电动力学
电动力学的第一章总结
第一章 电磁现象的普遍规律本章重点:从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
主要内容:讨论几个定律,总结出静电场、静磁场方程;找出问题,提出假设,总结真空中麦氏方程; 讨论介质电磁性质,得出介质中麦氏方程; 给出求解麦氏方程的边值关系;引入电磁场能量,能流并讨论电磁能量的传输。
§1. 电荷和静电场一、 库仑定律和电场强度1. 库仑定律一个静止点电荷Q 对另一静止点电荷Q '的作用力为:34rrQ Q F o πε'=⑴ 静电学的基本实验定律 (2)两种物理解释超距作用: 一个点电荷不需中间媒介直接施力与另一点电荷。
场传递: 相互作用通过场来传递。
对静电情况两者等价。
2. 点电荷电场强度每一电荷周围空间存在电场:即任何电荷都在自己周围空间激发电场。
它的基本性质是:电荷对处在其中的其它电荷具有作用力。
对库仑定律重新解释:描述一个静止点电荷激发的电场对其他任何电荷的电场力。
描述电场的函数——电场强度定义:试探点电荷F ,则30()4F Q rE x Q rπε==' 它与试探点电荷无关,给定Q ,它仅是空间点函数,因而是一个矢量场——静电场。
3.场的叠加原理(实验定律)n 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:3110()4nni ii i i i Q r E x E r πε====∑∑。
4.电荷密度分布体密度: ()0limV Q dQx V dVρ∆→∆'==''∆ 面密度: ()0lim S Q dQx S dS σ∆→∆'==''∆ 线密度 : ()0lim l Q dQx l dl λ∆→∆'==''∆ ()dQ x dV ρ''=()()(),,VSLQ x dV Q x dS Q x dl ρσλ''''''===⎰⎰⎰5.连续分布电荷激发的电场强度()30()4Vx r E x dV r ρπε''=⎰或()30()4S x r E x dS rσπε''=⎰ 或 ()30()4L x rE x dl r λπε''=⎰ 对于场中的一个点电荷,受力F Q E '=仍然成立。
电动力学三一(矢势及其微分方程)
15 8
2a2
(z2 a2
)2
取A的旋度,得
B
A z
30Ia 2z
4(z2 a2 )5/ 2
1
O
z
2
2 a
2
45
BZ
1
(
A
)
4( z 2
0I a2 a2)3/2
1
2
z2 a2
15 a2 4(z2 a2
)
3
O
2
z2 a2
2
上式对任意z处的近轴场成立。若求 近原点处的场,z<<a ,可把上式再 对z/a展开,得
]
此式的适用范围是 2Ra sin R2 a2
包括远场 R a
和近轴场 Rsin a
44
我们计算近轴场。这种情况下用柱坐
标(,,z) 较为方便。展开式实际上是
对 2 /(z2 a2 ) 的展开式。 取至3项,有
A
(
,
z)
0Ia 2
4(z2 a2 )5/
2
1
3 2
2(z2 a2
)
B
30 Iz
4a 3
BZ
0I
2a
1
3 4a
(2z2
2 )
46
磁场边值关系可以化为矢势A的边值
关值系关,系对为于非铁磁介质, 矢势的边 n ( A2 A1 ) 0
n
(
1
2
A2
1
1
A1 )
26
上述边值关系式也可以用较简单的形式代替。
在分界面两侧取 一狭长回路,计
算A对此狭长回路
的积分。回路短 边长度趋于零
27
A dl ( A2t A1t )l
电动力学
英国物理学家和化学家。
最主要贡献:1831年发现了电磁感应现象。 1834年他研究电流通过溶液时产生的化 学变化,提出了法拉第电解定律。这一定 律为发展电结构理论开辟了道路。 1845年9月13日法拉第发现,一束平面偏 振光通过磁场时发生旋转,这种现象被称 为“法拉第效应”。法拉第认为光具有电 磁性质,是光的电磁波理论的先驱 1852年他引进磁力线概念。 他的很多成就不仅非常重要、且是带根 本性的理论。
单位张量与矢量、 张量的点乘
I C C I C I AB AB I AB
I : AB A B
2 B A 1.计算 A B A B 2.证明 M b a c a b c 与矢量 c 垂直,即 M c 0
林斯顿。遵照他的遗嘱,不举行任何丧礼,不筑坟 墓,不立纪念碑,骨灰撒在永远对人保密的地方, 为的是不使任何地方成为圣地。 爱因斯坦的后半生一直从事寻找大统一理论的工作, 不过这项工作没有获得成功,现在大统一理论是理 论物理学研究的中心问题。 爱因斯坦是耶路撒冷希伯来大学的注册商标
§2 矢量代数与张量初步
难点:公式多、数学推导较繁杂;解题难度大、
相对论概念不易理解。
二、电动力学与电磁学的联系与区别
范围
既讨论静场又讨论变化场,外加相对论。
深度
从矢量场论出发,总结电磁现象普遍规律,解题更具一般性。
方法
建立模型、求解方程、注重理论。
数学
矢量分析与场论、线性代数、数理方程、特殊函数 „
三、理论物理的特点
电动力学公式总结
电动力学公式总结电动力学是物理学中研究电荷间相互作用及其相关现象的分支学科。
电动力学公式是描述电场、电势、电流、电荷等电动力学量之间关系的数学表达式。
本文将总结常见的电动力学公式,并进行简要解释。
1. 库仑定律(Coulomb's Law)库仑定律用于描述两个电荷之间的相互作用力。
假设两个电荷分别为q1和q2,它们之间的作用力F由以下公式给出:F = k * (q1 * q2) / r^2其中,k为库仑常数,r为两个电荷间的距离。
2. 电场强度(Electric Field Strength)电场强度描述在给定点附近单位正电荷所受到的力的大小和方向。
电场强度E由以下公式给出:E =F / q其中,F为单位正电荷所受的力,q为正电荷的大小。
3. 电势差(Electric Potential Difference)电势差描述电场对电荷进行的功所引起的状态变化。
电势差V由以下公式给出:V = W / q其中,W为电场对电荷进行的功,q为电荷的大小。
4. 高斯定理(Gauss's Law)高斯定理是一个描写电场线分布和电荷分布之间关系的重要定理。
它表示电场的流出和流入电荷的总和等于电荷总量除以真空介电常数ε0。
该定理由以下公式给出:∮E · dA = (1 / ε0) * Q_enclosed其中,E为电场强度,dA为微元的面积矢量,Q_enclosed为电荷的总量。
5. 法拉第电磁感应定律(Faraday's Law of Electromagnetic Induction)法拉第电磁感应定律描述通过磁场的变化引起的电场变化。
它由以下公式给出:ε = -dΦ/dt其中,ε代表感应电动势,dΦ/dt为磁通量的变化率。
6. 奥姆定律(Ohm's Law)奥姆定律描述了电流、电压和电阻之间的关系。
根据奥姆定律,电流I等于电压V与电阻R的比值,即:I = V / R其中,I为电流,V为电压,R为电阻。
电动力学(全套课件)ppt课件
电磁波的传播遵循惠更斯原理,即波 面上的每一点都可以看作是新的波源。
电磁波在真空中的传播速度等于光速, 而在介质中的传播速度会发生变化。
电磁波的能量与动量
01
电磁波携带能量和动量,其能量密度和动量密度与 电场和磁场的振幅平方成正比。
02
电磁波的能量传播方向与波的传播方向相同,而动 量传播方向则与波的传播方向相反。
03
电磁波的能量和动量可以通过坡印廷矢量进行描述 和计算。
06
电动力学的应用与发展前 景
电动力学在物理学中的应用
描述电磁现象
电动力学是描述电荷和电流如何 产生电磁场,以及电磁场如何对 电荷和电流产生作用的理论基础。
解释光学现象
光是一种电磁波,电动力学为光 的传播、反射、折射、衍射等现 象提供了理论解释。
麦克斯韦方程组与电磁波
01
麦克斯韦方程组是描述电磁场的基本方程组,包括高斯定律、 高斯磁定律、法拉第电磁感应定律和安培环路定律。
02
电磁波是由变化的电场和磁场相互激发而产生的,其传播速度
等于光速。
麦克斯韦方程组揭示了电磁波的存在和传播规律,为电磁学的
03
发展奠定了基础。
电磁波的性质与传播
电磁波具有横波性质,其电场和磁场 振动方向相互垂直,且都垂直于传播 方向。
电场能量
W=∫wdV,表示整个电场 中的总能量。
功率
P=UI,表示单位时间内电 场中消耗的能量或提供的 能量。
04
恒磁场
磁感应强度与磁场强度
磁感应强度的定义与物理意义 磁感应强度与磁场强度的关系
磁场强度的定义与计算 磁场的叠加原理
安培环路定理与磁通量
01
安培环路定理 的表述与证明
电动力学
4. 磁场的散度
磁场的通量
磁场的散度 S 任意
S B dS 0
S B dS V ( B)dV 0
B 0
恒定磁场的另一基本方程。
B 0J
B 0
结论: 恒定磁场 ——无源,有旋
5. 例题(p.13 例)
电流 I 均匀分布于半径为 a 的无穷长直导线内,求空
间各点磁感应强度,并由此计算磁场的旋度。
1. 介质的概念
介质
分子
原子核:正电荷 电子: 负电荷
电中性 分子电流杂乱
宏观物理量 ← 微观量的平均 (宏观无穷小 内包含 大量的微观粒子)
外场
正负电荷相对位移,极性分子取向 —— 极化
分子电流取向规则化
—— 磁化
束缚电荷(极化电荷)→ 附加电场 E’
诱导电流(磁化电流等)→ 附加磁场 B’
2. 介质的极化
r
dV
'
JdV ' JdSdl Idl
B( x)
0 4
Idl
r
r3
3. 磁场的环量和旋度
安培环路定理:
L B dl 0I 0 S J dS
磁场的旋度
L B dl S ( B) dS
S 任意
B 0J
讨论: (1) 安培环路定理的微分形式,恒定磁场的基本方程 (2) 某点磁场的旋度只与该点的电流密度有关
)
t
(1) 法拉第电磁感应定律的微分形式
(2) 感应电场是有旋场
(3) 感应电场是由变化磁场激发的
2. 位移电流
电荷守恒定律
J
0
非恒定电流
磁场旋度
t
B 0J
矛盾!?
B 0 J 0
电动力学总结
(3)无限大均匀线性介质中点电荷
Q 4 r
点电荷在均匀介质中 的空间电势分布(Q 为自由电荷)
Q 产生的电势 Q P产生的电势
f
Qf
4 0 r
P
QP
4 0 r
(QP
(0
1)Qf
)
( 4) 连续f 分 布P 电 荷Q 4 f 0 (Q r PP ) 4 VQ f4 (rx )d 0 rV
机动 目录 上页 下页 返回 结束
值关系表达式*
nˆ D
nˆ nˆ nˆ
B 0
E H
0α
其它边值关系*
Ñ Ñ sLPM rrddSrLrsVJrMpddVSr nrnrPr2M r2Pr1 M r1prM
r
s Jf
dSr d dt
dVnr
V
rr J2 J1
f
t
7.电磁场的能量和能流 单位体积的能量 --- 能量密度
Ñ r r r r L B • d l0S rJ • d S r
安培环路定律*
旋度方程 B0J
uv
磁场的散度方程 B0
法拉第电磁感应定律
Ñ LiE rird lrdd t Bd dt(S其 B r中 dS r B EriSB rd S Brtr)
Ei 0 感生电场是有旋无源场
rr r
总电场为: ErESEi r B r
)
r
2 2
f (r) 0
g ( ) a 1s in a 2c o s
r r f (r) 有两个线性无关解 、
单值性要求 (0)(2),只能取整数,令 n
( r ,) r n ( A n s in n B n c o s n ) r n ( C n s in n D n c o s n ) n 1
论动体的电动力学
论动体的电动力学
1 电动力学:内在的奥秘
电动力学是一门集电动力、机械力和能源学在一起的力学学科,一般用于研究运动物体中所发挥的力和活动时所显示的能量行为。
它也是一门研究系统如何响应外力,释放动能和在运动过程中发挥力的学科,是机械、电、光、声、振动等力学系统的综合研究。
电动力学的研究通常涉及两个主要工作领域:动力学和电磁学。
从动力学的角度研究,主要包括分析力对物体的作用,物体的运动和物体在运动过程中的变形;从电磁学的角度研究,主要包括研究运动物体的电磁特性,如电流回路、电磁电容、静电源和电磁感应等。
在可应用性方面,电动力学发挥了巨大的作用,它可以解释各种物理系统如发动机、飞机涡扇发动机、磁力传动机等。
其中真空电动力学是电动力学的一个重要应用,它研究的实体介质的重要研究,是关于介质的真空电磁性能及真空电气磁学变换的研究,用于分析实体介质在真空条件下的电磁特性。
电动力学也是电工学中重要的一个分支,由电磁感应理论和电磁学变换理论组成,用于解释地球运动、地球潮汐运动等不同运动系统中发生的电磁运动。
它也为量子电动力学提供理论支持,在作用等离子体中,用电磁学变换原理,通过磁场在原子核中加速粒子,产生X 射线。
电动力学的研究和应用已逐渐发展趋向复杂,它不仅在物理和工程中具有强大的启发作用,而且在探索物质本质的深层奥秘中也发挥着重要的作用。
在未来,电动力学的研究将给人们带来更多惊喜,将为更多的实际应用服务,也将深入探索系统复杂性和非线性动力学之间的关系。
物理学中的电动力学
物理学中的电动力学电动力学是现代物理学中的一门重要分支,它探讨电磁场的产生、传播和相互作用的规律。
电动力学的理论基础是麦克斯韦方程组,它们描述了电场和磁场如何相互作用,进而解释了电磁波的传播。
本文将通过介绍电动力学的基本概念、麦克斯韦方程组的推导和电磁波的产生等方面,来深入了解电动力学的本质。
一、电动力学的基本概念电动力学研究的对象是电子、离子和电磁场。
电荷是电磁作用的基本单位,它们之间的相互作用遵循库仑定律。
当电子移动时,它们产生了电场;当它们作用于磁场时,它们产生了磁场。
电场和磁场是由电子的运动产生的,它们彼此相互联系,共同构成了电磁场。
电动力学研究的问题包括如何产生电磁场、电磁场如何传播、电磁场如何与物质相互作用等。
二、麦克斯韦方程组的推导麦克斯韦方程组是电动力学中最基本的公式,它们由麦克斯韦于19世纪提出,包括四个公式:1. 散度定理:电场的散度是电荷密度,即$$\nabla \cdot E = \frac{\rho}{\epsilon_0}$$其中,E表示电场,$\rho$表示电荷密度,$\epsilon_0$表示真空中的电介质常数。
2. 法拉第电磁感应定律:变化的磁场会激发电场,即$$\nabla \times E = - \frac{\partial B}{\partial t}$$其中,B表示磁场。
3. 高斯定理:磁场的散度为零,即$$\nabla \cdot B = 0$$4. 安培定理:电流激发磁场,即$$\nabla \times B = \mu_0 J + \mu_0\epsilon_0 \frac{\partial E}{\partial t}$$其中,J表示电流密度,$\mu_0$表示真空中的磁导率。
这四个公式描述了电场、磁场和电荷密度、电流密度之间的相互作用,说明了它们是如何互相影响相互作用的。
三、电磁波的产生和传播电磁波是电动力学的重要研究对象,它是指由电场和磁场构成的一种波动现象,具有传播能力和能量传递能力。
电动力学的基本原理
电动力学的基本原理电动力学是物理学中研究电荷产生的相互作用以及它们对电场和电磁场的影响的分支学科。
它是理解和应用电磁现象的基础,广泛应用于电子工程、通信技术和能源领域等。
本文将详细介绍电动力学的基本原理。
一、库仑定律库仑定律是电动力学中最基本的定律之一,基于电荷间的相互作用。
库仑定律表明,电荷之间的相互作用力与它们之间的距离成反比,与它们的电量成正比。
数学表达式为:\[F = K \frac{q_1 q_2}{r^2}\]其中,F表示电荷之间的相互作用力,K是库仑力常数,\(q_1\)和\(q_2\)分别表示两个电荷的电量,r表示它们之间的距离。
根据库仑定律,同性电荷之间的相互作用力是斥力,异性电荷之间的相互作用力是引力。
二、电场和电场力电场是由电荷产生的一种物理场。
任何一个电荷在周围产生一个电场,该电场会对其他电荷施加电场力。
电场力的大小与电荷间的距离成反比,与电荷的大小成正比。
数学表达式为:\[E = \frac{F}{q}\]其中,E表示电场强度,F表示电场力,q表示电荷量。
电场强度的单位为牛顿/库仑。
电场是矢量场,它的方向由正电荷的运动方向决定。
三、高斯定律高斯定律是电动力学中的重要定律之一,描述了电场可由电荷分布产生的情况。
高斯定律可以通过表明电场线经过一个闭合曲面的通量等于该曲面内的电荷总量除以真空介电常数来表示。
数学表达式为:\[\Phi = \oint E \cdot dA = \frac{Q}{\varepsilon_0}\]其中,\(\Phi\)表示电场通过闭合曲面的通量,E表示电场强度,dA表示曲面上一个微小面元的面积,Q表示闭合曲面内的电荷总量,\(\varepsilon_0\)是真空介电常数。
四、电场的能量电荷在电场中具有势能,其势能大小和位置有关。
电场中的电势能可以通过电势来表示。
电势是描述场中某一点上单位正电荷所具有的势能的物理量。
电势差是指电场沿某一方向的电势变化。
电动力学
基地拓展训练子课题
分子反应动力学是在分子和原子的水平上观察和研究化学 反应的最基本过程——分子碰撞;从中揭示出化学反应的 基本规律,使人们能从微观角度直接了解并掌握化学反应 的本质。
准经典轨线法的基本思想是,将A、B、C三个原子都近似 看作是经典力学的质点,通过考察它们的坐标和动量(广义 坐标和广义动量)随时间的变化情况,就能知道原子之间是 否发生了重新组合,即是否发生了化学反应,以及碰撞前 后各原子或分子所处的能量状态。通过计算各种不同碰撞 条件下原子间的组合情况,并对所有结果作统计平均,就 可以获得能够和宏观实验数据相比较的理论动力学参数。
《电动力学》授课计划表
《电动力学》授课计划表
——2015-2016学年第1学期
本学期上课18周(包括国庆节放假1周) 实际讲课17周,共34讲
《电动力学》授课计划表
《电动力学》授课计划表
绪论
《电动力学》课程考试办法:
⑴ 闭卷笔试 ⑵ 课堂学习 ⑶ 课下作业 (4) 小论文
占 70%; 占10%; 占10%; 占 10%。
绪论
小论文要求: (1) 格式正确,具体格式要求同中文核心期刊正式论
文; (2) 内容新颖、充实,经过自己的独立思考; (3) 严禁从网络上直接下载,严禁互相抄袭; (4) 与自然科学密切相关,与物理学相关; (5) 论文书写用时应在10课时以上,字数应在5K+; (6) 若10月10日补课,安排宣讲小论文; (7) 2015年12月31日前网上提交小论文。
基地拓展训练子课题
具体训练内容和计划安排如下:
(1)阅读相关资料,理解势能面的概念;通过分析势能面的结 构形状,理解插入反应和取代反应。
物理高中物理电动力学重点解析
物理高中物理电动力学重点解析物理电动力学重点解析电动力学是物理学中的重要分支,研究的是电荷的相互作用和电场、电势、电流、电容、电感等基本概念及其相互关系。
在高中物理学习中,电动力学是一个重要的章节,掌握其中的重点内容对于理解和应用电动力学原理具有关键作用。
本文将针对高中物理电动力学的重点内容进行解析和讲解。
一、电荷和库仑定律在电动力学中,最基本的概念之一就是电荷。
电荷分为正电荷和负电荷,它们之间存在相互吸引或者排斥的力。
根据庞加莱定律,两个电荷之间的相互作用力正比于它们的电荷量的乘积,并反比于它们之间距离的平方。
这就是著名的库仑定律。
二、电场和电场力线电场是指在某一点受到电荷作用所产生的力的体现。
在电场中,电荷会受到电场力的作用,这个力大小和电荷量以及电场强度有关。
为了更直观地观察电场的分布情况,可以通过绘制电场力线来展示。
电场力线是从正电荷指向负电荷的,而且与电场力的方向相同。
三、电位和电势差电位是指单位电荷所具有的电势能,而电势差则是指两个点之间单位电荷由于电荷位置的改变而发生的电势能变化。
电位和电势差是电势的度量,可以用于描述电荷在电场中的状态。
电势差与电荷移动的路径无关,只与初末两点之间的电荷位置有关。
四、电流和欧姆定律电流是指单位时间内通过导体横截面的电荷数量,通常用字母 I 表示。
电流的大小与载流子数量和速度有关。
欧姆定律是描述电流与电压、电阻之间关系的定律。
根据欧姆定律,电流等于电压与电阻的比值,即 I = U/R。
五、电阻和电阻定律电阻是指导体抵抗电流通过的特性,用字母 R 表示。
电流通过导体时会遇到电阻,导致电阻中有一部分电能转化为热能。
欧姆定律描述了电流与电压、电阻之间的关系,而欧姆定律的倒数则是电导率。
根据电阻定律,电阻与导体的长度、横截面积以及导体材料的电阻率有关。
六、电流和电量的关系电流和电量是电动力学中常见物理量,它们之间存在一定的关系。
电流等于单位时间内流过某一点的电量。
电动力学教学大纲
电动力学教学大纲
一、电场
1. 电荷与电场
- 定义电荷及电荷的性质
- 研究电场及其性质
- 探讨电场的表达式及其应用
2. 电场的性质
- 讨论电势的概念及其性质
- 推导电势的公式及应用
- 研究电场运动的方程和电场对物体的作用力
二、静电场
1. 静电场中的电荷分布
- 推导电荷分布的方程
- 讨论静电平衡和电容器的基本原理
- 探索导体和介质中的静电
2. 静电场中的能量和场线
- 推导静电场能量密度的公式
- 研究场线的性质及其应用
- 讨论静电场的一个例子:电子束的偏转
三、电流和电路
1. 电流和电阻
- 定义电流和电阻
- 推导欧姆定律
- 探究电路中的功率和电耗
2. 串联和并联电路
- 推导串联和并联电路的公式
- 讨论串联和并联电路的性质及实际应用
- 探索复杂电路的求解方法
四、磁场和电磁感应
1. 磁场和磁通量
- 定义磁场和磁场的性质
- 推导磁通量的公式及其性质
- 研究磁场对物质的作用
2. 安培定理和电磁感应
- 推导安培定理的公式
- 探究电磁感应的基本原理及其应用
- 讨论电磁振荡和电磁波等相关现象
以上为电动力学的主要内容和教学大纲,掌握这些知识点,可以帮助学生更好地理解和应用电动力学相关理论,为日后的工作和研究提供基础。
电动力学知识点总结
电动力学知识点总结电动力学是物理学中的一个分支,主要研究电荷、电场和电流之间的相互作用。
它是现代科技中的基础知识之一,广泛应用于电力工程、电子技术、通信工程等领域。
下面对电动力学的知识点进行总结。
1.电荷:电动力学的研究对象是电荷,分为正电荷和负电荷。
同性电荷相互排斥,异性电荷相互吸引。
2.电场:电荷周围存在一个电场,是电荷在空间中产生的一个物理量。
电场的特点是具有方向和大小。
电场的方向是从正电荷指向负电荷,电荷周围的电场线是从正电荷出发,指向负电荷。
3.电场强度:电场强度定义为单位正电荷受到的力,用E表示。
电场强度的方向与电场的方向一致。
4.电势:电势是描述电场状态的物理量。
电势是单位正电荷所具有的势能。
正电荷从高电势区域移动到低电势区域时,将具有正的电势能变化;负电荷则相反。
电势可用电势差表示,即两点间的电势差等于沿着电力线方向,单位正电荷在两点之间移动时所做的功。
5.电容:电容代表了电场在两个导体之间存储能量的能力。
电容的单位是法拉(F)。
电容与电势差和电荷量成正比,与两个导体的距离成反比。
6.高斯定理:高斯定理是电动力学的重要基本原理之一,描述了电场与电荷之间的关系。
高斯定理表明,通过任意闭合曲面的电通量等于该曲面内包围的总电荷。
7.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场和电流之间的相互关系。
当导体中的磁通量发生变化时,将产生感应电流。
8.电流:电流是电荷的移动产生的现象。
电流的大小等于单位时间内通过导体横截面的电荷量。
9.欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系。
欧姆定律表明,电流等于电压与电阻之间的比值。
10.电阻:电阻是材料对电流流动的阻碍程度的物理量。
电阻的单位是欧姆(Ω)。
11.电磁感应:电动力学中的电磁感应现象包括法拉第电磁感应、互感、自感等,是现代发电、电动机、变压器等电力工程中的基础原理。
12.磁场:电动力学中的磁场是由磁铁或电流产生的,它具有方向和大小。
电动力学_知识点总结
电动力学_知识点总结电动力学是物理学的一个重要分支,研究电荷和电场、电流和磁场之间的相互作用关系。
电动力学的基础是库仑定律和安培定律,它们描述了电场和电流的性质和行为。
接下来,我将对电动力学的几个知识点进行总结。
一、电场和电荷:1.电场的概念:电场是由电荷产生的一种物理场,它是一个向量场,用于描述空间中特定点处存在的电荷所受到的力的方向和大小。
2.电场强度(电场):电场强度是电场力对单位正电荷施加的力,用矢量E表示,其大小等于单位正电荷所受到的电场力。
3.电场线:电场线是空间中表示电场方向的线条,它的切线方向表示该点的电场强度方向,且电场线从正电荷出发,朝向负电荷。
二、电场与电荷的相互作用:1.库仑定律:库仑定律描述了两个点电荷之间的静电相互作用力的大小和方向。
库仑定律可以表示为F=k*q1*q2/r^2,其中F为电荷间的静电力,k为库仑常量,q1和q2为两个电荷的大小,r为它们之间的距离。
2.常见电荷分布:点电荷、均匀线电荷、均匀面电荷和均匀体电荷。
三、电势与电势能:1.电势:电势是描述电场力对单位正电荷进行的功的大小,用标量量Ep表示。
电势与点电荷所在位置有关,又称为“电势点”,在电场中,点电荷与电势点的距离越近,电势值越高。
2.电势能:电势能是电荷由一个位置移动到另一个位置时,电场力所做的功,用标量量表示。
四、电场中的电荷运动:1.电荷受力:在电场中,电荷受到电场力的作用,电场力与电荷的大小和方向成正比,方向与电场强度方向一致。
2.给电荷加速:在电场中,当电荷受到电场力的作用时,会加速运动,其运动的加速度与电场力与电荷质量的比值成正比。
3.电流:电流是指单位时间内通过横截面的电荷数,用I表示。
电流的方向与正电荷流动方向相反。
4.安培定律:安培定律描述了电流和磁场之间的相互作用,即电流在磁场中受到的力。
安培定律可以表示为F=BIL,其中F为电流受到的安培力,B为磁场强度,I为电流大小,L为电流段的长度。
电动力学重点知识总结(期末复习必备)
电动力学重点知识总结(期末复习必备).doc 电动力学重点知识总结(期末复习必备)第一部分:电场与电势1. 电场强度(E)定义:单位正电荷在电场中所受的力。
公式:[ \vec{E} = \frac{\vec{F}}{q} ]性质:矢量,方向为正电荷受到的力的方向。
2. 电势(V)定义:单位正电荷从无穷远处移动到某点所需的能量。
公式:[ V = \frac{W}{q} ]性质:标量,与参考点的选择有关。
3. 电势能(U)定义:电荷在电场中的能量状态。
公式:[ U = qV ]4. 电场线的绘制规则从正电荷出发,指向负电荷。
电场线不相交。
第二部分:高斯定理1. 高斯定理的表述通过闭合表面的电通量等于闭合表面内总电荷量除以电常数。
2. 高斯定理的应用计算对称性电场问题,如球对称、圆柱对称等。
第三部分:电容器与电容1. 电容器定义:两个导体板之间用绝缘介质隔开的装置。
功能:存储电荷和能量。
2. 电容(C)定义:电容器存储电荷的能力。
公式:[ C = \frac{Q}{V} ]单位:法拉(F)。
3. 电容器的充电与放电充电过程:电容器两端电压逐渐增加至电源电压。
放电过程:电容器两端电压逐渐降低至零。
第四部分:电流与电阻1. 电流(I)定义:单位时间内通过导体横截面的电荷量。
公式:[ I = \frac{Q}{t} ]2. 电阻(R)定义:导体对电流的阻碍作用。
公式:[ R = \frac{V}{I} ]3. 欧姆定律表述:在恒定温度下,导体的电阻与其两端电压成正比,与通过的电流成反比。
第五部分:磁场与磁力1. 磁场(B)定义:对运动电荷产生力的场。
性质:矢量场。
2. 磁感应强度(B)公式:[ \vec{B} = \frac{\vec{F}}{IL} ]单位:特斯拉(T)。
3. 安培环路定理表述:通过闭合回路的磁通量等于通过回路的电流乘以常数。
4. 洛伦兹力(F)公式:[ \vec{F} = q(\vec{v} \times \vec{B}) ]性质:力的方向垂直于电荷的速度和磁场。
电动力学内容简介
电动力学内容简介The Summery of Contents in Electrodynamics电动力学:研究电磁场的基本属性、运动规律、与带电物质的相互作用。
1. 场:物理量在空间或一部分空间的分布。
通过对电磁场的研究加深对场的理解。
场是一种物质,有其特殊的运动规律和物质属性,但是又是一种特殊的物质它可以与其他物质共同占有一个空间(存在形式的特点)。
有关电磁场的概念是有法拉第提出的,麦克斯韦进一步完善。
一个很核心的问题:“物质能不能在它们不存在的地方发生相互作用” “实验证实超距作用的不正确”所以说场的引入可以说正是解释了这一问题。
电磁场作为电磁现象的共性所引入的2. 如何研究电磁场所对应的物理量()(),,,,,,,E x y z t B x y z t :从理论上和实验上证明了是必需的也是最基本的。
3. 电磁学和电动力学的区别:(学过了数学物理方法)就像中学中的电与磁的现象与电磁学的区别在于学了微积分一样。
电磁学:麦克斯韦方程组:只有积分的形式只是作为最后的结果并没有给出应用。
求解静电场的问题:库伦定理+积分、高斯定理、已知电势求电场电动力学:麦克斯韦方程组:不仅有积分形式而且还有位分形式,先结果再应用。
求解静电场的问题:分离变量法、镜像法、格林函数法4. 本书的主要结构:⎧⎧→⎨⎪⎪⎩→⎨⎧⎪→⎨⎪⎩⎩第二章静电场静第三章静磁场第一章电磁现象的普遍规律第四章电磁场的的传播动第五章电磁场的发射第六章相对论第一章 电磁现象的普遍规律Universal Law of Electromagnetic Phenomenon本章将从基本的电磁实验定律出发建立真空中的Maxwell’s equations 。
并从微观角度论证了存在介质时的Maxwell’s equations 的形式及其电磁性质的本构关系。
继而给出Maxwell’s equat ions 在边界上的形式,及其电磁场的能量和能流,最后讨论Maxwell’s equations 的自洽性和完备性。
电磁学和电动力学
电磁学和电动力学引言电磁学和电动力学是物理学中重要的分支,研究电荷和电流之间相互作用的规律。
本文将全面、详细、完整地探讨电磁学和电动力学的基本概念、主要定律以及其在日常生活和工业应用中的重要性。
电磁学基础电荷与电场1. 电荷电荷是物质所具有的一种基本性质,分为正电荷和负电荷。
相同电荷之间相互排斥,不同电荷之间相互吸引。
2. 电场电场是电荷周围所产生的力场。
一个电荷会在其周围产生电场,其他电荷会受到电场力的作用而发生运动或变形。
电动力学定律1. 库仑定律库仑定律描述了两个电荷之间的电场力的作用关系。
两个电荷之间的作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
2. 高斯定律高斯定律描述了电场的产生和分布与电荷的分布之间的关系。
电场线从正电荷发出,趋向于负电荷。
3. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化时电场的产生。
当磁场穿过一个闭合线圈时,会在线圈中产生感应电动势,并引起电流流动。
4. 电动势和电流电动势是指电源提供给一个电荷单位所做的功。
电流是电荷的流动,单位时间内通过某一截面的电荷量。
5. 安培环路定理安培环路定理描述了磁场和电流之间的关系。
沿着一条闭合回路的磁场强度的总量等于通过该回路的电流的总和乘以真空中的磁导率。
电磁学与现实生活电磁学和电动力学对我们的日常生活产生了极大的影响,并应用于许多领域。
家用电器我们日常使用的家用电器,如电视、冰箱、洗衣机等,都离不开电磁学和电动力学。
电动机的原理使得这些电器可以正常运行,电磁感应定律也是指导电磁炉、电磁炉等发明的基础。
通信技术现代通信技术中的无线电、微波、红外线等也是电磁学和电动力学的应用。
电磁波的传播使得我们可以进行远距离的通信,并广泛应用于手机、电视、无线网络等设备中。
医学影像医学影像技术如X光、CT扫描、MRI等的原理都基于电磁学和电动力学。
将电磁波用于人体成像,可以帮助医生诊断和治疗许多疾病。
可再生能源电磁学和电动力学的研究也对可再生能源的开发和利用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学第一章静电场一、考核知识点1、真空与介质中静电场场方程,场的性质、物理特征。
2、电场的边值关系、在两种介质分界面上电场的跃变性质。
3、由场方程、边值关系,通过电荷分布确定场分布及极化电荷的分布。
4、静电场的势描述。
由势分布确定场分布、荷分布;通过静电势的定解问题,确定静电势的分布、场分布及介质极化性质的讨论。
二、考核要求(一)、场方程、场的确定1、场方程,场的边值关系,体、面极化电荷密度的确定式等规律的推导。
2、识记:(1)、真空与介质静电场方程。
(2)、电场的边值关系。
(3)、体、面极化电荷密度的确定式。
3、领会与理解:(1)、静电场的物理特征。
12(2)、P D E ,,与电荷的关系,力线分布的区别与联系。
(3)、在介质分界面上场的跃变性质。
4、应用:通过对称性分析,运用静电场的高斯定理确定场,讨论介质的极化,正确地由电荷分布画出场的力线分布。
(二)、静电势1、静电势方程、边值关系的推导。
2、识记:静电势的积分表述、势方程、势的边值关系、势的边界条件、唯一性定理。
3、领会与理解:势的边值关系与边界条件,荷、势与场的关系,解的维数的确定,电像法的指导思想与像电荷的确定。
4、应用:求解静电势定解问题的方法(分离变量法、电像法)的掌握及应用,求解的准确性,场的特征分析及由势对介质极化问题的讨论。
第二章 稳恒磁场一、考核知识点1、电荷守恒定律。
2、稳恒磁场场方程,场的性质特点。
3、由场方程,通过流分布确定场分布与磁化流。
4、磁场的边值关系。
5、稳恒磁场的矢势。
6、由磁标势法确定场。
3二、考试要求1、规律的推导:真空、介质中稳恒磁场场方程,电荷守恒定律的微分表述,体、面磁化电流密度的确定式,磁场的边值关系,矢势方程及其积分解,磁标势方程和边值关系等。
2、识记:电荷守恒定律,稳恒磁场场方程,体、面磁化电流密度的确定式,矢势引入的定义式,磁标势引入条件,磁场的边值关系,0=f α 情况磁标势的边值关系。
3、领会与理解:稳恒磁场的物理特征,电荷守恒定律微分表述的物理意义,在介质分界面上磁场的跃变特征,M H B,,力线的区别与联系,磁标势法适用条件。
4、应用:通过场的对称性分析,运用安培环流确定磁场分布和磁化电流;由稳恒磁场的矢势和磁标势法(列出磁标势的定解问题,通过求解该定解该问题)确定磁场的分布,讨论介质的磁化。
第三章 时变电磁场一、考核的知识点1、时变电磁场场方程(麦克斯韦方程组)。
2、电磁场的能量。
3、单色平面电磁波。
4、在介质面上电磁波的反射与折射。
5、时变电磁场的势、势方程、推迟势。
6、电偶极辐射。
4二、考核要求(一)、Eqs M -,场的能量1、推导:麦克斯韦方程组,洛仑兹力密度,电磁场能量守恒与转化定律的微分表述,能流S与电磁场能量密度ω的数学表述。
2、识记:时变电磁场场方程,电磁场能量守恒与转化定律的微分表述,场的能流S 与电磁场能量密度ω的数学表述,洛仑兹力密度。
3、领会与理解:时变电磁场场方程的物理意义、来源、实验基础、所做的假定、适用范围的推广或提高,电磁场能量守恒与转化定律微分形式的物理意义,场能量的传输。
4、应用:运用对称性分析和场方程的积分表述确定场,电磁能量的计算及能量的传输问题讨论。
(二)、单色平面电磁波、电磁波的反射与折射1、推导:波动方程,单色平面电磁波的能量密度及能流及其平均,菲涅耳公式,反射与折射定律,全反射情况的场及能流。
2、识记:波动方程,波数波矢,单色平面电磁波,菲涅耳公式。
3、领会与理解:平面电磁波的性质、特点、偏振与能流,全反射、菲涅耳公式。
4、应用:单色平面电磁波的性质、偏振与能流问题的讨论,全反射、菲涅耳公式的应用。
(三)、时变电磁场的势、电偶极辐射1、推导:势方程及其解,小区域定频流系统的势在远区的展开,流与电偶极矩的关系,电偶极辐射场,辐射能流与辐射功率。
2、识记:势方程,推迟势,电偶辐射场的性质、特点,辐射功率3、领会与理解:推迟势的物理意义,小区域定频流的势在远区域展开的思想与方法,电偶极辐射场的性质、特点。
4、应用:辐射场的确定,辐射能流、功率的计算。
第四章狭义相对论一、考核的知识点1、相对论的基本原理,间隔的不变性,洛仑兹变换。
2、相对论的时空理论。
3、相对论理论的四维形式,物理量的分类,洛仑兹变换的四维形式,四维协变量,物理规律的协变性。
4、电动力学的相对论不变性,四维电流密度矢量,四维势矢量,电磁场张量,电磁场的不变量与场方程的协变形式。
5、相对论力学,能量——动量四维矢量,质能关系与质能动关系。
二、考核要求(一)、相对的时空变换,相对论的时空理论1、推导:间隔的不变性,洛仑兹变换,间隔的划分及其讨论,因果关系,同时的相对论,运动时钟的延缓,运动尺的缩短,相对论速度变换。
2、识记:(1)、间隔的不变性,洛仑兹变换;(2)、间隔的划分,时钟的延缓,运动尺的缩短,相对论速度变换。
3、领会与理解:5(1)、相对论的基本假定,间隔的不变性与相对论的时空变换;(2)、相对论的时空结构,因果关系与同时的相对性,时钟延缓与运动尺的缩短,相对论的速度变换。
4、应用:运用间隔的不变性,洛仑兹变换及相对论的时空理论和速度变换分析、讨论、计算、证明有关问题。
(二)、相对论的四维形式1、识记:相对论时空变换的四维形式,四维空间的物理量分类,协变量与协变式及物理规律的协变性,四维速度与四维波矢量及相对论的多普勒效应。
2、领会与理解:洛仑兹变换的四维形式,相对论多普勒效应,物理规律的协变性。
3、应用:(1)、分析、判断、证明四维空间物理量的性质;(2)、运用洛仑兹变换的四维形式及四维波矢量的变换式讨论相关问题。
(三)、相对论电动力学、相对论力学1、推导:电荷守恒定律的四维形式,达郎伯势方程的四维形式,场方程的四维形式,场的四维变换,质能关系式,质能动关系式,力学规律的协变性。
2、识记:四维电荷密度,四维势及势方程,电磁场张量,场方程的四维形式,场的变换式,四维动量,质能关系与质能动关系。
3、领会与理解:四维电荷密度及其变换,四维势及其变换,场的四维变换,质能关系与质量亏损,力学规律的协变形式。
4、应用:(1)、运用场的变换式确定场;(2)运用四维动量的守恒性及电磁场张量、质能关系、质能动关系处理实际问题。
6说明:识记:要求学生能记住、掌握有关概念、规律、公式的含义,并能正确地认识和表述及运用。
领会:要求在记忆的基础上,能运用所要求掌握的概念、规律分析实际问题,能全面把握概念、规律、公式、原理的内涵和外延,掌握有关概念、规律、原理、方法的区别与联系。
《量子力学》研究生入学考试大纲参考书:1:周世勋《量子力学》1- 4 (下面叙述的考核内容用此书)2:曾谨言:《量子力学导论》1-4 章两本书的内容基本是一致的,应熟悉两本书1-4章的习题第一章绪论一.考核知识点了解量子力学的产生背景,实验基础及研究对象;旧量子论及其局限性黑体辐射、光电效应与康普顿散射,普朗克量子论玻尔理论7微粒的波粒二象性和德布罗意波假设二.考核要求黑体辐射、光电效应与康普顿散射普朗克量子论原子结构的玻尔理论德布罗意波假设会应用普朗克的量子假说、德布罗意的驻波条件会应用量子化条件计算一些物理问题第二章波函数和薛定谔方程一.考核知识点理解波函数的物理意义薛定谔方程粒子流密度和粒子数守恒定律8二.考核要求熟悉波函数及其统计解释, 态叠加原理, 会应用到具体问题中计算.熟悉薛定谔方程, 会求解简单的定态薛定谔方程.1) 会求解一维无限深势阱和线性谐振子2) 对一维方势阱和δ势问题,能写出薛定谔方程和边界条件,给出满足条件的求解方程. 3)一维方位阱和方位垒中的散射问题熟悉粒子流密度和粒子数守恒定律第三章量子力学中的力学量一.考核知识点力学量的特性力学量的平均值了解测不准关系了解在中心力场中如何求解氢原子的波函数9二.考核要求利用基本算符的对易关系, 求其他算符的对易关系,如动量算符和角动量算符等. 熟悉厄密算符的性质会应用测不准关系解决简单的问题.计算力学量算符的本征值和本征函数计算力学量平均值第四章态和力学量的表象一.考核知识点理解表象的意义, 熟悉坐标表象、动量表象和能量表象、占有数表象量子力学算符的矩阵形式和表象变换二.考核要求在坐标、动量和能量表象及占有数表象中,求给定力学量算符的本征值与本征函数10会求力学量算符的矩阵表示和处理矩阵对角化问题计算不同表象中力学量算符的矩阵元力学量和态矢量的表象变换幺正变换的性质《光学》课程考试大纲第一章:光的干涉一.考核知识点1.相干现象、相干条件、相干光源、相干与相干叠加2.光程差与位相差3.分波面法的典型实验114.分振幅法、等倾和等厚干涉5.迈克尔逊干涉仪6.法布里-珀罗干涉仪、多光束干涉7.干涉条纹的可见度二.考核要求1.识记:(1)相干现象(2)相干条件(3)光程差(4)位相差(5)等倾和等厚干涉2.领会:(1)分波面法的典型实验(2)迈克尔逊干涉仪、法布里-珀罗干涉仪的原理及应用(3)牛顿环、劈尖(4)分波面法和分振幅法的光程差与位相差公式(5) 推导法布里-珀罗干涉仪中多光束干涉光强分布公式3.简单应用:利用分波面法和分振幅法的相关公式解决问题4.综合运用:利用干涉公式解释干涉条纹的明暗条件、特点以及相应的计算第二章:光的衍射12一.考核知识点1. 光的衍射现象和分类2.惠更斯-菲涅耳原理3.菲涅耳圆孔、圆屏衍射、波带片4.夫琅和费单缝衍射、圆孔衍射5.光学仪器的分辨本领、瑞利判据6.衍射光栅、平面光栅、闪耀光栅7.光栅方程、布喇格方程二.考核要求1.识记:(1)衍射(1)惠更斯-菲涅耳原理2.领会:(1) 利用半波带法推导出菲涅耳圆孔衍射时露出的波带数目公式(2) 用矢量法推出夫琅禾费单缝衍射光强公式133.简单应用:(1)单缝衍射、圆孔衍射的光强公式及运用(2)干涉与衍射的特点分析(3)光栅方程、布喇格方程及应用4.综合运用:利用干涉和衍射的公式解释光栅光谱的形式、明暗条件、光谱的特点以及相应的计算第三章:几何光学一.考核知识点1.光线、几何光学的基本实验定律、全反射、光学纤维2.光程、费马原理3.单心光束、发散光束、实像与虚像、实物与虚物、物方与像方、物像共轭性4.光在单个球面上的反射和折射、符号法则5.共轴球面系统逐次成像法6.透镜分类、厚透镜成像公式、薄透镜成像公式、薄透镜成像作图法147.理想光具组的基点和基面、理想光具组成像作图方法及物象公式二.考核要求1.识记:(1)光线(2)光程(3)基本实验定律(4)费马原理(5)单心光束(6)物与像2.领会:(1)理解光程的意义、运用费马原理导出反射和折射定律(2)厚透镜的成像公式(3)球面镜、薄透镜的成像规律及作图法(4)理想光具组的成像公式及作图法(5)符号法则的正确使用3.简单应用:能够利用各种成像公式解决单一球面的反射、折射成像问题4.综合应用:能够利用各种成像公式解决复杂光学系统的多次成像问题第四章:光学仪器一.考核知识点1.助视仪器的放大本领2.显微镜、望远镜的放大本领153.光阑与光瞳4.光能量传播二.考核要求上述知识点的简单识记第五章:光的偏振一.考核知识点1.偏振现象、光的五种偏振态2.反射、折射偏振现象、布儒斯特定律3.双折射、光轴与主截面、o光与e光4.光在单轴晶体中传播、惠更斯作图法5.偏振器件166.圆-椭圆偏振光的产生、偏振光检定7.偏振光的干涉二.考核要求1.识记:(1)偏振光(2)布儒斯特定律(3)双折射(4)五种偏振光2.领会:(1)布儒斯特定律及马吕斯定律的含义(2)o光和e光的性质(3)单轴晶体中主折射率的含义(4)波片的作用3.简单应用:(1)布儒斯特定律求折射率(2)惠更斯作图法确定o光和e光的传播方向(3)马吕斯定律求透射光强(4)偏振光的产生和检验方法4.综合应用:偏振光的干涉、衍射问题的计算与解释第六章:光的传播速度一.考核知识点1.群速度与相速度172.光速的测定方法二.考核要求1.识记:群速度与相速度形成2.领会:相速度和群速度的区别与联系3.简单应用:相速度和群速度的求解第七章:光的吸收、散射和色散一.考核知识点1.光的吸收、比尔定律、吸收光谱2.光的散射、瑞利散射、分子散射3.色散特点、正常和反常色散、角色散率二.考核要求181.识记:吸收、散射、色散2.领会:(1)光的吸收及比尔定律的含义(2)光的散射及分类(3)色散的特点3.简单应用:利用散射理论解释大气中的自然现象第八章:光的量子性一.考核知识点1..光电效应2.波粒二象性二.考核要求1.识记:(1).光电效应方程(3)波粒二象性2.领会:光电效应理论解释3.简单应用:.光电效应方程的运用19第九章:现代光学基础一.考核知识点1.激光概述、基本原理2.受激辐射、粒子数反转3.激光特点二.考核要求1.识记:(1)激光(2)受激辐射(3)粒子数反转2.领会:(1)激光的特点(2)激光器的工作原理(3)激光产生的条件(4)粒子数反转的条件(5)全息照相原理及特点关于能力层次的说明:20识记:要求学生能知道本章节中有关的概念、定理的含义,并能正确认识和表述。