两个;唯一与没有或至少有两个;易混淆的是“都不是”的否定是“不都是”.9.【解析】(1)∵D,E分别为AC,AB的中点,∴ED∥BC,ED=BC.同理FG∥BC,FG=BC,∴ED∥FG,ED=FG,∴四边形DEFG是平行四边形.(2)如图1,当AB=AC时,平行四边形DEFG变成矩形. 理由如下:连结AO并延长交BC于点M.∵三角形的三条中线相交于同一点,△ABC的中线BD,CE交于点O,∴M为BC的中点,当AB=AC时,AM⊥BC,∵E,F,G分别是AB,OB,OC的中点,∴EF∥AO,FG∥BC,∴EF⊥FG,∴平行四边形DEFG是矩形.(3)如图2,当OA=BC时,四边形DEFG是菱形.∵D,G分别是AC,OC的中点,∴DG=AO.∵OA=BC,∴DG=FG.又∵四边形DEFG是平行四边形,∴四边形DEFG是菱形.。

数学浙教版八年级下册《反证法》习题

数学浙教版八年级下册《反证法》习题

反证法班级:___________姓名:___________得分:__________一、选择题1、应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用( )①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A.①②B.②③C.①②③ D.①②④2.否定结论“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解3、命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是()A.a<b B.a≤bC.a=b D.a≥b4、否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数二、填空题1、命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.2、用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________3、“任何三角形的外角都至少有两个钝角”的否定应_____________三、解答题1、在不等边△ABC 中,A 是最小角,求证:A <60°.2、已知x ,y >0,且x +y >2.求证:1+x y ,1+y x中至少有一个小于2.3、求证:两个三角形有两条边对应相等,如果所夹的角不相等,那么夹角所对的边也不相等.4. 若两条直线a 、b 相交则只有一个交点。

5.已知:a +b +c >0,ab +bc +ca >0,abc >0.求证:a >0,b >0,c >0.6、设a ,b ,c 是不全相等的任意整数,若x =a 2-bc ,y =b 2-ac ,z =c 2-ab .求证:x ,y ,z 中至少有一个大于零.参考答案一、选择题1、C【解析】考查反证法的基本思想2、C【解析】在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.3、B【解析】“a>b”的否定应为“a=b或a<b”,即a≤b.故应选B.4、B【解析】a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.二、填空题1、没有一个是三角形或四边形或五边形【解析】“至少有一个”的否定是“没有一个”.2、③①②【解析】由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.3、存在一个三角形,其外角最多有一个钝角【解析】全称命题的否定形式为特称命题,而“至少有两个”的否定形式为“至多有一个”.故该命题的否定为“存在一个三角形,其外角最多有一个钝角”.三、解答题1、证明:假设A≥60°,∵A是不等边三角形ABC的最小角(不妨设C为最大角),∴B≥A≥60°,C>A≥60°,∴A+B+C>180°,与三角形内角和等于180°矛盾,∴假设错误,原结论成立,即A<60°.2. 证明: 假设1+x y,1+y x 都不小于2. 即1+x y≥2,1+y x ≥2. ∵x >0,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ),即x +y ≤2,与已知x +y >2矛盾.∴1+x y ,1+y x中至少有一个小于2.3. 已知:如解图,在△ABC 和△A ′B ′C ′中,AB =A ′B ′,BC =B ′C ′,∠B ≠∠B ′.求证:AC ≠A ′C ′.证明:假设AC =A ′C ′.∵AB =A ′B ′,BC =B ′C ′,∴△ABC ≌△A ′B ′C ′(SSS ).∴∠B =∠B ′,这与已知矛盾,∴假设不成立,∴AC ≠A ′C ′.4.假设直线a 、b 不止有一个公共点,则至少有两个公共点,不妨设为A 、B ,即直线a 、b 同时过点A 、B ,也就是说过A 、B 两点可以作两条直线a 、b ,这和公理“过两点能且只能作一条直线”相矛盾,所以假设不成立,两条直线相交只有一个交点。

2017年春浙教版八年级下4.6反证法同步练习含答案(pdf版)

2017年春浙教版八年级下4.6反证法同步练习含答案(pdf版)

3. 命题“若关于 x 的一元二次方程 ax2 + bx + c = 0 (a ̸= 0) 无解,则 b2 − 4ac < 0”中,结论的反面是 ( A. b2 − 4ac > 0 B. b2 − 4ac ̸= 0 C. b2 − 4ac ⩾ 0 D. b2 − 4ac ⩽ 0 4. 下列命题宜用反证法证明的是 ( ) A. 等腰三角形两腰上的高相等 B. 有一个外角是 120◦ 的等腰三角形是等边三角形 C. 在同一平面内,若两条直线都与第三条直线平行,则这两条直线互相平行 D. 全等三角形的面积相等 5. 用反证法证明“若 a A. a b c,b c,则 a b” ,第一步应假设 ( ) B. a 与 b 垂直 C. a 与 b 不一定平行 D. a 与 b 相交
4.6 反证法—答案
答案
条直线.这 .
19. 参加学校科普知识竞赛决赛的 5 名同学 A,B ,C ,D,E 在赛后知道了自己的成绩,想尽快得知比赛的名次, 大家互相打听后得到了以下消息: (分别以相应字母来对应他们本人的成绩) 信息序号 文字信息 数学表达式 1 C 和D的得分之和是E 得分的2倍 2 B 的得分高于D B>D 3 A和B 的得分之和等于C 和D的总分 4 D的得分高于E (1)请参照表中第二条文字信息的翻译方式,在表中写出其它三条文字信息的数学表达式; (2)5 位同学的比赛名次依次是 .(仿照第二条信息的数学表达式用”>” 连接) 20. 电脑系统中有个"扫雷"游戏,要求游戏者标出所有的雷,游戏规则: 一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提 醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0 通常省略不标,为方便大家识别与印刷,我把图乙中的 0 都标出来了, 以示与未掀开者的区别) ,如图甲中的" 3 "表示它的周围八个方块中 仅有 3 个埋有雷.图乙是张三玩游戏中的局部,图中有 4 个方块己确 定是雷(方块上标有旗子) ,则图乙第一行从左数起的七个方块中(方 块上标有字母) ,能够确定一定是雷的有 . (请填入方块上的 字母) 三、解答题 21. 已知:如图,直线 a,b 被 c 所截,∠1,∠2 是同位角,且 ∠1 ̸= ∠2.求证:a 不平行于 b.

反证法(含答案)

反证法(含答案)

反证法的答案1、对于定义在实数R 上的函数()x f ,如果存在实数,0x 使(),00x x f =那么0x 叫做函数()x f 的一个好点.已知()122++=ax x x f 不存在好点,求实数a 的取值范围.解析:假设函数()x f 存在好点,即().0.0112,1222≥∆∴=+-+∴=++x a x x ax x() .2321.04122≥-≤∴≥--∴a a a 或()122++=ax x x f 不存在好点,).23,21(-∈∴a2、若二次函数()()1222422+----=p p x p x x f 在区间[]1,1-内至少存在一点,c 使()c f ,0>求实数p 的取值范围.解析:假设()x f 在区间[]1,1-内的任意一个x 都有().0≤x f 则()()()()()().3230120932012224012224010112224222222-≤≥⇒⎪⎩⎪⎨⎧≤--≤-+⇒⎪⎩⎪⎨⎧≤+---+≤+----⇒⎩⎨⎧≤-≤+----=p p p p p p p p p p p p f f p p x p x x f 或 ∴二次函数()()1222422+----=p p x p x x f 在区间[]1,1-内至少存在一点,c 使()0>c f ,实数p 的取值范围为).23,3(-3、求证:抛物线上任意不同四点所组成的四边形不可能是平行四边形.解析:如图,设抛物线方程为()()()(),,,,,,,03322112y x C y x B y x A a ax y >= ()44,y x D 是抛物线上不同的四点,则有),4,3,2,1(,22===i ay x ax y i i i i 于是.122212121212y y a ay a y y y x x y y k AB +=--=--=同理.,,143432y y ak y y a k y y a k AD CD BC +=+=+= 假设四边形ABCD 是平行四边形,则.,CD BC CD AB k k k k ==从而得,,4231y y y y ==进而得 ,,4231x x x x ==于是C A ,重合,D B ,重合,这与D C B A ,,,是抛物线上不同的四点的假设相矛盾.故假设不成立,原结论成立.4、若D C B A ,,,为空间四点,且.90︒=∠=∠=∠=∠DAB CDA BCD ABC 求证:D C B A ,,,在同一平面内.解析:如图,假设D C B A ,,,不共面,可设过点D C B ,,的平面为,α 且.α∉A 过点A 作,α⊥'A A 点A '为垂足.而.90︒=∠=∠CDA ABC 由三垂线定理的逆定理得:.90︒='∠='∠DC A BC A︒='∠∴︒=∠90.90D A B BCD (点A '在BCD ∆BCD ∆外,否则BCD ∆的内角和将大于︒180).222222.,.BD AD AB D A AD B A AB BD D A B A >+∴'>'>='+'∴ 这与︒=∠90DAB 相矛盾,故假设不成立,原结论成立.5、已知函数()().112>+-+=a x x a x f x (1)、证明:函数()x f 在()+∞-,1上为增函数. (2)、用反证法证明()0=x f 没有实数根.解析:(1)、任取(),,1,21+∞-∈x x 设,21x x <则,0,01212>>--x x ax x 且.01>x a().0112112>-=-∴-x x x x x a a a a ()()()()()()()()().01131112121212.01,012112212112112221>++-=+++--+-=+--+-∴>+>+x x x x x x x x x x x x x x x x()()∴>+--+-+-=-.0121211221212x x x x a a x f x f x x 函数()x f 在()+∞-,1上为增函数. (2)、假设存在(),1000-≠<x x 满足(),00x x f =则,12000+--=x x a x 且,100<<x a 221.1120000<<∴<+--<∴x x x 这与假设00<x 相矛盾.∴()0=x f 没有实数根. 6、求证:若方程()是实数b a b x a x ,10sin <<+=有实数根,则其实数根必唯一. 解析:假设其实数根不唯一,则至少存在两个相异的实数根,sin ,,1121b x a x x x +=则 .sin 22b x a x +=().2sin 2cos2sin sin 21212121xx x x a x x a x x -∙+∙=-=- 于是.1 (2)2sin .2sin221212*********≥∴≠-≤-∴-≤--≤-a x x x x a x x xx x x x x a x x 这与已知10<<a 相矛盾.故假设不成立,原结论成立.7、一象棋选手共n 人(),3≥n 欲将他们分成三组进行比赛,同一组中的选手都不比赛,不同组的每两个选手都要比赛一盘.试证:要想总的比赛盘数最多,对应的分组应是使他们任何两组间的人数最多相差一人.解析:设比赛盘数最多的分组法是三个组的人数分别为,,,t s r 则.n t s r =++于是比赛的总盘数是.rt st rs N ++=假设比赛盘数最多的分组法中,“任何两组间的人数最多相差一人”不成立,则至少能找到某两个组,使这两组人数只差不小于2,不妨设.2≥-t r 则在人数为r 的组中,抽到1人到人数为t 的一组中,这样得到的新分组:,1,,1+-t s r 那么这个分组共比赛盘数为:()()()().11111--+++=-++++-=t r rt st rs r t t s s r M ..11.2N M t r t r >∴>--∴≥- 这与原来假设按t s r ,,分组比赛盘数最多相矛盾,故原命题成立.8、设函数()x f 对定义域内任意实数都有(),0≠x f 且()()()y f x f y x f ∙=+成立.求证:对定义域内的任意x 都有().0>x f解析:设满足条件的任意x ,()0>x f 不成立,即存在某个,0x 有()().0.00≠≤x f x f ().00<∴x f 而().0)2()2()2()22(0200000>=∙=+=xf x f x f x x f x f 这与假设()00<x f 相矛盾,故假设不成立.∴对定义域内的任意x 都有().0>x f9、已知数列{}n a 满足:();10,1)1(21)1(3,211111≥<-+=-+=+++n a a a a a a a n n n n n n 数列{}n b 满足: ().1221≥-=+n a a b n n n(1)、求数列{}{}n n b a ,的通项公式.(2)、证明:数列{}n b 中的任意三项不可能成等差数列. 解析:.32,1).1(321.1)1(21)1(31222111n n n n n n n n n n c c a c a a a a a a =-=-=-∴-+=-+++++则令{}.)32(41)32(431)32(431.)32(431)1(.0,021.)32(431.)32(431.)32(43.32,43,43111221111112121211--+--+---⨯=⎥⎦⎤⎢⎣⎡⨯--⎥⎦⎤⎢⎣⎡⨯-=-=∴⨯--=∴<>=⨯-=∴⨯=-∴⨯=∴∴=-=n n n n n n n n n n n n n n n n n n a a b a a a a a a c c a c 的等比数列公比为是首项为数列(2)、假设数列{}n b 存在三项)(,,t s r b b b t s r <<按某种顺序成等差数列,由于数列{}n b 首项为,41公比为32的等比数列,于是有,t s r b b b >>则可能有t r s r b b b b +=2成立. .32223:23.)32(41)32(41)32(41211111s t r s r t r t r t t r s ---------∙=+⨯+⨯=⨯⨯∴得两边同乘∴<<,t s r 上式左边为奇数,右边为偶数.故上式不成立,导致矛盾. 故数列{}n b 中的任意三项不可能成等差数列.10、设函数(),23123c bx x ax x f ++-=其中.0>a 曲线()x f y =在点))0(,0(f P 处的切线方程为.1=y (1)、求.,c b(2)、设曲线()x f y =在点))(,())(,(2211x f x x f x 及处的切线都过点).2,0(证明:当21x x ≠时, ).()(21x f x f '≠'(3)、若过点)2,0(可作曲线()x f y =的三条不同切线,求a 的取值范围.解析:(1)、().2b ax x x f +-='由题意得:()().1,0.10.00==∴=='c b f f(2)、由(1)得()()..1231223ax x x f x ax x f -='∴+-=由于点))(,(t f t 处的切线方程为:),)(()(t x t f t f y -'=-而点)2,0(在切线上,.01232).0)(()(223=+-∴-'=-∴t at t t f t f则t 满足的方程为 假设).()(21x f x f '='由于曲线()x f y =在点))(,())(,(2211x f x x f x 及处的切线都过点).2,0(则下列等式成立⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=+-=+-.22212122322131.01232.01232ax x ax x x a x x a x 由③得:.21a x x =-①-②得:.432222121a x x x x =++④ 而.4343)2()()(2221212111221*********a a a x a ax x x a x a x x x x x x x x ≥+-=+-=--=-+=++ 故由④得,21a x =此时22ax =与21x x ≠矛盾.).()(21x f x f '≠'∴(3)、由(2)知,过点)2,0(可作曲线()x f y =三条不同切线,等价于方程)0)(()(2t t f t f -'=-有三个相异的实根,即等价于方程0123223=+-t at 有三个相异的实根.设).2(22)(.01232)(223at t at t t g t a t t g -=-='=+-=则由于.0>a 故有t )0,(-∞ 0 )2,0(a2a ),2(+∞a )(t g '+ 0 - 0 + )(t g极大值1极小值2413a -由()t g 的单调性知:要使()0=t g 有三个相异的实根,当且仅当.32024133>⇒<-a a∴a 的取值范围是)32(3∞+.①②③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设

9.用反证法证明 “若| a| ≠| b| ,则 a≠b”时,应假设

10.用反证法证明 “如果一个三角形没有两个相等的角,那么这个三角形不是等
腰三角形 ”的第一步

三、解答题
11.用反证法证明: 两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.
《反证法》课后练习
一.选择题
1.用反证法证明命题:如果 AB⊥CD, AB⊥ EF,那么 CD∥EF,证明的第一个步
骤是( )
A.假设 CD∥EFB.
B.假设 AB∥EF
C.假设 CD和 EF不平行 D.假设 AB 和 EF不平行
2.用反证法证明 “>ab”时,应假设( )
A.a<b B.a≤b C.a≥b D.a≠b 3.用反证法证明 “若 a>b>0,则 a2>b2”,应假设( ) A.a2< b2 B.a2=b2 C.a2≤b2 D.a2≥b2
4.用反证法证明命题 “三角形中必有一个内角小于或等于 60°时”,首先应假设这
个三角形中( )
A.每一个内角都大于 60° B.每一个内角都小于 60°
C.有一个内角大于 60° D.有一个内角小于 60°
5.用反证法证明命题: “四边形中至少有一个角是钝角或直角 ”,我们应假设( )
A.没有一个角是钝角或直角 B.最多有一个角是钝角或直角
C.有 2 个角是钝角或直角 D.4 个角都是钝角或直角 二.填空题
6.已知△ ABC中,AB=AC,求证:∠ B<90°,若用反证法证这个结论,应首先假

.Байду номын сангаас
7.用反证法证明: “三角形中最多有一个钝角 ”时,首先应假设这个三角形


8.要用反证法证明命题 “在直角三角形中,至少有一个锐角不大于 45°,”首先应
相关文档
最新文档