第六章气液固三相反应器和反应器分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)对活性衰减迅速的催化剂,可方便地排出或更换催化剂; (4)可内置和外置冷却设施,方便地排除反应热 。 缺点: (1)为从液相产物中分离固体催化剂,常需附设装置费用昂贵 的过滤设备; (2)液相连续操作时返混大,流型接近于全混流,要达到高转 化率,常需要几个反应器串联; (3)液固比高,当存在均相副反应时,会使副反应增加; (4)催化剂颗粒会造成搅拌浆、循环泵、反应器壁的磨损。
(4)当催化剂由于积炭,中毒而失活时,更换催化剂不方便。
图7.1(b)适应于当气相反应物浓度较低,而又要求气相组分达到 较高转化率时的情况,逆流操作有利于增大过程的推动力。但同时 会增加气相流动阻力,当气液两相的流速较大时,还可能出现液泛。
图7.1(c)为气液并流向上的填料鼓泡塔反应器,持液量大,液相 和气相在反应器中混合好,液固间的传热性能好,适用于反应热效 应较大、反应速率快、传热要求高的场合。这种反应器有以下优缺 点:
2.气-液-固悬浮三相反应器
固体在气液混合物中呈悬浮状态,这样操作状态的反应器为气-液-固 悬浮反应器。气-液-固悬浮反应器可以按有无机械搅拌、流体流向、颗粒 运动状态等进行分类。大体可以分为:
(1)机械搅拌的气-液-固悬浮反应器; (2)不带机械搅拌的鼓泡三相淤浆反应器; (3)不带机械搅拌的两流体并流向上的流化床反应器; (4)不带搅拌的两流体并流向上带出固体颗粒的三相携带床反应器; (5)具有导流筒的鼓泡式的内环流反应器。
图7.2 固体悬浮型淤浆反应器
一般情况下,这两种反应器多用于半连续半间歇操作;液体 和固体一次加入反应器,气体连续通入。
淤浆床反应器的优点: (1)持液量大,具有良好的传热、传质和混合性能,反应 温度均匀,反应器中无热点存在,对强放热反应,也不会发 生超温现象; (2)采用很细的催化剂颗粒(10~100μm),催化剂内外的 传递阻力均较小,即使对快速反应,效率因子也能接近1, 能充分发挥催化剂的作用;
7.1.3 气-液-固反应过程研究所涉及的模型和参数
气液固反应过程,同样涉及到化学动力学,各相的流动 与混合状况,相间的质量、热量、动量传递等。由于相的增 加,物料流动与混合、质量、热量、力量传递过程要比两相 复杂,它涉及更多的参数。
1.流动模型及相关参数 (1)反应器的流动模型决定了三相间的传递特性,决定 了反应器尺度上的物料、温度、浓度和压力分布;
优点 (1)即使液体流量很小也容易实现均匀分布; (2)催化剂微孔易于完全充满液体,有利于提高催化剂的效率因子; (3)液体对催化剂的冲刷作用强,能延缓催化剂失活,延长操作周期; (4)气液相间的传质系数较大。
缺点 (1)因存在较大返混,使转化率下降; (2)必须采取适当的机械措施固定催化剂,否则会造成床层流态化 带走催化剂; (3)流动阻力大,气相反应物分压沿床高会明显下降; (4)气相反应物向催化剂表面传递阻力较大; (5)均相副反应量越大。
1.固定床气-液-固反应器,固体在床内固定不动。随两流体 流动方向又可以分为三种方式操作,即气体和液体并流向下, 气体和液体并流向下 ,并流向上流动和逆向流动(通常是液 体向下流动,气体向上流动)见图7.1。
图7.1 固体固定型三相反应器
液体从上而下,以很薄的膜状通过固体颗粒的固定床,连续 气体以并流或逆流的形式通过床层并与液固两相接触,正常情况 下,两流体是并流向下通过固体颗粒如图7.1(a)为滴流床。
2.本征动力学 大 多 数 反 应 系 统 , 可 用 幂 函 数 表 达 式 或 用 Langmuir-
Hinshelwood模型,表达本征动力学。对实验数据拟合,并求得 动力学参数。对于催化反应,必须要有催化剂失活的动力学及 动力学参数。 3.气液、液固的传质、传热
图7.2(a)机械淤浆反应器中的催化剂颗粒通常小于1mm,随 液相反应物一起排出,该反应器适用于三相反应过程的开发研 究阶段及小规模生产。
图7.2(b)鼓泡塔淤浆反应器借助于气流鼓泡作用使固体颗粒 悬浮于液相中,由于不同搅拌作用颗粒悬浮与分散,混合的动 力,更适宜于大规模生产中使用。在作为槽式反应器时,三相 均可近似按全混流,当高径比大时,如高径比大于8~10时,两 流体可近似按平推流。
滴流床反应器的优点: (1)气液流型接近于平推流,返混小,在单个反应器中可以达 到高的转化率; (2)持液量(即液固比)小,当伴有均相副反应时,可使其影 响降低到最低; (3)催化剂表面的液膜很薄,气相反应物穿过液膜扩散到催化 剂表面的阻力小; (4)采用气液并流向下操作时,不从在液泛问题。气相流动阻 力小,在整个反应器内气相反应物分压均匀,且可降低气体输 送的能耗 。
第七章 气液固三相反应器和反应器分析
7.1 概述
7.1.1 气液固三相反应类型 按处理物料的性质主要有下列类型
(1) 气体、液体、固体或是反应物或是产物的反应; (2) 固体为催化剂的气-液-固三相反应; (3) 两个反应相,第三个是惰性相。
7.1.2 气液固反应器类型
工业气-液-固反应器按固体颗粒与流体接触状况可 以 分为固定床和悬浮床两类。
(2)流型主要取决于气相和液相的流速及它们的相对流 向、流体的性质及气液两相的分布器结构和尺寸、固体的 性质和大小以及固体物的浓度、反应器的长度和直径、有 无搅拌、搅拌方式和搅拌器的结构及搅拌强度等;
(3)流体在反应器内轴向和径向上的均匀性,对反应器 性能有很大影响;
(4)过程可以通过测定各个流素停留时间分布描述各流 素的流动与混合状态。然后用适宜的流动模型模拟,并求 相应的模型参数,如多级全混流的釜数N或轴向、径向 Peclet准数Pez,Per。
wk.baidu.com
滴流床反应器的缺点 (1)传热能力差,容易引起催化剂床层局部过热,造成催化剂
容易失活,或由于液膜过量汽化,使部分催化剂不能发挥用; (2)液流速率低时,可能由于液体分布不均匀(如短路、沟流等)
导致部分催化剂未被润湿,影响反应效果; (3)为避免床层流动阻力过高,催化剂颗粒不能太小,通常
4~10mm, 在反应速率较快时,会由于内扩散影响而导致催化剂 效率因子低下;
相关文档
最新文档