矩阵及其运算测试题
考研数学三(矩阵及其运算)-试卷1
考研数学三(矩阵及其运算)-试卷1(总分:54.00,做题时间:90分钟)一、选择题(总题数:4,分数:8.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设A,B是n阶矩阵,则C=的伴随矩阵是(分数:2.00)A.B.C.D. √解析:解析:由于CC * =|C|E=|A||B|E,因此应选(D).另外,作为选择题不妨附加条件A,B可逆,那么3.设A,B,C是n阶矩阵,且ABC=E,则必有(分数:2.00)A.CBA=E.B.BCA=E.√C.BAC=E.D.ACB=E.解析:解析:由ABC=E知A(BC)=(BC)A=E,或(AB)C=C(AB)=E,可见(B)正确.由于乘法不一定能交换,故其余不恒成立.4.设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=(分数:2.00)A.E.√B.-E.C.A.D.-A.解析:解析:由B-C=(E-A) -1 -A(E-A) -1 =(E-A)(E-A) -1 =E(或B-C=B-AB=E).故选(A).二、填空题(总题数:7,分数:14.00)5.已知n阶行列式|A|A|的第k行代数余子式的和A k1 +A k2+…+A kn = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:若依次求每个代数余子式再求和,这很麻烦.我们知道,代数余子式与伴随矩阵A *有密切的联系,而A *与A -1又密不可分.对于A用分块技巧,很容易求出A -1.由于又因A * =|A|A -1,那么6.已知(A * ) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由AA * =|A|E,有7.已知 A -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:A= =5B -1,求B -1可用公式(2.8.设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A-2B,(A+2E) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由AB=A-2B有AB+2B=A+2E-2E,得知(A+2E)(E-B)=2E,即(A+2E). (E-B)=E.故(A+2E)-1(E-B).9.设B=(E+A) -1 (E-A),则(E+B) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由于B+E=(E+A) -1 (E-A)+E=(E+A) -1 (E-A)+(E+A) -1 (E+A) =(E+A) -1 [(E-A)+(E+A)]=2(E+A)-1,故 (B+E) -1(E+A).10.如A 3 =0,则(E+A+A 2 ) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:E-A)解析:解析:注意(E-A)(E+A+A 2 )=E-A 3 =E.11.设3阶方阵A,B满足A -1 BA=6A+BA.且B= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由题设知,A可逆.然后在题设关系式两端右乘A -1有:A -1 B=6E+B,在该式两端左乘A,得B=6A+AB.移项得(E-A)B=6A,则B=6(E-A) -1 A.于是由三、解答题(总题数:16,分数:32.00)12.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(矩阵及其运算)-试卷2
考研数学三(矩阵及其运算)-试卷2(总分:54.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设n维行向量αA=E-ααT,B=E+2αTα,则AB=(分数:2.00)A.0.B.E.√C.-E.D.E+αTα.解析:解析:AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α.注意ααT,故AB=E.应选(B).3.设A是任一n阶矩阵,下列交换错误的是(分数:2.00)A.A * A=AA *.B.A m A p =A p A m.C.A T A=AA T.√D.(A+E)(A-E)=(A-E)(A+E).解析:解析:因为AA * =A * A=|A|E, A m A p =A p A m =A m+p, (A+E)(A-E)=(A-E)(A+E)=A 2 -E,所以(A)、(B)、(D)均正确.而AA T,故(C)不正确.4.设A,B,A+B,A -1 +B -1均为n阶可逆矩阵,则(A -1 +B -1 ) -1 =(分数:2.00)A.A+B.B.A -1 +B -1.C.A(A+B) -1 B.√D.(A+B) -1.解析:解析:(A -1 +B -1 ) -1 =(EA -1 +B -1 ) -1 =(B -1 BA -1 +B -1 ) -1 =[B -1 (BA -1 +AA -1 )] -1 =[B -1 (B+A)A -1 ] -1 =(A -1 ) -1 (B+A) -1 (B -1 ) -1 =A(A+B) -1 B.故应选(C).5.设A,B均是n阶矩阵,下列命题中正确的是(分数:2.00)或B=0.且B≠0.A|=0或|B|=0.√A|≠0且|B|≠0.解析:解析:A=≠0,但AB=0,所以(A),(B)均不正确.又如AB≠0,但|A|=0且|B|=0.可见(D)不正确.由AB=0有|AB|=0,有|A|.|B|=0.故|A|=0或|B|=0.应选(C).注意矩阵A≠0和行列式|A|≠0是两个不同的概念,不要混淆.6.设B=(分数:2.00)A.AP 1 P 2B.AP 1 P 3.√C.AP 3 P 1.D.AP 2 P 3.解析:解析:把矩阵A的第2列加至第1列,然后第1,3两列互换可得到矩阵B,表示矩阵A的第2列加至第1列,即AP 1,故应在(A)、(B)中选择.而P 3表示第1和3两列互换,所以选(B).二、填空题(总题数:12,分数:24.00)7.若 A 2 = 1,A 3 = 2.(分数:2.00)填空项1:__________________8.若 A * = 1,(A * ) * = 2.(分数:2.00)填空项1:__________________ (正确答案:正确答案:1)填空项1:__________________ (正确答案:0)解析:解析:用定义.A 11 =-3,A 12 =6,A 13 =-3,A 21 =6,A 22 =-12, A 23 =6,A 31 =-3,A 32 =6, A 33 =-3,故因为r(A * )=1,A *的二阶子式全为0,故(A * ) * =0.9.设 A -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])10.设矩阵(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因B=(A+2E)(A+3E),又=5B -1,故11.设A是n阶矩阵,满足A 2 -2A+E=0,则(A+2E) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由(A+2E)(A-4E)+9E=A 2 -2A+E=0有 (A+2E). (4E-A)=E. (A+2E) -1.12.若(A * ) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为(A * ) -113.若A -1(3A) * = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为(kA) * =k n-1 A *,故(3A) * =3 2 A *,又A * =|A|A -1,而从而(3A) * =9A *14.设x= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4或-5)解析:解析:A不可逆|A|=0x=4或x=-5.15.设A,B均为3阶矩阵,且满足AB=2A+B,其中B-2E|= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:-2)解析:解析:由AB-2A-B+2E=2E,有A(B-2E)-(B-2E)=2E,则(A-E)(B-2E)=2E.于是|A-E|.|B-2E|=|2E|=8,而|A-E|=-4,所以|B-2E|=-2.16.设A 2 -BA=E,其中B= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由于BA=A 2 -E,又A可逆,则有B=(A 2 -E)A -1 =A-A -1.故17.设XA=A T +X,其中X= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由XA-X=A T有X(A-E)=A T,因为A可逆,知X与A-E均可逆.故X=A T (A-E) -118.已知X满足A * X=A -1 +2X,其中A *是A的伴随矩阵,则X= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:左乘A并把AA *=|A|E代入得|A|X=E+2AX,移项得(|A|E-2A)X=E.故X=(|A|E-2A)-1.由|A|=4知X=(4E-2A) -1三、解答题(总题数:9,分数:18.00)19.解答题解答应写出文字说明、证明过程或演算步骤。
矩阵及其运算练习题
第二章 矩阵及其运算 习题 2.1 矩阵及其运算 【基本题】
1 2 1 0 1 4 一、设 A= 3 1 4 ,B= 2 1 3 ,求 0 -1 2 1 2 1
(1) 2A-B; (2) 2A+3B; (3) 满足 A+X=2B 的 X.
9. 设 A, B, C 均为 n 阶方阵, 且 A 可逆, 则下列结论必成立的是 ( ) . (A) 若 AC=BC,则 A=B; (C) 若 BA=CA,则 B=C; (B) 若 BA=O,则 A=O 或 B=O; (D) 若 A1B CA1 ,则 B=C.
A B 10. 设 M ,其中设 A,B,C,D 为 n(n>1)阶方阵,则 MT=( ). C D A A C (A) ; (B) T B D B AT CT ; (C) T D B AT CT (D) T ; DT C BT . DT
(1)A T +B; (2)AB;
(3)BA.
二、将矩阵适当分块后计算
2 0 0 0 0 0 0 1 2 0 0 0 2 2 0 0 1 0 0 0 0 1 1 1 1 1 4 0 1 0 1 1 1 1 1 1 . 1 0 0 1
(3) 设 A 为 3 阶方阵且 A 3 ,求 3 A1 2 A ;
( 5A )1 ;
1 1 1 (4) 设 A1 1 2 1 ,求 ( A )1 ; 1 1 3
线性代数习题集
0 0 1 2 3 0 (5) 设 A 0 4 5 0 0 6
1 3 0 ( 2) 2 6 1 . 0 1 1
上海高二数学矩阵及其运算(有详细答案)精品
上海⾼⼆数学矩阵及其运算(有详细答案)精品上海版⾼⼆上数学矩阵及其运算⼀.初识矩阵(⼀)引⼊:引例1:已知向量()1,3OP =,如果把OP 的坐标排成⼀列,可简记为13??;引例2:2008我们可将上表奖牌数简记为:512128363836232128?? ?;引例3:将⽅程组231324244x y mz x y z x y nz ++=??-+=??+-=?中未知数z y x ,,的系数按原来的次序排列,可简记为2332441m n ??- ? ?-??;若将常数项增加进去,则可简记为:2313242414m n ??- ? ?-??。
(⼆)矩阵的概念1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ??- ? ?-??这样的矩形数表叫做矩阵。
2、在矩阵中,⽔平⽅向排列的数组成的向量()12,,n a a a 称为⾏向量;垂直⽅向排列的数组成的向量12n b b b ??称为列向量;由m 个⾏向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ?为33?阶矩阵,可记做33A ?。
有时矩阵也可⽤A 、B 等字母表⽰。
3、矩阵中的每⼀个数叫做矩阵的元素,在⼀个m n ?阶矩阵m n A ?中的第i (i m ≤)⾏第j (j n ≤)列数可⽤字母ij a 表⽰,如矩阵512128363836232128?? ?第3⾏第2个数为3221a =。
4、当⼀个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。
如000000??为⼀个23?阶零矩阵。
5、当⼀个矩阵的⾏数与列数相等时,这个矩阵称为⽅矩阵,简称⽅阵,⼀个⽅阵有n ⾏(列),可称此⽅阵为n 阶⽅阵,如矩阵512128363836232128?? ? ? ???、2332441m n ??- ? ?-??均为三阶⽅阵。
《线性代数》第二章矩阵及其运算精选习题及解答
An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
线性代数-矩阵及其运算习题
设
D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D
⋅
D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n
−
1
n
n
n n n×n
解
n − 1 − 1 − 1 2
n −1
n n−1
−
n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.
解
X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,
矩阵运算新练习题
(2 )
( z 3.2)( z 2.6) H ( z) z 5 ( z 8.2)
9.假设描述系统的常微分方程为
y (t ) 13 y(t ) 4 y(t ) 5 y(t ) 2u(t )
(3)
请选择一组状态变量并将此方程在MATLAB工 作空间中表示出来,并求出系统的传递函数和零 极点模型。(提示:几阶微分方程就选几个状态 变量) 10.假设系统的状态空间方程为
6 8 0 A 5 3 2 1 4 3
1 4 2 2 1 2 和B 0 3 1
3 p ( x ) x 2 x 4的根 2.求多项式
3.已知多项式的根分别为1、2、3、4、5,试求此根 的多项式。 4.求多项式 p( x) x5 15x4 85x3 225x2 274x 120 在点x=9处的值。 2 3 2 q ( x ) 2 x x5 5.分别求多项式 p( x) 3x 2x x 8与 的导数及p( x)* q( x) 和 p( x) / q( x) 的导数,并求出p(2) 和 q(2)的值 6.求线性方程的解:要求分别用直接法和LU分解法 求线性方程的解。
11.假设系统由下面的传递函数矩阵给出,试将其输 入到MATLAB工作空间。 0.72 s
0.252e (1 3.3s)3 (1 1800 s) G ( s) 0.0435 3 (1 25.3 s ) (1 360 s)
线性代数课后习题答案第二章矩阵及其运算
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k. 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i ns i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθc o s s i ns i n c o s .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21,1 ,21(d i a g 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
本_第8讲_矩阵分块法 矩阵运算习题
A=(aij)称为系数矩阵 系数矩阵 x=(x1, x2, ⋅ ⋅ ⋅, xn)T 称为未知数向量 未知数向量 b=(b1, b2, ⋅ ⋅ ⋅, bm)T 称为常数项向量 常数项向量 B=(A, b)称为增广矩阵 增广矩阵
第13页 页
解向量
小结
1. 矩阵分块法是矩阵运算的一种技巧.其好处: 矩阵分块法是矩阵运算的一种技巧.其好处:
7. 设Ak = O(k为正整数),证明( E − A) −1 = E + A + A2 + L + Ak −1.
证
Q ( E − A)( E + A + A2 L + Ak −1 )
= E + A + A2 L + Ak −1 − ( A + A2 L + Ak −1 + Ak )
= E − Ak = E ∴ ( E − A) −1 = E + A + A2 + L + Ak −1.
(1)把大矩阵的运算化为小矩阵的运算; (1)把大矩阵的运算化为小矩阵的运算; 把大矩阵的运算化为小矩阵的运算 (2)矩阵分块后能突出矩阵的结构,从而可利用它 矩阵分块后能突出矩阵的结构, 的特殊结构,使运算简化; 的特殊结构,使运算简化; (3)可为某些命题的证明提供方法. (3)可为某些命题的证明提供方法. 可为某些命题的证明提供方法
1 0 0 B1 a 0 0 = B2 0 b 1 B3 1 1 b
a 0 A= 1 0
1 a 0 1
0 0 b 1
0 0 A O = E B 1 b
a 0 A= 1 0
考研数学一(矩阵及其运算)模拟试卷1(题后含答案及解析)
考研数学一(矩阵及其运算)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.下列命题中不正确的是A.如A是n阶矩阵,则(A—E)(A+E)=(A+E)(A—E).B.如A,B均是n×1矩阵,则ATB=BTA.C.如A,B均是n阶矩阵,且AB=0,则(A+B)2=A2+B2.D.如A是n阶矩阵,则AmAk=AkAm.正确答案:C解析:(A)中,由乘法有分配律,两个乘积均是A2一E,而(D)是因乘法有结合律,两乘积都是Am+k,故(A),(D)都正确.关于(B),由于ATB,BTA都是1×1矩阵,而1阶矩阵的转置仍是其自身,故ATB=(ATB)T=BTA亦正确.唯(C)中,从AB=0还不能保证必有BA=0,例如A=,则AB=,因此,(C)不正确.选(C).知识模块:矩阵及其运算2.已知3阶矩阵A可逆,将A的第2列与第3列交换得B,再把B的第1列的一2倍加至第3列得C,则满足PA-1=C-1的矩阵P为A.B.C.D.正确答案:B解析:对矩阵A作一次初等列变换相当于用同类的初等矩阵右乘A,故应选(B).知识模块:矩阵及其运算3.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=A.B.C.D.正确答案:A解析:对矩阵P作一次初等列变换:把第2列加至第1列,便可得到矩阵Q.若记E12(1)=,则Q=PE12(1).那么QTAQ=[PE12(1)]TA[PE12(1)]=(1)(PTAP)E12(1)所以应选(A).知识模块:矩阵及其运算4.设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=A.kA*.B.kn-1A*.C.knA*.D.k-1A*.正确答案:B解析:由于kA=(kaij),故行列式|kA|的代数余子式按定义为再根据伴随矩阵的定义知应选(B).知识模块:矩阵及其运算5.设A,B是n阶矩阵,则C=的伴随矩阵是A.B.C.D.正确答案:D解析:由于CC*=|C|E=|A||B|E,因此应选(D).另外,作为选择题不妨附加条件A,b可逆,那么知识模块:矩阵及其运算6.设A,B,C是n阶矩阵,且ABC=E,则必有A.CBA=E.B.BCA=E.C.BAC=E.D.ACB=E.正确答案:B解析:由ABC=E知A(BC)=(BC)A=E,或(AB)C=C(AB)=E,可见(B)正确.由于乘法不一定能交换,故其余不恒成立.知识模块:矩阵及其运算7.设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B—C=A.E.B.一E.C.A.正确答案:A解析:由B=E+AB(E一A)B=EB=(E—A)-1;C=A+CAC(E—A)=AC=A(E—A)-1(或C=AB).那么B—C=(E一A)-1-A(E—A)-1=(E—A)(E 一A)-1=E(或B—C=B—AB=E).故选(A).知识模块:矩阵及其运算填空题8.设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.正确答案:AB=BA解析:两个对称矩阵的乘积不一定是对称矩阵.例如而AB对称AB=BTAT=BA.所以应填:AB=BA.知识模块:矩阵及其运算9.设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.正确答案:5解析:设α=(a1,a2,a3)T,β=(b1,b2,b3)T,则而αTβ=(a1,a2,a3)=a1b1+a2b2+a3b3,注意到αTβ正是矩阵αβT的主对角线元素之和,所以αTβ=1+6+(-2)=5.知识模块:矩阵及其运算10.设α=(1,2,3)T,β=(1,,0)T,A=αβT,则A3=_________.正确答案:解析:由于A=αβT==2.所以A3=(αβT)(αβT)(αβT)=α(βTα)(βT α)βT=4αβT=4A= 知识模块:矩阵及其运算11.已知A=,则An=___________.正确答案:解析:由于A=λE+J,其中J=,而进而知J4=J5=…=0.于是知识模块:矩阵及其运算12.已知A=,则An=__________.正确答案:解析:对A分块为则B=3E+J,由于J3=J4=…=0,于是Bn=(3E+J)n=3nE+3n -2J2.而C=(3,-1),C2=6C,…,Cn=6n-1C,所以知识模块:矩阵及其运算13.设A=,则A2013一2A2012=___________.解析:由于A2013一2A2012=(A一2E)A2012,而A一2E=试乘易见(A 一2E)A=0,从而A2013一2A2012=0.知识模块:矩阵及其运算14.已知PA=BP,其中P=,则A2012=__________.正确答案:E解析:因为矩阵P可逆,由PA=BP得A=P-1BP.那么A2=(P-1BP)(P-1BP)=P-1B(PP-1)BP=P-1B2P.归纳地A2012=P-1B2012P.因为,易见B2012=E.所以A2012=P-1EP=E.知识模块:矩阵及其运算15.已知2CA一2AB=C—B,其中A=,则C3=____________.正确答案:解析:由2CA一2AB=C-B得2CA一C=2AB—B.故有C(2A—E)=(2A—E)B.因为2A—E=可逆,所以C=(2A—E)B(2A—E)-1.那么C3=(2A—E)B3(2A—E)-1 知识模块:矩阵及其运算16.已知A=,则An=___________.正确答案:解析:先求A的特征值与特征向量.由对λ=0,由(0E—A)x=0,解出α1=;对λ=6,由(6E—A)x=0,解出α2=令P=.而A=PAP-1,于是知识模块:矩阵及其运算17.=___________.正确答案:解析:E12=是初等矩阵,左乘A=所得E12A是A作初等行变换(1,2两行对换),而E122011A表示A作了奇数次的1,2两行对换,相当于矩阵A作了一次1,2两行对换,故而右乘E13是作1,3两列对换,由于是偶数次对换,因而结果不变,即为所求.知识模块:矩阵及其运算18.设A=,(A-1)*是A-1的伴随矩阵,则(A-1)*=__________.正确答案:解析:因为A-1.(A-1)*=|A-1|E,有(A-1)*=|A-1|A=A.本题|A|=6,所以(A-1)*= 知识模块:矩阵及其运算19.已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=___________.正确答案:解析:若依次求每个代数余子式再求和,这很麻烦.我们知道,代数余子式与伴随矩阵A*有密切的联系,而A*与A-1又密不可分.对于A用分块技巧,很容易求出A-1.由于又因A*=|A|A-1,那么可见Ak1+Ak2+…+Akn= 知识模块:矩阵及其运算20.(Ⅰ)已知A=,则(A*)-1=____________.(Ⅱ)已知A=,则A-1=____________.(Ⅲ)设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A 一2B,B=,则(A+2E)-1=____________.(Ⅳ)设A=,B=(E+A)-1(E—A),则(E+B)-1=____________.(Ⅴ)如A3=0,则(E+A+A2)-1=____________.正确答案:解析:(Ⅰ)由AA*=|A|E,有(Ⅱ)A=(Ⅲ)由AB=A一2B有AB+2B=A+2E 一2E,得知(A+2E)(E-B)=2E,即(A+2E)(E一B).(Ⅳ)由于B+E=(E+A)-1(E 一A)+E=(E+A)-1(E—A)+(E+A)-1(E+A) =(E+A)-1[(E—A)+(E+A)]=2(E+A)-1,故(B+E)-1=(E+A).(Ⅴ)注意(E—A)(E+A+A2)=E—A3=E.知识模块:矩阵及其运算解答题解答应写出文字说明、证明过程或演算步骤。
矩阵练习题解决矩阵运算的问题
矩阵练习题解决矩阵运算的问题矩阵是线性代数中的重要概念之一,广泛应用于物理、计算机科学、经济学等领域。
通过使用矩阵运算,我们可以解决各种与矩阵相关的问题。
本文将介绍一些常见的矩阵练习题,并给出相应的解决方法。
一、矩阵的基本概念在开始解答矩阵练习题之前,我们首先需要了解矩阵的基本概念。
矩阵是一个按照矩形排列的数,由 m 行 n 列构成。
我们通常用 A 表示一个矩阵,其中 A(i, j) 表示矩阵 A 第 i 行、第 j 列的元素。
二、矩阵的运算1. 矩阵的加法矩阵的加法满足加法的交换律和结合律。
即对于两个矩阵 A 和 B,满足 A + B = B + A 和 (A + B) + C = A + (B + C)。
2. 矩阵的乘法矩阵的乘法是指对于两个矩阵 A 和 B,将 A 的每个元素与 B 的对应元素相乘,然后将乘积相加得到新的矩阵 C。
矩阵乘法满足分配律和结合律。
即对于矩阵 A、B 和 C,满足 A(B + C) = AB + AC 和(AB)C = A(BC)。
3. 矩阵的转置矩阵的转置是指将矩阵 A 的行变成列,列变成行,得到的新矩阵记为 A^T。
即 A^T(i, j) = A(j, i)。
三、矩阵练习题解答现在,我们通过一些矩阵练习题来加深对矩阵运算的理解。
1. 问题:求两个矩阵的和。
解答:设 A 和 B 分别是 m 行 n 列的矩阵,它们的和记为 C。
则 C(i, j) = A(i, j) + B(i, j)。
依次计算每个元素的和即可得到结果。
2. 问题:求两个矩阵的乘积。
解答:设 A 是 m 行 n 列的矩阵,B 是 n 行 p 列的矩阵,它们的乘积记为 C。
则C(i, j) = Σ(A(i, k) * B(k, j)),其中 k 的取值范围为 1 到 n。
依次计算每个元素的乘积并进行求和,即可得到结果。
3. 问题:求一个矩阵的转置。
解答:设 A 是 m 行 n 列的矩阵,它的转置记为 B。
线性代数习题册(第二章矩阵及其运算参考答案)
⇔ αTα = 1
单元 6 逆矩阵、分块矩阵
一、判断题(正确的打√,错误的打×)
1. 可逆矩阵一定是方阵.
(√)
2. 若 A 、 B 为同阶可逆方阵,则 AB 可逆.
(√)
3. 设 A, B 均为可逆矩阵,则 AB 也可逆且 ( AB)−1 = A−1B−1 .
(X)
4. 若 A 可逆,则 AT 也可逆.
分析: |
r1 A|
↔
r2
− | B |,所以
A
+
B
= 0 。
20.
设
A
=
a11 a21
a12 a22
a13 a23
,
B
=
a21 a11
a22 a12
a23 a13
0 1 0
,
P1
=
1
0
0
a31 a32 a33
a31 + a11 a32 + a12 a33 + a13
0 0 1
( A) kA∗
(B) k n−1 A∗
(C ) k n A∗
( D) k −1 A∗
分析:题中对可逆矩阵也要成立,所以不妨设 A 可逆时进行分析。
( ) = (kA)∗ | kA | (= kA)−1 k n | A | ⋅ 1 A−1 = k n−1 | A | A−1 = k n−1 A* k
a31 + a11 a32 + a12 a33 + a13
r1
↔
r2
a21 a11
a31 + a11
a22 a12 a32 + a12
a23
a13
第三章 矩阵及其运算 典型例题及求解
a1
a1
A2
a2
[
b1
b2
bn
a2
]
b1
b2
bn
an
an
a1
n i 1
aibi
a2 an
b1
b2
故得证。
bn
n
aibi
A
=kA,此处
0 0 1 0
0 0 0 1
即
A 1
1
2 3
0
0
0
1 3
0
0
1 0 0 0 [例 8] 利用初等变换求矩阵 A= 1 2 0 0 的逆矩阵。
1 2 3 0 1 2 3 4
[分析] 初等变换法是求逆矩阵的基本方法, 即对矩阵 (A|E) 进行初等变换, 当把左边的矩阵
A1
0
A21
A11 0
。
0 0 1 2
[解]
A 0 0 0
3
3
,故
A
可逆。
1 0 0 0
0 1 0
0
0 A E
B
0
,其中
E
1 0
0 1
,
B
1 0
2
3
设
A1
C11 C21
C12 C22
1 0 0 0 1 0 0 0
0
1
0
矩阵矩阵运算 练习题(三)
矩阵、矩阵运算练习题(三)一、判断题1. 设B A,均为n 阶矩阵,则BA AB =. ( )2. 若AC AB =,则C B =. ( )3. 设B A ,均为可逆矩阵,则AB 也可逆且111)(---=B A AB . ( )4. 若B A ,均为n 阶方阵,则必有BA AB =. ( )5. 若B A ,均为n 阶方阵,则必有B A B A +=+.( ) 6. 若B A ,均为n 阶方阵,则必有()T T T B A AB =. ( )7. 若B A ,均为n 阶方阵,则必有()2222B AB A B A ++=+ ( )8. 若B A ,均为n 阶方阵,则必有)()(BA AB r r =. ( )9. 若B A ,均为n 阶方阵,则必有若02=A ,则0=A . ( )10. 若B A ,均为n 阶方阵,则必有若0=A A T ,则0=A . ( )11. 设方阵A 满足A AA =,则必有0=A 或E A =. ( )12. 设B A ,是不可逆的同阶方阵,则B A =. ( )13. 设*A 为n 阶方阵()2≥n A 的伴随矩阵,若A 为满秩方阵,则*A 也是满秩方阵.( )14. n 阶矩阵A 可逆的充要条件是:当0≠X 时,0≠AX ,其中.),,,(21T n x x x =X ( )15. B A ,均为三阶阵,且0=AB 则00==B A 或. ( ) 16. )()(A A r r ≤*, A A 是*的伴随矩阵. ( )二、选择题1. 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=a b b b a b b b a A ,已知伴随矩阵*A 的秩为1,则必有( ).(A) 02≠+≠b a b a 且; (B) 02=+≠b a b a 且;(C) 02≠+b a b a 或=; (D) 02=+=b a b a 或2. 则,且,阶方阵为设)()(B A B A,r r n =( ). (A) 0)(=-B A r ; (B) )(2)(A B A r r =+;(C) )(2)(A B ,A r r =; (D) )()()(B A B ,A r r r +≤。
矩阵分析复习题
矩阵分析复习题矩阵分析复习题矩阵分析是线性代数中的一个重要分支,它研究的是矩阵的性质和运算。
在实际应用中,矩阵分析被广泛应用于各个领域,如物理学、工程学和计算机科学等。
为了更好地掌握矩阵分析的知识,我们需要进行一些复习题的训练。
下面,我将给大家提供一些矩阵分析的复习题,希望能够帮助大家巩固知识。
1. 矩阵的转置运算是指将矩阵的行和列互换。
请问,对于一个m×n的矩阵A,它的转置矩阵AT是多少?答案:AT是一个n×m的矩阵,它的第i行第j列的元素等于原矩阵A的第j行第i列的元素。
2. 矩阵的加法运算是指将两个矩阵的对应元素相加得到一个新的矩阵。
请问,对于两个m×n的矩阵A和B,它们的和矩阵C是多少?答案:C是一个m×n的矩阵,它的第i行第j列的元素等于矩阵A的第i行第j列的元素加上矩阵B的第i行第j列的元素。
3. 矩阵的乘法运算是指将两个矩阵按照一定规则相乘得到一个新的矩阵。
请问,对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积矩阵C是多少?答案:C是一个m×p的矩阵,它的第i行第j列的元素等于矩阵A的第i行的元素与矩阵B的第j列的元素的乘积之和。
4. 矩阵的逆运算是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
请问,对于一个2×2的可逆矩阵A,它的逆矩阵A-1是多少?答案:设A=[a b; c d],其中a、b、c、d是矩阵A的元素。
如果ad-bc≠0,则A的逆矩阵A-1=[d/|A| -b/|A|; -c/|A| a/|A|],其中|A|=ad-bc。
5. 矩阵的特征值和特征向量是矩阵分析中的重要概念。
请问,对于一个n×n的矩阵A,它的特征值和特征向量的定义是什么?答案:设矩阵A的特征值为λ,特征向量为x,则有Ax=λx。
特征值λ是一个标量,特征向量x是一个非零向量。
通过以上的复习题,我们可以巩固矩阵分析的基本知识。
第二章 矩阵及其运算 练习卷二(参考
练习卷二(A卷)班级姓名学号学院专业※※※※※※※※※※※※※※※※※※※※※※※密封线内不准答题※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※第二章矩阵及其运算一、填空题(本大题共4个小题,每小题5分,共20分)1.2..3.已知方阵、满足,则成立的充要条件是AB+BA=0.4.设,则,.二、单项选择题(本大题共2个小题,每小题5分,共10分)5.设A、B为n阶方阵,则下列选项正确的是(B).(A) ; (B) 若,则;(C) ; (D) 若AB=O,则A=O或B=O.6.设A、B为n阶方阵,则必有(A).(A) ; (B) ;(C) ; (D) .三、求下列矩阵的逆矩阵(本大题共1个小题,共15分)7..解法1:利用伴随矩阵求解。
因为|A|=5,解法2:利用初等变换求解(第三章).四、解答下列各题(本大题共3个小题,每小题15分,共45分)8.设矩阵,,且,求.解:由于|A|=6≠0,所以9.设方阵A满足,证明及都可逆,并求及..证明:由于两边同时取行列式,得所以A可逆。
由于10.已知,求,其中.解:五、证明题(本大题共1个小题,共15分)11.若(为整数),证明:.证明:若,则故:E-A可逆,且(选作题)已知,且,求.阅卷感言:通过对这次测验的阅卷有如下感触:1,很多同学的计算不过关。
本来比较简单的一道题,因为算错了一个数,导致整个题目都算错,很不值。
所以计算能力差的同学要加强这方面训练,这个能力在你不懈的努力下是可以慢慢提高的。
不要从你小学的时候数学就经常算错向我念起,不要追溯到你的爸爸妈妈数学就不好…除了心理的因素以外,懒惰可能是你面临的最大障碍。
想提高只有多练,没别的招了。
2,在计算7,8两题时,有一部分同学将伴随矩阵的行与列的位置弄颠倒了,导致最后的结果错误。
这个我们在讲解相关习题的时候反复强调不要写错了,练习的习题得有十来道,结果还是有很多犯了这样的错误。
我严重怀疑这部分同学在我上第二章时来没来听讲呢?…3,在求伴随阵时每个元素是代数余子式,有的同学把正负号给遗忘了。
矩阵及其运算-试题
第二章--矩阵及其运算-试题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 矩阵及其运算目标测试题一、填空题:1. 设A 为三阶方阵,且||3=A ,则2-A*1-= TA =2. 设⎪⎪⎭⎫ ⎝⎛-=3121A ,12B 01-⎛⎫= ⎪⎝⎭,则32A B -= ,AB = 1A B -= 3. 已知1211A ⎛⎫= ⎪-⎝⎭,1111B ⎛⎫= ⎪-⎝⎭,则det()BA = *A =________()1*A -= 4.设矩阵A 的逆矩阵11234A -⎛⎫= ⎪⎝⎭,则矩阵A = ,矩阵A (是或不是)奇异矩阵5.设()diag 21,3,=-A ,2 A =________,1A -=_________A =6.()=⎪⎪⎪⎭⎫ ⎝⎛--021*******,1E ()=⎪⎪⎪⎭⎫⎝⎛--)(21021110321E 7.设⎪⎪⎪⎭⎫ ⎝⎛=300041003A ,则1(2)A E --=8.设A 是43⨯阶矩阵,若将A 的第3行2倍,再将所得矩阵第1列的2-倍加到第4列得到矩阵⎪⎪⎪⎭⎫ ⎝⎛---=204244013101B ,则=A9.设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A ,则=-1A A = 10. 已知A 为3阶方阵,且21=A ,则=-*-A A 2)3(111.矩阵 ⎪⎪⎪⎭⎫ ⎝⎛--201000002310的秩是 ;已知2103231040000000A -⎛⎫⎪⎪= ⎪⎪⎝⎭则 R (A )= 12.若矩阵⎪⎪⎪⎭⎫ ⎝⎛-a 21330321的秩为2,则=a13.矩阵⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1212c c r r ↔+ 14.⎪⎪⎪⎭⎫ ⎝⎛--0211231-11化为行最简形矩阵为15.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k k k kA 111111111111,(1)若3)(=A R ,则=k (2)若1)(=A R ,则=k 二、选择题1.设n 阶矩阵A,B,C 满足ABC=E ,则正确的是( )A . =ACB E B . =CBA EC . =BAC ED .=BCA E 2. 设A 是34⨯矩阵,B 是35⨯矩阵,如果T AC B 有意义,则C 是()矩阵 A . 34⨯ B .35⨯ C .53⨯ D .54⨯3. 设A ,B ,C 均为n 阶矩阵,则下列矩阵的运算中不成立...的是( ) A.()T T T A B A B +=+B. =AB B AC. ()+=+A B C BA CAD. ()T T T AB B A =4. 设A 是方阵,若AC AB =,则必有 ( )A.0≠A 时C B =B.C B ≠时0=AC.C B =时0≠AD.0≠A 时C B = 5. 设A,B 为n 阶矩阵,λ为实数,下列命题不正确的是 ( ) A.111()AB B A ---= B.()T T T AB B A = C.AB BA = D.A A λλ=6.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100051003011是( )A .行阶梯矩阵B .行最简形矩阵C .标准形矩阵D .上三角矩阵7.矩阵A 在( )时,其秩将被改变。
线性代数 例题和习题
第二章 矩阵及其运算∙ 要点和公式 ∙ - PART I -1. 矩阵的基本运算 矩阵的加法设n m ij a ⨯=)(A ,n m ij b ⨯=)(B ,则n m ij ij b a ⨯±=±)(B A . 性质: ① A B B A +=+② )()(C B A C B A ++=++③ A O A =+④ O A A =-+)(矩阵的数量乘法设k 为数,n m ij a ⨯=)(A ,则n m ij ka k k ⨯==)(A A . 性质: ① A A =1② )()(A A l k kl = ③ A A A l k l k +=+)( ④ B A B A k k k +=+)(其它性质:① 0A =O ;② k O =O ;③若k A =O ,则有k =0或A =O 矩阵的乘法设n m ij a ⨯=)(A ,s n ij b ⨯=)(B , 则s m ij c ⨯=)(AB , 其中∑==nk kj ik ij b a c 1.性质:① )()(BC A C AB =② )()()(B A B A AB k k k ==③ AC AB C B A +=+)(④BC AC C B A +=+)(☑ 一般而言,矩阵的乘法不满足交换律和消去律,即 ①AB ≠BA ; ②AB =AC → B =C ; ③AB =O → A =O 或B =O (“≠”表示“不一定等于”;“→”表示“不一定能推出”) 定义:若AB =BA ,则称A 和B 可交换.(根据矩阵乘法,若A ,B 可交换,则A ,B 是同阶方阵)2 线性方程组及其矩阵表达式含m 个方程、n 个未知量的线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 矩阵表达式:⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a aa a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=m b b b 21,简记为Ax =b3 线性变换及其矩阵表达式从变量x 1, x 2, …, x n 到变量y 1, y 2, …, y m 的线性变换⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nmn m m m nn nn x a x a x a y x a x a x a y x a x a x a y 22112222121212121111 矩阵表达式:=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛m y y y 21⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a aa a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21,简记为y =Ax4 方阵、和方阵有关的运算 重要的方阵⑴ n 阶上三角矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a 22211211 (即,当i >j 时,a ij =0)n 阶下三角矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a21222111 (即,当i <j 时,a ij =0) ⑵ n 阶对角矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛==n n diag λλλλλλ2121),,,(Λ ⑶ n 阶数量矩阵 nn n k k k k ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛= E (k ≠0)⑷ n 阶单位矩阵 nn n ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 E⑸ 奇异矩阵、非奇异矩阵 (不可逆矩阵、可逆矩阵) ⑹ 对称矩阵、反对称矩阵 ⑺ 伴随矩阵 方阵A 的k 次幂个k k A AA A =. 性质:① m k m k +=A A A ;② km m k A A =)( ☑ 一般而言,k k k B B A A ≠)( (除非A ,B 是可交换的) 方阵A 的k 次多项式设0111)(a x a x a x a x f k k k k +++=-- ,A 为n 阶方阵, 则E A A A A 0111)(a a a a f k k k k +++=-- (E 为n 阶单位矩阵) ☑ ① f (A )g (A ) = g (A )f (A )② 一般而言,f (A )g (B ) ≠ g (B )f (A ). (除非A ,B 是可交换的) ☑⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n λλλ21Λ的多项式⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()(21n f f f f λλλΛ方阵的行列式定理:若A , B 都是n 阶方阵,则B A AB ⋅= ☑ ①A A n k k =;② 一般而言,B A B A +≠+ ③ 一般而言,B A = → A =B☑ 定义:设A 为n 阶方阵,若0=A ,则称A 为奇异矩阵;若0≠A ,则称A 为非奇异矩阵.5 转置矩阵设n m ij a ⨯=)(A ,则A 的转置矩阵m n T ji T a ⨯=)(A ,其中Tji ij a a =转置矩阵的性质:① A A =T T )( ② T T T B A B A +=+)(③ T T k k A A =)( ④ T T T A B AB =)(⑤ 若A 为方阵,则A A =T6 对称矩阵、反对称矩阵定义:若A =A T(即a ij = a ji ),则称A 是对称矩阵;若A =-A T (即a ij = -a ji ),则称A 是反对称矩阵;(由定义知,对称矩阵和反对称矩阵必然是方阵)7 代数余子式矩阵、伴随矩阵定义:设A =(a ij )为n 阶方阵(n ≥2),将A 中的所有元素a ij 替换为相应的代数余子式A ij 所得的矩阵,称为A 的代数余子式矩阵,记作cof A.定义:设A 为n 阶方阵(n ≥2),则伴随矩阵T cof )(*A A = 伴随矩阵的性质:E A A A AA ==** (该性质表明,方阵A 与.伴随矩阵....A *总是可交换的......)8 可逆矩阵定义:若AB =BA=E ,则A ,B 皆可逆,且互为逆矩阵.(由定义可知,可逆矩阵及其逆矩阵是同阶方阵)定理:若A 可逆,则1-A 是唯一的.定理:A 可逆的充分必要条件是0≠A (即A 是非奇异矩阵). 定理:若A 可逆,则*11A AA =-. 定理:若A , B 均为n 阶方阵且AB =E ,则必有BA =E (即A ,B 皆可逆,且互为逆矩阵) 可逆矩阵的性质:设A , B 均为n 阶可逆阵,数k ≠0,则A -1, A T, kA , AB , 皆可逆,且① A A =--11)( ② 11)()(--=T T A A③ 111)(---=A A k k ④ 111)(---=A B AB ⑤ 11--=A A求逆矩阵的重要公式 ⑴ 二阶可逆矩阵: 若ad -bc ≠0,则⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛-a c b d bc ad d c b a 11(2-1) (“两调一除”:调换主对角元位置,调换副对角元符号,再除以矩阵的行列式的值ad -bc ) ⑵ 可逆的对角阵、副对角阵: 若a 1 a 2 …a n ≠ 0,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛----11211121n n a a a a a a(2-2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛----11121121a a a a a a nn(2-3)9 伴随矩阵的其它性质 (补充内容)① 1*-=n AA② 若A 可逆,则A * 也可逆,且*11*)()(--=A A③**)()(T T A A = ④*1*)(A A -=n k k⑤⎪⎩⎪⎨⎧=>=-)2()2()(2**n n n A A A A⑥ ***)(A B AB =注 以上性质的证明参见Part III-附录.10 分块矩阵分块矩阵的运算性质和一般矩阵相似,但需注意以下几点: ① 分块矩阵的加法:在A ,B 是同型矩阵的前提下,要求A 和B分块方式相同;② 分块矩阵的乘法:在AB 可乘的前提下,要求A 的列的分块方式和B 的行的分块方式相同;③ 分块矩阵转置:先将行块、列块转置(“大转”),再将每个子块转置(“小转”). 分块法求逆矩阵的公式⑴ 可逆的分块对角阵、分块副对角阵:若A 1, A 2, …, A m 都是可逆阵,即021≠⋅⋅m A A A ,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11211121m m A A A A A A(2-4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛----11121121A A A A A Am m(2-5)⑵ 可逆的2⨯2分块矩阵:若A , B 都是可逆阵,即0≠⋅B A ,则⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-----11111B O CB A A B OC A (2-6)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B CA B O A BC O A (2-7)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-----11111CB A A B O O B A C (2-8)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-----O A B CA B C B A O 11111(2-9)- PART II 一些特殊矩阵的乘积 -⎪⎪⎪⎪⎪⎭⎫ ⎝⎛m a a a21()n b b b , , ,21 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n m m m n n b a b a b a b a b a b a b a b a b a 212221212111[矩阵乘积中任意两行(列)元素成比例]()n a a a , , ,21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 21n n b a b a b a +++= 2211 若A ,B 均为上(下)三角矩阵,则AB 也是上(下)三角矩阵.(并且,AB 的主对角元 = A 和B 的主对角元乘积])⎪⎪⎪⎪⎪⎭⎫⎝⎛m λλλ 21⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a aa a a a a a212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m m m m n n a a a a a a a a a λλλλλλλλλ212222221211121111[相当于用λ1, λ2, …, λm 分别乘(a ij )m ⨯n 的各行]⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a aa a a a a a212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n m m n n n n a a a a a a a a a λλλλλλλλλ 221122222111122111[相当于用λ1, λ2, …, λm 分别乘(a ij )m ⨯n 的各列]⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a21⎪⎪⎪⎪⎪⎭⎫⎝⎛n b b b 21 =⎪⎪⎪⎪⎪⎭⎫⎝⎛n b b b 21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n b a b a b a2211 (上式表明,两个同阶的对角阵总是可交换的)n m n m m kA A kE ⨯⨯=)(; n m n n m kA kE A ⨯⨯=)( n n n n n kA kE A A kE ==)()((上式表明,数量矩阵与任..一.同阶方阵总是可交换的..........) n m n m m A A E ⨯⨯=; n m n n m A E A ⨯⨯=()n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21∑∑===n i j i nj ij x x a 11(x 1,x 2,…x n 的二次齐次多项式)如果上式中方阵 (a ij )n ⨯n 是一个对称矩阵,则结果也可写作:∑∑∑=>=+n i j i nij ij i n i ii x x a x a 1212设A =(a ij )m ⨯n ,则AA T=C =(c ij )m ⨯m 是一个m 阶方阵,其中 主对角元c ii 是A 的第i 行元素的平方和,非主对角元c ij (i ≠j )是A 的第i 行和第j 行对应元素的乘积之和,即∑∑====nk jkik nk Tkj ik ij a a a a c 11⎪⎪⎩⎪⎪⎨⎧≠==∑∑==n k jk ik n k ik j i a a j i a 112)( )( 111 2122221112111212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯mn m m n n n mn m m n n a a a a a a a a a a a aa a aa a a [乘积为列向量,其中元素是(a ij )m ⨯n 的各行元素之和]() , , , 1 , ,1 ,1112112122221112111⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑===⨯m i in m i i mi i mn m m n n m a a a a a a a a a a a a[乘积为行向量,其中元素是(a ij )m ⨯n 的各列元素之和]111112112222121212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯n n mn m m mn m m n n m m a a a a a a a a a a a a a a a a a a[相当于将(a ij )m ⨯n 上下翻转]111 122122211121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯m m mn nnn n mn m m n n a a a a a a a a a a a aa a aa a a[相当于将(a ij )m ⨯n 左右翻转]000010102122221212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯mn m m n mn m m n n m m a a a a a a a a a a a a a a a[相当于将(a ij )m ⨯n 的各行向上递推一次]00001010 1,11,2211,111212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛---⨯n m m n n n n mn m m n n a a a a a a a a aa a aa a a[相当于将(a ij )m ⨯n 的各列向右递推一次)00001010,12,11,111211212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛---⨯n m m m n mn m m n n m m a a a a a a a a a a a a a a a[相当于将(a ij )m ⨯n 的各行向下递推一次]00001010 2222112212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯mnm n nn n mn m m n n a a a a a a a a aa a aa a a [相当于将(a ij )m ⨯n 的各列向左递推一次]- PART III 附录:伴随矩阵性质的证明 -[证] (i) 若A 不可逆 (即0=A ),要证的结论变为0*=A .(i-1) 若0=A 且A =O ,则O A =*→0 *=A(i -2) 若0=A 但A ≠O ,仍有0*=A ,用反证法证明如下: 假设0 *≠A ,即A *可逆.由于0=A ,故O ==E A AA *上式两端右乘(A *)-1,得O A O A ==-1*)(结论与条件 A ≠O 矛盾,故假设不成立,因此0*=A(ii) 若A 可逆 (即0≠A ), 对E A AA =*两端取行列式,得*nA A A =⋅由于0≠A ,故1* -=n AA ⏹[证] 由于A 可逆(即0≠A ),对E A AA =两端同除A ,得1*E A A A =⎪⎪⎭⎫ ⎝⎛ 上式表明:A *可逆,且1*)(-A A A1=又,用A -1替换 *E A AA =中的A ,有)(1*11E A A A ---=上式两端左乘A ,得 A AA A A 1)( 1*1==-- ⏹ 性质③ **)()(T TA A =[证] 设A =(a ij )n ⨯n , A ij 是A 中元素a ij 的代数余子式,则 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A 212221212111*A → ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n TA A A A A A A A A 212222111211*)(A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn nnn n T a a a a a aa a a A212221212111 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n T A A A A A AA A A A 212222111211*)(∴ **)()(T T A A = ⏹性质④ *1*)(A A -=n k k[证] 设A =(a ij )n ⨯n , A ij 是A 中元素a ij 的代数余子式,则行列式A k 中(i , j )元的代数余子式为nnnj n in ij i nj j i ka ka ka ka ka ka ka ka ka111111)1(+-ij n A k 1-=*1121112122112111211111* )( A A ----------=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=∴n nn n n n n n n n n n n n n n k A k A k Ak A k A k A k A k A k A k k ⏹为证明性质⑥和⑦,下面先给出两个引理(但不证明): 引理1 对任意方阵A ,必存在实数λ0,当λ >λ0时,0212222111211≠---=-λλλλnn n n nn a a a a a a a a a E A引理2 设n 阶矩阵 A=(a ij (λ)) , B=(b ij (λ)) ,其中a ij (λ) , b ij (λ)是λ 的多项式 (i ,j =1,2,…,n ).如果存在实数λ0,使得当λ >λ0时A =B ,则对于任意实数λ都有A =B .[证] 用A *替换 *E A AA =中的A ,并利用性质①,有)(****E A A A =E A1-=n .两端左乘A ,得A AA AA 1***)(-=n A AA A 1**)( -=→n以A -λE (λ为任意实数) 代替上式中的A ,得)())((1**E A EA E A E A λλλλ--=---n根据引理1,存在实数λ0,当λ >λ0时,0≠-E A λ. 故,当λ >λ0时,有⎪⎩⎪⎨⎧=->--=--)2()2( )())((2**n n n ,,E A E A E A E A λλλλ根据引理2,上式对任意实数λ均成立. 特别是λ=0时,得⎪⎩⎪⎨⎧=>=-)2( )2( )(2**n n n ,,A A A A ⏹性质⑥ ***)(A B AB =[证] 用AB 替换 *E A AA =中的A ,有)(*E AB AB AB =两端左乘A *B *,得)(*****A B B A AB AB A B =对上式左端,有******)()())((AB B A A B AB AB A B =**)()(AB B E A B =**))((AB B B A = *))((AB E B A =*)(AB B A =因此,***)(A B B A AB B A =以A -λE , B -λE (λ为任意实数)分别代替上式中的A ,B ,得()*))((E B E A E B E A λλλλ----**)()(E A E B E B E A λλλλ----=根据引理1,存在实数λ1, λ2,当λ >λ1时,0≠-E A λ,当λ >λ2时,0≠-E B λ. 若取λ0=max(λ1, λ2),则当λ >λ0时,有0≠-E A λ且0≠-E B λ,于是()***)()())((E A E B E B E A λλλλ--=--根据引理2,上式对任意实数λ均成立. 特别是λ=0时,得***)(A B AB =∙ 典型题型 ∙1 矩阵的基本运算矩阵的基本运算包括加、减、数乘、乘法、转置等,熟记“要点和公式Part II ”中特殊矩阵的乘积,有助于正确、简捷的解题. 矩阵的运算与数的运算有很多区别,例如,矩阵的乘法一般不满足交换律和消去律,因此一些关于数的恒等式或命题对矩阵不一定成立. 在学习过程中应留意这些区别.[练习1] 设⎪⎪⎭⎫ ⎝⎛=3421A ,⎪⎪⎭⎫⎝⎛=y x 21B ,则A 和B 可交换的充分必要条件是__________. [答案] x -y = -1.[练习2] 设A 是n 阶下三角矩阵,B 是一个主对角元都为零的n 阶下三角矩阵,证明AB 是主对角元都为零的下三角矩阵. [提示] 记AB =C =(c ij ),需证明:当i ≤j 时,000111=+=+==∑∑∑+===nj k kj ik jk kj ik nk kj ik ij b a b a b a c[练习3] 设A 是n 阶对称矩阵(即A =A T),B 是n 阶反对称矩阵(即B = -B T),且A 2=B 2,证明:A =B =O .[提示] 由题设条件可得,AA T+BB T=O ,从而AA T+BB T的主对角元0)(122=+∑=nk ik ikb a (i = 1,2,…,n )[练习4] 若矩阵A 的各行(或列)元素之和相等,则称A 为行(或列)等和矩阵. 证明:(1) 矩阵A =(a ij )m ⨯n 是行等和矩阵的充分必要条件是AI n ⨯1= k I m ⨯1,其中11111⨯⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n I ,11111⨯⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m m I , k 是常数; (2) 矩阵A =(a ij )m ⨯n 是列等和矩阵的充分必要条件是I 1⨯m A = k I 1⨯n , 其中()m m ⨯⨯=111 ,,1 ,1 I ,()n n ⨯⨯=111 ,,1 ,1 I .[练习5] 设A , B 均为n 阶方阵,且A 2=E , B 2=E ,证明:(AB )2=E 成立的充分必要条件是AB =BA[提示] 必要性:(AB )2=E 即ABAB =E ,两端左乘A 、右乘B ,再利用题设条件A 2=E , B 2=E 化简;充分性:由AB =BA ,可得(AB )2= (AB )(AB ) = (AB )(BA ) = A (BB )A .2 与方阵有关的计算 ⑴ 方阵的多项式⑵ 方阵的幂[练习6] 设A 为方阵,且A 2=A ,证明:(A +E )n=E +(2n-1)A . [提示] 用归纳法.[练习7] 设⎪⎪⎪⎭⎫ ⎝⎛=1001001λλA ,求A n.[答案] ⎪⎪⎪⎪⎭⎫⎝⎛=1001011221λλλn n n n C C C A[练习8] 设⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=1111111111111111A ,求A 5. [答案] ()1 ,1 ,1 ,11111--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=A ⇒ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=1111111111111111)4(45A⑶ 方阵、方阵的行列式用方阵中的元素构成的行列式(元素的位置不变),称为方阵的行列式. 方阵和行列式是不同的概念,要注意两者运算性质之间的区别.[练习9] 设α=(1,0,-1)T,矩阵A =ααT,n 为正整数,求∣k E -A n∣. [答案] k 2(k -2n)⑷ 利用定理“∣AB ∣=∣A ∣∣B ∣”计算行列式(其中A ,B 是同阶方阵)练习10设a 1, a 2, …, a n 是n 个互异的非零实数,S i=a 1i +a 2i +…+a n i,(i = 0,1, 2, …, 2n -2), 证明:022121110>---n nn nn S S S S S S S S S[提示] 利用11121211112元)(-------++++==j n i n j i j i j i a a a a a a S i,j()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=------1121111211 ,,,j n j j i n i i a a a a a a可得,行列式的值为0)(12>-∏≤<≤ni j j i a a练习11 设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,求∣B ∣.[提示] BA =B +2E ⇒ B (A -E )=2E ⇒ 22=-⋅E A B [答案] 2.3 线性变换的矩阵表示练习12 设A=E-2ααT,其中α=(a1, a2,…, a n)T,且αTα=1,证明:①A是对称矩阵;②AA T=E.[提示]①证明A T = A即可;②利用①的结论,有AA T=A2=E-4ααT+4ααTααT (其中αTα=1)5 伴随矩阵和可逆矩阵⑴伴随矩阵及其性质⑵ 求可逆矩阵的逆矩阵对于一个“数字”形式的可逆方阵A ,求逆的基本方法有: 方法一:待定元素法 (例27). 方法二:利用伴随矩阵求逆,*11A AA=- (例28). 方法三:分块矩阵法 [6-(2)中的例49和例50]. 方法四:初等变换法 (常规方法....,将于第三章中介绍). 求逆的运算容易出错,最后应验算A -1A =E 或AA -1=E成立.⑶ 判断方阵的可逆性判断方阵A 是否可逆的基本方法:方法一:根据|A |的值判断,“A 可逆⇔⎪A ⎪≠0”; “A 不可逆⇔⎪A ⎪=0”方法二:若A ,B 为同阶方阵,且AB =E (或BA =E ),则A ,B 互为逆矩阵.方法三:若A 可表示为若干个可逆矩阵的乘积,则A 可逆. (可逆矩阵的性质:可逆阵的乘积仍是可逆阵) 方法四:反证法.练习13 设A 是n 阶方阵,且AA T=E ,∣A ∣=-1,证明A +E 不可逆. [提示] 由∣A +E ∣=∣A +AA T∣=∣A (E +A T)∣=∣A ∣∣(E +A )T∣=-∣E +A ∣,得∣A +E ∣=0练习14 设A 是n 阶方阵且满足关系式A 2+A -6E =O ,证明A , A +E , A +4E 均可逆,并求逆矩阵. [提示] 以证明A +4E 可逆为例,A 2+A -6E =O ⇒ A 2+A -12E =-6E ⇒ E E A E A =+⎥⎦⎤⎢⎣⎡--)4()3(61∴ A +4E 可逆,且)3(61)4(1E A E A --=+-[答案] )(611E A A +=-,A E A 61)(1=+-,)3(61)4(1E A E A --=+-练习15 设A ,B 和A -1+B -1均为可逆矩阵,证明:①A +B 可逆,② (A +B )-1=A -1-A -1(A -1+B -1)-1A -1.[提示] 本题可综合利用例32和例33的方法,主要步骤如下: ① A +B = AB -1B +AA -1B = A (B -1+A -1)B (三个可逆阵的乘积) ② 证明[A -1-A -1(A -1+B -1)-1A -1] (A +B )= [A -1-A -1(A -1+B -1)-1A -1] A (B -1+A -1)B = E 即可练习16 设⎪⎪⎪⎭⎫⎝⎛--=11334221t A ,B 为3阶非零矩阵,且AB =O ,求t .[提示] 由B ≠O ,用反证法可得A 不可逆,即∣A ∣=0 [答案] t =-3.⑷ 利用逆矩阵解矩阵方程本章涉及的矩阵方程的基本类型如下:当A ,B 是可逆阵时,① 1B X B AX -=⇒=A ②1 -=⇒=A B X B XA③11 --=⇒=CB X C AXB A注意,如果计算中要使用了一个矩阵的逆,应先证明该矩阵可逆.练习17 设4阶方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=3000230022303123B ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000410044106241C ,且矩阵A 满足关系式 (2E -C -1B )A T= C -1,其中E 为4阶单位阵,将关系式化简,并求A .[提示] 对(2E -C -1B )A T= C -1两端左乘C ,再转置,得A (2C - B ) T= E .[答案] E B C A 51])2[(1=-=-T练习18 设矩阵A 的伴随矩阵⎪⎪⎭⎫ ⎝⎛=1112*A ,且ABA -1=BA -1+3E ,其中E 为4阶单位矩阵,求矩阵B .[提示] 化简ABA -1=BA -1+3E ,可得1*1113)(3----⎪⎭⎫ ⎝⎛-=-=A A E A E B其中的A 利用1*-=n AA 计算.[答案] ⎪⎪⎭⎫⎝⎛--=3330B⑸ (涉及可逆阵的) 方阵的幂的计算练习19 设⎪⎪⎪⎭⎫⎝⎛-=100001010A ,B =P -1AP ,其中P 为3阶可逆矩阵,求B2004-2A 2.[提示] ⎪⎪⎪⎭⎫⎝⎛--=1000100012A ;E A =4;E P E P P A PB ===--5011200412004[答案] ⎪⎪⎪⎭⎫ ⎝⎛-1336 分块矩阵矩阵的分块是重要的计算技巧,通过恰当的分块,将大矩阵的运算变成小矩阵的运算,可达到简化计算的目的. ⑴ 分块矩阵的运算练习20 设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=200042000051200125A ,求A 2k(k 为正整数) [提示]⎪⎪⎪⎪⎪⎭⎫⎝⎛-=200042000051200125A ⎪⎪⎭⎫ ⎝⎛=21A O O A ⇒ ⎪⎪⎭⎫ ⎝⎛=k k k 22212A O O A A其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=k k kk 222221130013130013A ,⎪⎪⎭⎫ ⎝⎛=+k k k k k A 2222222022[答案] ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+k k k k k kk 222222220002200013000013A练习21 设任意矩阵A 的分块矩阵A =(B , C ),证明:如果C TB =O ,则∣A T A ∣=∣B T B ∣∣C TC ∣.[提示] ()⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=C C B C C B B B C B C B A A T T T T T T T, 其中C T B =O ,B T C =(C T B )T =O T练习22 设αT, βT, γ1T, γ2T均为1⨯3行向量,记分块矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛=T TT2153γγαA ,⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T 21γγβB ,若∣A ∣=15,则∣B ∣=4,则∣A -B ∣=______.[答案] -24 ⑵ 分块法求逆矩阵分块法计算逆矩阵的公式参见“要点和公式”中的 (2-4)~(2-9).练习23 设A 是m 阶可逆矩阵,B 是n 阶可逆矩阵,且∣A ∣=a ≠0,∣B ∣=b ≠0,则O B A O 2=_______,12-⎪⎪⎭⎫⎝⎛O B A O =_______.[答案] ab m n m 2)1(⨯-; ⎪⎪⎭⎫ ⎝⎛---O A B O 11127 矩阵的运算性质除了矩阵的基本运算(加、减、数乘、乘法、转置)外,本章还介绍了对称矩阵、反对称矩阵、伴随矩阵、可逆矩阵、分块矩阵,要牢固掌握并能熟练运用相关的运算性质.练习24 设A是3阶可逆矩阵,且∣A∣=3,则∣2A-1∣=_____;∣A*∣=_____;∣(A*)*∣=_____;∣(A*)-1∣=_____;∣5A-1-2A*∣=_____;∣ (2A)*∣=_____;∣4A-(A*)*∣=_____.[答案]8/3, 9, 81, 1/9, -1/3, 576, 3(本题主要考察逆矩阵以及伴随矩阵的运算性质)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 矩阵及其运算测试题
一、选择题
1.下列关于矩阵乘法交换性的结论中错误的是( )。
(A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换;
(C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。
2.设n (2n ≥)阶矩阵A 与B 等价,则必有( )
(A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。
3.设A 、B 为方阵,分块对角阵00A C B ⎛⎫=
⎪⎝⎭
,则*
C =( )。
(A) **00
A B ⎛⎫
⎪⎝⎭ (B) **||00
||A A B B ⎛⎫
⎪⎝⎭ (C) **||00||B A A B ⎛⎫ ⎪⎝⎭ (D) **||||0
0||||A B A A B B ⎛⎫ ⎪⎝⎭
4.设A 、B 是n (2n ≥)阶方阵,则必有( )。
(A)A B A B +=+ (B)kA k A = (C)
A
A B B
=- (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ⨯==-其中E 是4阶单位矩阵,则()f x 中3
x 的系数为( )。
(A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++
6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。
(A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111()B A B A -----+
7.若12312,,,,αααββ都是4维列向量,且4阶行列式
()()12311223,,,,,,,m n αααβααβα==
则4阶行列式()32112,,,(
)αααββ+=。
(A)m n + (B)mn (C)n m - (D)m n -
8.设A 、B 、C 均为可逆矩阵,且ABC E =,则必有( )。
(A)BCA E = (B)CBA E = (C)BAC E = (D)ACB E =
9.设A 是n 阶可逆方阵,将A 的第1列加到第2列得到的矩阵记为B ,*A 、*B 分别为A 、B 的伴随矩阵,则( )。
(A)将*A 的第1列加到第2列得到*B ; (B)将*A 的第1行加到第2行得到*B ;
(C)将*A 的第2列乘以(-1)加到第1列得到*B ; (D)将*A 的第2行乘以(-1)加到第1行得到*B 。
10.设A 是n 阶方阵,E 是n 阶单位矩阵,且A E +可逆。
下列各式中,哪一个不正确的( )。
(A)22()()()()A E A E A E A E +-=-+ (B)()()()()T T A E A E A E A E +-=-+ (C)11()()()()A E A E A E A E --+-=-+ (D)**()()()()A E A E A E A E +-=-+
二、填空:
1.设矩阵A 、B ,若AB 有意义,则A 、B 的行数和列数需满
足 ;[]21123⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦= ,431512325701⎡⎤⎡⎤
⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
= 。
2.矩阵120132A ⎡⎤
=⎢
⎥-⎣⎦
的转置矩阵是 。
3.设矩阵4321A ⎡⎤=⎢
⎥⎣⎦,B 1123B -⎡⎤=⎢⎥⎣⎦1123-⎡⎤⎢⎥⎣⎦
,则2T AB A B -= ,
2T B A E -= 。
4.设矩阵A 是n 阶方阵,0,A a =≠则*A = 。
5.方阵A=111221
22a a a a ⎡⎤
⎢
⎥⎣⎦
的伴随矩阵为*A = ,已知det()A A =,det(2)A = 。
6.设1225A ⎡⎤
=⎢⎥⎣⎦
,则1A -= ,520
02
10
000120
011B ⎡⎤⎢⎥⎢⎥=⎢⎥
-⎢⎥
⎣⎦
,则1B -= 。
7.设矩阵A 、B 均可逆,O A X B O ⎡⎤
=⎢⎥
⎣⎦
,则1X -= 。
8.设100220345A -⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦,则*1()A -= 。
9.设300140003A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,则1(2)A E --= 。
10.A 是3阶方阵,1
2
A =,则1*(3)2A A --= 。
三、计算题
1.已知11
(1,2,3),(1,,),,23
T A αβαβ===求n A 。
2.设100101010A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,证明当3n ≥时,恒有22n n A A A E -=+-,并求100A 。
3.1
P AP -=Λ,其中1411P --⎡⎤=⎢⎥⎣⎦,1002-⎡⎤
Λ=⎢⎥
⎣⎦
,求11A 。
4.设210120001A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,矩阵B 满足**2ABA BA E =+,求B 。
四、证明题
1.设矩阵A 、B 都是对称矩阵,证明AB 是对称矩阵的充要条件是AB BA =。
2.设0k A =(k 为正整数),证明:121()...k E A E A A A ---=++++。
3.设方阵A 满足,220A A E --=,
证明:A 及A+2E 都可逆,并求1A -及1(2)A E -+。