第九章 力矩分配法原理
力矩分配法
力矩分配法简介力矩分配法是一种常用的工程分析方法,用于计算和分析物体受到的力的分布情况以及力矩的平衡。
根据力矩分配法,物体处于平衡状态时,所有作用于物体上的力矩和为零。
利用这个原理,可以计算物体上各点的力的大小和分布。
基本原理力矩是一个力在距离某一点的作用线上产生的旋转效果。
当物体受到多个力作用时,在平衡状态下,力的合力和力矩的合力都为零。
根据力矩的定义,可以得到如下的力矩分配方程:其中,表示物体上所有力矩的代数和。
力矩分配法的步骤力矩分配法一般包括以下几个步骤:1.给定各个力的大小和作用点位置。
2.计算每个力的力矩。
力的力矩可以通过力乘以力臂得到,力臂是力的作用点到某一参考点的直线距离。
3.将各个力矩代入力矩分配方程,求解未知力的大小和作用点位置。
可以利用代数方程或者力矩图等方法进行计算。
4.验证计算结果,检查力矩的合力是否为零,以验证平衡状态。
5.如果力矩不为零,则需要重新调整力的大小和作用点位置,再次计算和验证。
力矩分配法的应用力矩分配法在工程中有广泛的应用。
以下是一些常见的应用例子:1.结构平衡:力矩分配法可以用于计算结构上各个部分受力的平衡情况,如梁、桁架等结构的受力分析。
2.机械设计:力矩分配法可以用于计算机械装置中各个零件受力的分布情况,如齿轮传动、支撑结构等。
3.车辆平衡:力矩分配法可以应用于汽车、飞机等交通工具的平衡分析,确保车辆的稳定性和安全性。
4.物体悬挂:力矩分配法可以计算物体悬挂时各个支点的受力情况,如吊车、吊车臂等。
总结力矩分配法是一种常用的力学分析方法,通过计算力矩的平衡来推导出物体上各点的力的分布情况。
它在工程中的应用非常广泛,可以用于结构平衡、机械设计、车辆平衡等领域。
使用力矩分配法可以帮助工程师更好地理解和分析各种力的作用情况,从而设计出更加稳定和安全的结构和设备。
第九章-力矩分配法原理
等截面直杆的传递系数
CAB=1/2 SBA=2i
A
i
B
CAB=0
SBA=0
A
i
B
CAB= -1 SBA=-i
A
i
B
i
4
§9-1 力矩分配法的基本概念
等截面直杆的转动刚度和传递系数如下表:
固定支座
4i
1/2
铰支座
3i
0
定向支座
i
-1
问题:下列那种情况的杆端弯矩MAB=SAB?
MAB
MAB
θ MAB
1
8m
4m
4m
最后弯矩 0
86.6 -86.6 124.2 -124.2
15
§9-2 多结点的力矩分配
例9.2 力矩分配法计算并画M图。
A 15kN/m
↓↓ ↓↓↓ ↓
B
150kN ·m ∑MCg =-140 10kN
C
D
E
i=3
i=1
i=2
4m
8m
8m
2m
μ
Mg 40
3/7 4/7 ∑MBg =108 80
1、转动刚度S:表示杆端对转动的抵抗能力。 使AB杆件的A杆端发生单位转角时在A端所需施加的力矩,记作SAB 习惯上将发生转动的杆端称为“近端”,而杆件的另一端称为“远端
当远端是不同支承时,等截面杆的转动刚度AiB
1
A
i
B
1
A
i
B
1
A
BB
2
§9-1 力矩分配法的基本概念
如果把近端改成固定支座,转动刚度SAB的数值不变, 此时SAB表示当固定支座发生单位转角时在A端引起的杆端弯矩。
09第九章_力矩分配法
09第九章_力矩分配法第九章力矩分配法本章的问题:A.力矩分配法的适用条件是什么?B.什么叫固端弯矩?约束力矩如何计算?C.什么是转动刚度、分配系数和传递系数?D.什么是不平衡力矩?如何分配?E.力矩分配法的计算步骤如何?F.对于多结点的连续梁和无侧移的刚架是如何分配和传递弯矩的?力矩分配法是位移法的渐近法。
适用于连续梁和无结点线位移的刚架。
§ 9-1力矩分配法的基本概念力矩分配法的理论基础是位移法,属于位移法的渐近方法。
适用范围:是连续梁和无结点线位移的刚架。
针对本方法,下面介绍有关力矩分配法的几个相关概念。
1、名词解释(1)转动刚度转动刚度表示杆端对转动的抵抗能力。
杆端的转动刚度以S表示,它在数值上等于使杆端产生单位转角时需要施加的力矩。
图9-1给出了等截面杆件在A端的转动刚度S AB的数值。
关于S AB 应当(1)在S AB(2)S AB在图9-1中,由图9-1远端固定:远端简支:远端滑动:远端自由:i图9-1各种结构的转动刚度(2)分配系数图9-2所示三杆AB 、AD 、AC 在刚结点A 连接在一起。
远端B 、C 、D 端分别为固定端,滑动支座,铰支座。
假设有外荷载M 作用在A 端,使结点A 产生转角θA ,然后达到平衡。
试求杆端弯矩 M AB 、 M AC 、 M AD 。
由转动刚度的定义可知:M AB = S AB θA = 4i AB θA M AC = S AC θA = i AC θA M AD= S AD θA = 3i AD aθM A θ=式中将A θ即:杆AB的转动刚度与交于A点的各杆的转动刚度之和的比值。
注意:同一结点各杆分配系数之和应等于零。
即Σμ=μAB+μAC+μAD=1总之:作用于结点A的力偶荷载M,按各杆端的分配系数分配于各杆的A端。
(3)传递系数在图9-2中,力偶荷载M作用于结点A,使各杆近端产生弯矩,同时也使各杆远端产生弯矩。
由位移法的刚度方程可得杆端弯矩的具体数值如下:M AB = 4i ABθA M B A = 2i ABθAM AC = i ACθA M CA =-i ACθAM AD =3i ADθA M DA = 0由上式可看出,远端弯矩和近端弯矩的比值称为传递系数用C AB表示。
力矩分配法
iAB=EI/8=3i iBC=EI/6=4i
4(3i) /[4(3i) 3(4i)] 1/ 2
, 3(4i) /[4(3i) 3(4i)] 1/ 2 BC
BA
将分配系数写在B结点下方的方框内。
(2) 计算各杆端的固端弯矩MF(查表8-1)。
ql2 1282
MF
64kN m
AB
12
图见图9-4(b)所示 。
为了计算更加简单起见,分配弯矩Mμ,及传递弯矩MC的具体 算式可不必另写,而直接在图9-4表格上进行即可. 例9-2 计算图9-5(a)所示刚架的M图。
解: (1) 计算分配系数 。
设i=EI/4, iAB=EI/4=i, iAC=EI/4=i, iAD=2EI/4=2i。
BA
BA
BA
AB
AB
AB
以上就是力矩分配法的基本思路,概括来说:先在B结点加上附加 刚臂阻止B结点转动,把连续梁看作两个单跨粱,求出各杆的固端弯矩 MF,此时刚臂承受不平衡力矩MB(各杆固端弯矩的代数和),然后去掉
附加刚臂,即相当于在B结点作用一个反向的不平衡力矩(-MB),求 出各杆端的分配弯矩及传递弯矩MC,叠加各杆端弯矩即得原连续 梁各杆端的最后弯矩。连续梁的M、FS图及支座反力则不难求出。 用力矩分配法作题时,不必绘图9-3(b)、(c)所示图,而是按一定的格 式进行计算,即可十分清晰地说明整个计算过程,举例如下。
第一步放松C结点。
C结点的不平衡力矩MC=60-88=-28kN·m,将其反号分配:
M 283/ 7 12kN m M 28 4 / 7 12kN m
CD
CB
80kN
60kN
11kN/m
(a)
第九章力矩分配法原理
∑MAg = -45
MABg
M=15
- 50
50
- 80
10 1/2 20 10 15
A MADg
- 40
70 10 - 65
70 65
-1
-10
40 100
- 10 C
B
A
D
10
80
M图(kN ·m)
C
§9-2 多结点的力矩分配
力矩分配法计算多结点结构,只要逐次放松每一个结点,应用单结 点力矩分配法的基本运算,就可逐步地渐近地求出杆端弯矩。
2、传递系数C: 当杆件的近端发生转动时,其远端弯矩与近端弯矩的比值:
C M远 M近
∴远端弯矩可表达为: M BA CAM B AB
等截面直杆的传递系数
CAB=1/2 SBA=2i
A
i
B
CAB=0
SBA=0
A
i
B
CAB= -1 SBA=-i
A
i
B
i
§9-1 力矩分配法的基本概念
等截面直杆的转动刚度和传递系数如下表:
§9-1 力矩分配法的基本概念
2、单结点结构在跨中荷载作用下的力矩分配法
1)锁住结点,求固端弯矩及 结点不平衡力矩
200kN
20kN/m
↓↓↓↓↓↓↓↓↓↓↓
M AB g
结2点00不 6平衡1力50kN 矩要8反号分配.
m μ
A
3i
3m
M BA g
20结0点 6不平15衡0k力N矩 m
=8固端弯矩之和
A
④
⑤A
i
B
i
B
i
B
i 4i>SAB>3i
力矩分配法的基本原理
A
MAB
=3i 1
。则劲度系数与杆件的远端支承
EI
SAB=MAB=3i
情况有关,由转角位移方程知 远端固定时: SAB= 4i 远端铰支时: SAB= 3i
A
MAB
=i 1
A
EI
SAB=MAB=i
EI
远端滑动支撑时: SAB= i 远端自由时: SAB= 0
MAB =0
SAB=MAB=0
B
MBA
B
B B MBA
图(a)所示刚架用位移法计算时,只有一个未知量即结点转角
Z1,其典型方程为
r11Z1+R1P=0
绘出MP图(图b), 可求得自由项为
R1P=
R1P是结点固定时附加刚臂上的反力矩,可称为刚臂反力矩,它等
于结点1的杆端固端弯矩的代数和
,即各固端弯矩所不平衡的
差值,称为结点上的不平衡力矩。
绘出结构的 图(见图c),计算系数为:
力矩分配法为克罗斯(H.Cross)于1930年提出,这一方法对连
续梁和无结点线位移刚架的计算尤为方便。
1.劲度系数、传递系数
1
⑴劲度系数(转动刚度)Sij
A
EI
定义如下:当杆件AB的A端转 MAB 动单位角时,A端(又称近端)的弯 =4i 1
L SAB=MAB=4i
矩MAB称为该杆端的劲度系数,用 SAB表示。它标志着该杆端抵抗转 动能力的大小,故又称为转动刚度
例 9—1 试用力矩分配法作刚架的弯矩图。
解:
30kN/m
(1)计算各杆端分配系数
50kN
60 55.5 67.2 32.2
AB=
AB=0.445 AC=0.333
结构力学——力矩分配法
结构力学——力矩分配法结构力学是研究物体在外力作用下的变形和破坏行为的学科。
其中,力矩分配法是一种求解结构梁的内力和变形的常用方法之一、本文将介绍力矩分配法的基本理论和应用。
首先,对于结构力学的研究,我们需要了解一些基本概念。
力矩是由力的作用点与旋转轴之间的距离和力的大小决定的。
在结构力学中,我们通常考虑作用在梁上的力和力矩。
梁是一种常见的结构元件,可以将其看作是在两个固定点之间作用的力的集合。
在力矩分配法中,我们将梁分割成若干个小段,然后逐段计算每个小段的内力和变形。
假设有一根长度为L,截面形状均匀的梁,并且在两个固定点之间施加了一系列分布力。
我们可以将梁分割成n个小段,每个小段的长度为Δx=L/n。
接下来,我们需要计算每个小段的内力和变形。
首先,我们可以根据材料力学的基本原理得出梁的拉伸、压缩和弯曲的力学方程。
然后,我们可以根据小段的切线方向和切线上的任意一点来推导出该小段的内力和弯曲方程。
最后,我们将内力分量在小段两端的力矩分配系数和位置矩分配系数进行合成,从而得出该小段的内力和弯曲方程。
在力矩分配法中,一个重要的概念是力矩分配系数。
力矩分配系数是一个无量纲的参数,用来表示力和力矩在小段两端分配的比例。
在计算力矩分配系数时,我们可以根据梁的几何形状和分布力的位置,利用力矩的基本原理进行推导。
力矩分配系数是力矩分配法的核心,它可以帮助我们计算出每个小段的内力和变形。
在实际应用中,力矩分配法通常用于求解多跨梁的内力和变形。
我们可以将多跨梁分割成若干个小段,并根据力矩分配法计算出每个小段的内力和变形。
然后,我们可以将各个小段的内力和变形进行叠加,得出整个多跨梁的内力和变形。
需要注意的是,力矩分配法具有一定的局限性。
首先,它只适用于存在弯曲变形的梁,对于其他类型的结构,如框架和板,需要采用其他的分析方法。
其次,力矩分配法仅适用于分布力作用在梁的直线部分上,对于弯曲部分或非均匀分布力的情况,需要采用其他的方法进行分析。
9力矩分配法
CB 1
CD 0
③传递系数
1 CCB 2
CBC 0
第9章 力矩分配法
§9-3 对称结构的计算
取一半结构进行计算,注意杆件截半后,线刚度增倍。 例9-3-1 求矩形衬砌在上部土压力作用下的弯矩图。
q
A EI1 F
B
EI2
K
l2
C
解:设梁的线刚度为i1=EI1/l1 柱的线刚度为i2=EI2/l2
⑸最后一轮循环最后一个结点分配后只向其他结点传递。
第9章 力矩分配法
⑹不能同时放松相邻结点(因定不出其转动刚度和传递系数), 但可以同时放松所有不相邻的结点,以加快收敛速度。
A
B
C
D
E
B、D同时分配后向C传递,C分配后再同时向B、D传递,如此循 环。
A
B
C
D
E
F
B、D同时分配后同时向C、E传递,C、E同时分配后再同时向B、 D传递,如此循环。
A
B
15.86 3m 3m
C M (kNm) 6m
结点
A
B
C
解:① 不平衡力矩
m
g AB
Pl 8
20 6 8
15
m
g BA
Pl 8
15
mBgC
ql2 8
9
mBg
m
g BA
mBgC
6
杆端
AB
BA BC CB ②分配系数
分配系数
4/7 3/7
固端弯矩 -15
15
-9 0
平衡
分配传递 -1.72 -3.43 -2.57 0
第9章 力矩分配法
§9-1 力矩分配法的基本概念
9力矩分配法
21.4
6.1
-9.2 -12.2 -6.1
1.8
6.1
1.8 3.5 2.6
… … ...
14
q 12kN / m
A
EI
1 EI
10m
10m
2 EI
10m
BA
q 12kN / m
1
B 2
q 12kN / m
A
M
u 1
ql2 / 8
1
ql2 / 12
M
u 2
2
B MF 0
28.6
100
-28.6 -57.1 -42.9
分0
配
21.4
6.1
传 递
0.429 0.571 0.571 0.429 150 -100 100 0 0 -28.6 -57.1 -42.9 0 -9.2 -12.2 -6.1 1.8 3.5 2.6 0 -0.8 -1.0
-9.2 -12.2 -6.1
1.8
6.1
SAB 4i
AiB SAB 3i
对等直杆,SAB只与B端的
支撑条件有关。
A端一般称为近端(本端),
AiB
B端一般称为远端(它端)。
SAB i
4
M
d BA
SBA B
M
d BC
SBC B
M
u B
M
d BA
M
d BC
0
B
S BA
1 SBC
(
M
u B
)
M
d BA
S BA SBA SBC
q 12kN / m B
第九章 力矩分配法
BC ( M B ) M BC
例1. 用力矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 F 200kN 150 kN m MAB = 20kN/m 8 90 300 F= 150 kN m M BA EI EI C B A 2 20 6 90kN m MBCF= 3m 6m 3m 8 MB= MBAF+ MBCF= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150
Hale Waihona Puke 第9章 力矩分配法【例9-6】设图示连续梁支座A顺时针转动了0.01rad,支座B、C分别下沉了
ΔB =3cm和ΔC =1.8cm,试作出M图,并求D端的角位移θD。已知 EI=2×104kN· m2。
A =0.01rad
B A EI
B
C EI =3cm 4m EI
C =1.8cm
D
4m 3.47 A
分 配 与 传 递
-5.72
+2.86 +2.86 -0.41 +0.21 +0.20 -81.93 +81.93
-11.43 -8.57
4i 0.625 4i 3 0.8i DE BA 0.375
2、计算固端弯矩
F M DE 2kN m F M DC 5.62kN m F M CD 9.38kN m
力矩分配法的基本原理
力矩分配法的基本原理1.力的平衡原理:在一个静力学平衡系统中,所有作用于该系统上的力合力矩必须为零。
这意味着系统中的每个部分都必须承受适当的力矩,以维持平衡。
2.力矩的定义:力矩是由力施加在物体上产生的旋转运动的趋势。
力矩的大小等于力的大小与其与旋转轴之间的垂直距离(力臂)的乘积。
力矩可以使物体旋转或改变其运动状态。
3.力的传递:力矩可以通过刚性连接的物体传递,例如通过杆件、杆节等。
在一个系统中,力矩可以通过连续的力传递链传递到各个部分,直至达到平衡。
4.杰克逊方法:力矩分配法的一种经典方法是杰克逊方法。
它基于以下原理:在一个静力学平衡系统中,每个部分所受到的力矩等于其负载与其力臂之积的总和。
根据杰克逊方法,力矩可以通过计算负载和力臂的乘积,并将其加总以获得每个部分所受到的合力矩。
5.多级力矩分配:力矩分配法可以按层次进行,从整体系统逐渐细分到部分系统。
这种分级方法可以使计算变得更简单明了,同时保证了结果的准确性。
6.力矩均衡:力矩分配法的目标是使系统中的力矩均衡,以确保系统中各个部分正常工作,避免超载或过载。
通过适当的力矩分配,可以优化系统的工作效率和安全性。
力矩分配法的应用领域包括机械工程、结构工程、航空航天工程等。
在这些领域中,力矩分配法可以用于计算和分配各个部分间的负载,确保系统的平衡和安全运行。
力矩分配法可以帮助工程师设计和优化机械系统和结构,提高其工作效率和寿命。
总结起来,力矩分配法基于力的平衡原理和力矩的定义,通过计算和分配各个部分间的力矩,实现系统的力矩均衡。
通过杰克逊方法和多级分配,可以有效地计算和分配力矩,保证系统的安全和可靠性。
力矩分配法是一种重要的工程设计和分析方法,在不同领域的工程问题中具有广泛的应用。
04-讲义:9.1 力矩分配法的基本原理
)
式(9-6e)中,AB、AC、AD 为各杆端的分配系数。公式右端的第一项为荷载单独作用在基本
结构上产生的杆端弯距,即固端弯距;第二项为结点 A 转动角度 1 时在近端所产生的弯距,这相
当于把 A 结点的不平衡力矩(
M
F Aj
)反号后按各杆端的分配系数分配给各近端,因此第二项称为该
点(A 结点)各杆端的分配弯矩。所以各杆近端的最终杆端弯矩为杆端固端弯矩和分配弯矩的代数
249
为近端,另一端称为远端。
各近端弯距为:
MAB
M
F AB
S AB
M
F Aj
S Aj
M
F AB
AB
(
Mቤተ መጻሕፍቲ ባይዱ
F Aj
)
MAC
M
F AC
S AC
M
F Aj
S Aj
M
F AC
AC
(
M
F Aj
)
(9-6e)
MAD
M
F AD
S AD
M
F Aj
S Aj
M
F AD
AD
(
M
F Aj
以上即为力矩分配法的基本运算过程。为了与杆端最后弯矩有所区别,运算过程中可以在分配
250
弯矩上加右上标“ ”,在传递弯矩上加右上标“ C ”。 【例 9-1】用力矩分配法计算图 9-4(a)所示连续梁,并绘 M 图和 FS 图。已知 EI 为常数。
图 9-4 例 9-1 图
(a)连续梁计算简图 (b)力矩分配法计算过程 (c) M 图(kN.m) (d) FS 图(kN)
转动刚度 SAB 与杆件线刚度 i(与材料的性质、横截面的形状和尺寸、杆长有关)及远端支承 情况有关,而与近端支承情况无关。如图 9-1(f)所示,是将图 9-1(a)中近端改成铰支座,转动刚度 SAB 的数值不变。此时 SAB 就代表使 A 端产生单位转角时所需要施加的力矩值。因此,在确定杆端转动
第9章 力矩分配法
2ql
11 32
l
A
l
l
结点 杆端
B B1
A A1
1 1A 1B 1C 1/2 3/8 1/8
C C1
2ql
ql 2 / 4
MF 0 所得的结果是 分配 0 传递 近似解吗? M 0 q
-1/4 1/4 1/8
0
0
3 64
3 64
3 3 9 3 16 32 64 64
11 32 1 16 1 3 64 64
练习
20 kN / m 40 kN .m
求不平衡力矩
A
EI
B
EI
C
6m
20 kN / m
4m
40 kN .m
60
A
60
B
40 kN .m
u MB
C
M 60 40 100kN.m
u B
作图示梁的弯矩图(利用传递系数的概念)
20kN.m A
EI
60
40kN.m
10 kN
B
EI
C
6m
4m
练习:作弯矩图
1.固定结点,计算固端弯矩 f M AB ql2 / 12 100kN.m f M BA 100kN.m
q 12kN / m
A
EI
B
EI
C
M M 0 分配系数: 4i 4 BA 0.571 4i 3i 7 3i 3 BC 0.429 4i 3i 7 2.放松结点 不平衡力矩:M B 100kN.m 分配弯矩:
… … ...
A
q 12kN / m
EI
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24kN/m A B↓↓↓↓↓↓↓↓↓↓↓ C
124.2
50kN C
M图(kN· m) 8m 最后弯矩 0 86.6 -86.6
192 8m 4m 124.2 -124.2
100 4m
15
§9-2 多结点的力矩分配
例9.2 力矩分配法计算并画M图。
A
15kN/m
↓↓ ↓↓↓ ↓
B
i=3 4m
0.4 -128 76.8 76.8 51.2 3 8 22 24 g 0.6 逐次放 M 128 -15.7 -15.7 BC BA 3 2 4 1 12 松结点 4 9.4 6.3 21 进行分 g 0 . 4 24 8 BC M 128 1 CB 3 2 4 -15.7 0.7 配与传 - 12 CB 0.4 0.4 0.3 15.7 递 3 50 8 g 0 . M CD CD 6 75 16 86.6 最后弯矩 0 -86.6 9.4 6.3
128 -75 ∑MCg = 53 +25.6 0.4 0.6 =78.6 128 -75 25.6 25.6 -31.4 -47.2 g -∑MC = -78.6 3.2 -1.3 -1.9 -31.4 -47.2 0.2 -0.1 -0.1 14 124.2 3.2 -124.2
§9-2 多结点的力矩分配
1/2 1/2 1/2 1/2
10 56 84
-30.8 12.3 18.5 -1.8 0.7 1.1
1/2 0
1/2
M
89.1
30.8 - 30.8
36.4 113.6
g =(1/3) M 15×42 μBA μDE× =0 DC=1 = · m SBA=i= 3 80SkN BC=4×i=4 MABg =(1/6) ×15×42 μBA=3/7 μBC= 4/7 = 40 kN· m S g = 3×i=6 MDECD = -10×2 - 20 20 - 20 kN m SCB= =4 × i= 4· 16 4 μCD=0.6 μCB=0.
+ +
M分
MB传
端最后弯矩:M=Mg + ∑M分+∑M传
12
+ ··
§9-2 多结点的力矩分配
注意: ①多结点结构的力矩分配法取得的是渐近解。 ②首先从结点不平衡力矩较大的结点开始,以加速收敛。 ③不能同时放松相邻的结点(因为两相邻结点同时放松时,它们 之间的杆件的转动刚度和传递系数不易确定);但是可以同时放松 所有不相邻的结点,这样可以加速收敛。 ④每次要将结点不平衡力矩反号分配。
1.58 1.58
0.79 E M图(kN.m)
可不急传递
0.79
-0.79 E
19
A
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
100kN/m
i=1.92 2.5m
1
i=1.37 3.5m
2
i=2.4 2m
3
i=1 4.8
1、转动刚度S:表示杆端对转动的抵抗能力。 使AB杆件的A杆端发生单位转角时在A端所需施加的力矩,记作SAB
习惯上将发生转动的杆端称为“近端”,而杆件的另一端称为“远端 当远端是不同支承时,等截面杆的转动刚度
A
i
1
B
A
i
1
B
A
i
1
B
A
BB
2
§9-1 力矩分配法的基本概念
如果把近端改成固定支座,转动刚度SAB的数值不变, 此时SAB表示当固定支座发生单位转角时在A端引起的杆端弯矩。
A
i
B
A
i
B
A
i
B
A
B
与近端支承形式无关
AB杆的线刚度 i 影响SAB的因素 (材料的性质、横截面的形状和尺寸、杆长) AB杆的远端支承形式
3
§9-1 力矩分配法的基本概念
2、传递系数C: 当杆件的近端发生转动时,其远端弯矩与近端弯矩的比值:
M远 C M近
∴远端弯矩可表达为: M BA C AB M AB 等截面直杆的传递系数
解:1)求 μ g 2)求 M SDE=0
0
§9-2 多结点的力矩分配
A
15kN/m
B
↓↓ ↓↓↓ ↓
i=3 4m
30.8 - 30.8
i=1 8m
150kN · m C
10kN D
i=2 8m
E
2m
20 -20
M 89.1
36.4 113.6
30.8
36.4 20
30 89.1
M图(kN· m) 113.6
MB1= 0= C1BM1B MC1=-i1Cθ=(- 1)M1C=C1CM1C
M j 1 C1 j M 1 j——传递弯矩:远端获得的由近端分配
弯矩传递而来的弯矩。
8
§9-1 力矩分配法的基本概念
2、单结点结构在跨中荷载作用下的力矩分配法
1)锁住结点,求固端弯矩及 20kN/m 200kN ↓↓↓↓↓↓↓↓↓↓↓ 结点不平衡力矩 C 200 6 A B g 3i 4i 结点不平衡力 M AB 150kN m 8 矩要反号分配 . 3m 3m1/2 1/2 6m μ 200 6 g 结点不平衡力矩 M BA 150kN m g Mg -150 8 150∑M - 90 B =固端弯矩之和 20kN/m 200kN 20 6 2 g 1/2 M BC 90kN m -15 -30 -30 ↓↓↓↓↓↓↓↓↓↓↓ 8 C A B ∑MBg=150-90=60kN· m M -165 ∑MBg 150 120 - 120 -150 - 90 2)放松结点, 相当于在结点上施加反号 MBCg MBAg 的结点不平衡力矩,并将 120 即单结点结构在结点力 165 90 - ∑MBg =-60 它按分配系数分配给各个 300 偶作用下的力矩分配法 近端并传递到远端。 C A B C A B -图( 30 kN ·m) -15 -30 SBA=4×3i=12i M SBC=3×4i=12i 3)叠加1)、2)步结果得到杆端的最后弯矩。9 μBA=μBC= 12i/24i=1/2 计算过程可列表进行。
1 1
③
④
1
确定转动刚度时:近端看位移(是否为单位位移)、远端看支承。 5
Δ
√
MAB
§9-1 力矩分配法的基本概念
问题:如下杆件转动刚度SAB=4i 的是( )
√ √ √
①
A
i i
B
② A
A
B
③
i i i
B
B
④
⑤
A
A
B
i 4i>SAB>3i
6
§9-1 力矩分配法的基本概念
二、力矩分配法的基本原理 1、单结点结构在结点力偶作用下的力矩分配法 S1 A M B M1A=4i1Aθ=S1Aθ S
4m 4m
μAC= 2/9
μAD= 3/9
70 65 15kN· m 40kN/m 40 100kN 100 15kN· m 100kN 100 40kN/m ↓↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓ D A B i=1 D i=1 A B g ∑MA10 80 g M =15 MAB i=2 A MADg M图(kN.m) M图(kN ·m) MACg C C 2m 2m 4m 2m 2m 4m A C AC 2/9 CA D DA
A
CAB=1/2 i CAB= -1
SBA=2i
B A
CAB=0 i
SBA=0
B
SBA=-i
B
4
A
i
i
§9-1 力矩分配法的基本概念
等截面直杆的转动刚度和传递系数如下表:
固定支座 铰支座 定向支座 4i 3i i 1/2 0
-1
问题:下列那种情况的杆端弯矩MAB=SAB? MAB MAB ① ② θ 1 MAB
3/7 4/7 80
i=1 8m
∑MBg =108
10kN 150kN · m ∑MCg =-140 D C E
i=2 8m
2m
1 0 -20 20 0
μ
Mg 40
0. 4 0.6
力 28 矩 -1 -46.4 -61.6 分 46.4 配 6.2 与 2.7 -1 -2.7 -3.5 传 0.4 递 -0.1 -0.3
M S
M 1 j 1 j M ——近端获得的分配弯矩
7
§9-1 力矩分配法的基本概念
M1A=4i1Aθ=S1Aθ M1B=3i1Bθ=S1Bθ
M1C=i1Cθ=S1Cθ
S1 A M S S1 B M S S 1C M S
M
B 1 A
θ
C
b)传递弯矩 MA1=2i1Aθ=(1/2)M1A =C1AM1A
§9-2 多结点的力矩分配
G -7.5 -7.5
7.13 A
20kN/m
↓↓↓↓↓↓↓↓↓↓
7.13
-0.375
-15.38
15.38
2.36 2.36
0.78 C
H 0.75 0.03 0.78
CA CE CH
0.4C 0.4 0.2 3.75 -1.5 -1.5 -0.75 0.19 -0.08 -0.08 -0.03 2.36 -1.58 -0.78
=
∑MBg
2、放松结点B,此时结构只 有一个结点角位移,按单结 MABg 点的力矩分配法计算,结点 C最终取得新的结点不平衡 力矩∑MCg +MC传 3、放松结点C,按单结点 的力矩分配法计算,结点 B又取得新的不平衡力矩 MB传 M传 MBAg