动量守恒—板块模型ppt课件
合集下载
动量守恒定律PPT课件

二、动量守恒定律的推导
v1
v2
m1
m2
设m1、 m2分别以v1 、 v2相碰,碰后速度分别为v1′、 v2 ′碰 撞时间为t,规定v1的方向为正方向,由动量定理得:
对m1:-F1t =m1v1 ′ -m1v1----- (1)
对m2:F2t = m2v2 ′-m2v2---------(2)
由牛顿第三定律: F1=F2-------- -- (3) - m1v1 ′+ m1v1 = m2v2 ′-m2v2
•总定【适例用6】。质量为M的小车上站有一个质量为m的人
,它们一起以速度v沿着光滑的水平面匀速运动,某
时刻人沿竖直方向跳起。则跳起后,车子的速度为:
A. v
C. Mmv M
A
B. M m v m
D. 无法确定。
(3)矢量性:是矢量表达式,规定正方向
(4引)伸相对1. 性如:图式所子示中,各在速度光必滑须的是水相平对地于面同一上参,考有系一 (v能2′相5应辆速)加是平运同作时板动用性车,后:载已同v着知1一、时一车v2刻…人 的应的以 质速是速 量作度度M用,=v前不01=0同是60m一同kg/时一s,水刻时人平的刻的向速的质度左动量,量匀不v1′、
m1v1 ′+m2v2来自′ = m1v1+m2v2
三、动量守恒定律
1.内容:一个系统不受外力或者所受外力的和为零, 这个系统的总动量保持不变。
2.表达式:m 1 v 1 m 2 v 2 m 1 v 1 m 2 v 2
3. 守恒条件为:
①不受外力 1)严格条件
②所受外力的合力为零,即F合=0
2)近似条件
第十六章 动 量 守 恒 定 律
一、基本概念
动量守恒定律 (共19张PPT)

B
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
《动量与动量守恒》课件

动量的计算公式
总结词
动量的计算公式是P=mv,其中m表示物体的质量,v表示物 体的速度。
详细描述
动量的计算公式是P=mv,其中m表示物体的质量,单位是 千克(kg),v表示物体的速度,单位是米/秒(m/s)。这 个公式用于计算物体的动量,即物体运动时的质量和速度的 乘积。
动量单位与符号
总结词
在国际单位制中,动量的单位是千克·米/秒(kg·m/s),符号为P。
动量定理在日常生活和科技领域中有广泛的应用。例如,在车辆安全设计中,可以利用 动量定理来分析碰撞过程中车辆的变形和受力情况,从而优化车辆的结构设计。在航天 工程中,可以利用动量定理来分析火箭发动机喷气速度与推力之间的关系,从而优化火
箭的设计和发射过程。此外,在体育运动、军事等领域中也有广泛的应用。
06 动量与动量守恒的实验验证
详细描述
动量定理的推导过程可以通过牛顿第二定律 (F=ma)和积分运算来完成。首先,根据 牛顿第二定律,物体的加速度与作用力成正 比,然后通过积分运算,可以得到物体动量 的变化量与作用力与时间的乘积成正比,即 动量定理的表述。
动量定理的应用
总结词
动量定理在日常生活和科技领域中有广泛的应用。
详细描述
VS
详细描述
动量守恒定律只在满足一定条件时才成立 。这些条件包括系统不受外力作用或者系 统所受的外力作用之和为零。这是因为动 量守恒定律是在理想状态下推导出来的, 忽略了空气阻力、摩擦力等外部因素的影 响。因此,在实际应用中,只有当系统满 足这些条件时,才能应用动量守恒定律。
动量守恒定律的推导
总结词
总结词
动量定理的表述是物体动量的变化量等于作用力与时间的乘积。
详细描述
动量定理是物理学中的一个基本定理,它描述了物体动量的变化与作用力之间的关系。具体来说,一 个物体动量的变化量等于作用力与作用时间的乘积。这个定理在经典力学和相对论力学中都有应用。
动量守恒定律 (共30张PPT)

系统之外与系统发生相互作用的 其他物体统称为外界。
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
动量守恒—板块模型ppt课件

相等、方向相反的初速度(如图),使A开始向左运动、B
开始向右运动,但最后A刚好没有滑离木板.以地面为参
考系.
(1)若已知A和B的初速度大小为v0,求它们最后的速度 的大小和方向;
(2)若初速度的大小未知,求小木块A向左运动到达的最
远处(从地面上看)离出发点的距离.
v0
v0
.
v0
A B
“板块”两体模型
A.木块获得的动能变大 B.木块获得的动能变小 C.子弹穿过木块的时间变长 D.子弹穿过木块的时间变短
.
例3、质量为M的均匀木块静止在光滑水平面上,木块左 右两侧各有一位拿着完全相同步枪和子弹的射击手。首先左 侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧 射手开枪,子弹水平射入木块的最大深度为d2,如图设子弹 均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。
对物块的动能定理: fs11 2m Av121 2m Av02 (2) f = m A a 1
对木块的动量定理: ft1m Bv10 (3)
f m Ba2
v1 =v0 a1t 2a1s1=v12v02
v1 = a2t
对木块的动能定理: fs2 12mBv120 (4)
2a2s2=v12 0
几何关系:
.
.
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
s1s2L (5)
s1 s2 L
系统动量守恒: ( 1 ) ( 3 ):m A v 0 m A v 1 m B v 1 (6 )
系统能量守恒: ( 2 ) ( 4 ) 并 将 ( 5 ) 代 入 :f L 1 2 m A v 0 2 ( 1 2 m A v 1 2 1 2 m B v 1 2 ) ( 7 )
动量守恒定律PPT精品课件_1

v
(M m)v Mv
v’
v M m v M
动量守恒的相对性
例5:如图所示,在光滑的水平面上有一 质量为60kg的小车,小车的右端站着质 量为40kg的人一起以2m/s的速度向右运 动,若人水平向右以相对车的速度4m/s 跳离小车,则人离开车后,小车的速度 大小和方向各如何?
例6
一辆质量为M的小车以速率v1在光滑的水
【解析】(1)选取小船和 从大船投过的麻袋为系 统如图5-2-2,并以小船 m1的速度方向为正方向, 依动量守恒定律有:
(m1-m)v1-mv2=0
即450v1-50v2=0……①
(2)选取大船和从小船投过的麻袋为系统, 有:
-(m2-m)v2+mv1=-m2v, 即-950v2+50v1=-1000×8.5……② (3)选取四个物体为系统,有:
mC vC
(mA mC
mB )vA
5.5m / s
练习:两只小船平行逆向航行,航线 邻近,当它们头尾相齐时,由每一只 船上各投质量m=50kg的麻袋到对面一 只船上去,结果载重较小的一只船停 了下来,另一只船以v=8.5m/s的速度 向原方向航行,设两只船及船上的载 重量各为m1=500kg,m2=1000kg,问在 交换麻袋前两只船的速率各为多少? (水的阻力不计)
A物体时,A、C的速度各为多少?
v0
C
A
B
分析与解
• 设A的速度为vA mvC mAvA (mB mC )v
vA
mC vC
(mB mA
mC
)v
0.5m /
s
• 当C越过A进入B时,AB的速度的速度相
等,而且是v=0.5m/s
mCvC (mA mB )vA mCvC/
物理人教版(2019)必修第一册4.5牛顿运动定律的应用——板块模型(共25张ppt)

摩擦力种类和方向。
(2)通过受力分析,求出各物体在各个运动过程中的加速度。
(3)根据物理量之间的关系列式计算。
注意:①此类问题涉及两个物体、多个运动过程。
②前一个过程的末速度是下一个过程的初速度。
③不同运动过程转变的瞬间,加速度可能突变,需重新受力分析
板-块模型解题步骤
1.地面光滑的“滑块—木板”问题
擦力会发生突变
无相对位移
(速度相等
速度保持相同
的过程中)
位移的关系
有相对位移
(速度不相
等的过程中)
注意:计算过程中
①速度方向相同,
x相对=x木板+x滑块
②速度方向不相同,
x相对=x木板-x滑块
的速度,位移,都
是相对于地面而言。
2.“滑块—木板”模型的解题方法和步骤
(1)明确各物体对地的运动和物体间的相对运动情况,确定物体间的
板-块模型
学习目标及重点
1.能说出“板-块”模型的概念。
2.能掌握“板-块”模型的分析方法。(重点)
3.能运用牛顿运动定律处理“板-块”问题。(重点)
板-块模型的概念
1.“板-块”模型概述:
两个或多个物体上、下叠放在一起,物体之间通过摩擦力
产生联系。
板-块模型的分析方法
1.“滑块—木板”模型的三个基本关系
= , = ,解得:t=2s
(3)B离开A时的速度大小为vB=aBt=2 m/s。
典例
2.如图所示,质量为M=1 kg的长木板静止在光滑水平面上,现有一质
量为m=0.5 kg的小滑块(可视为质点)以v0=3 m/s 的初速度从左端沿木
板上表面冲上木板,带动木板向前滑动.已知滑块与木板上表面间的动
(2)通过受力分析,求出各物体在各个运动过程中的加速度。
(3)根据物理量之间的关系列式计算。
注意:①此类问题涉及两个物体、多个运动过程。
②前一个过程的末速度是下一个过程的初速度。
③不同运动过程转变的瞬间,加速度可能突变,需重新受力分析
板-块模型解题步骤
1.地面光滑的“滑块—木板”问题
擦力会发生突变
无相对位移
(速度相等
速度保持相同
的过程中)
位移的关系
有相对位移
(速度不相
等的过程中)
注意:计算过程中
①速度方向相同,
x相对=x木板+x滑块
②速度方向不相同,
x相对=x木板-x滑块
的速度,位移,都
是相对于地面而言。
2.“滑块—木板”模型的解题方法和步骤
(1)明确各物体对地的运动和物体间的相对运动情况,确定物体间的
板-块模型
学习目标及重点
1.能说出“板-块”模型的概念。
2.能掌握“板-块”模型的分析方法。(重点)
3.能运用牛顿运动定律处理“板-块”问题。(重点)
板-块模型的概念
1.“板-块”模型概述:
两个或多个物体上、下叠放在一起,物体之间通过摩擦力
产生联系。
板-块模型的分析方法
1.“滑块—木板”模型的三个基本关系
= , = ,解得:t=2s
(3)B离开A时的速度大小为vB=aBt=2 m/s。
典例
2.如图所示,质量为M=1 kg的长木板静止在光滑水平面上,现有一质
量为m=0.5 kg的小滑块(可视为质点)以v0=3 m/s 的初速度从左端沿木
板上表面冲上木板,带动木板向前滑动.已知滑块与木板上表面间的动
《动量动量守恒》PPT课件

(3)测量小车碰撞前后的速度,计算碰撞前后两小车的总动量
定
律
Go
2、数据分析 (已知:m1=250g,L1=0.870cm;m2=60g,L2=0.510cm)
滑片1宽度
第
滑块1质量m
一 章
时间1
碰
碰前速度v
撞
碰前1的动量
与
动
滑片2宽度
量 守
滑块2质量m
恒
时间1
定
律
碰前速度v
碰前2的动量
系统总动量
F
F
v =v t
F
v =—v0 —— F 作用了时间 t — v =v t
F
F
分析:
由牛顿第二定律知:F = m a
而加速度: a vt v0
t
F m vt v0 t
整理得: Ft mvvt mvv00 可以写成:I p
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
3、动量守恒m定1v律1 成立m的2v条2 件是m1:v1'系统m不2v受2' 外力
守 恒
或者所受外力之和为零.
定 律
4、动量守恒定律是自然界普遍适用的基本规律
之一.它即适用于宏观、低速物体,也适用于微
观、高速物体
总结:
mv—0 —— F 作用了时间 t — mvtt
F
F
动量定理:合外力的冲量等于物体动量的改变。
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
F合 t=mvt-mv0
【说明】
⑴公式中F合是物体所受合外力,t是物体从初动量变化到末动
量所需时间, vt是末速度,v0是初速度。
板块模型ppt课件

15
解:(1)设经过时间 t 铁块运动到木板的右端,则有 12a1t2-12a2t2=L 解得 t=1 s. (2)①当 F≤μ1(mg+Mg) =2 N 时,M、m 相对静止且对地 静止,f2=F. ②设 F=F1 时,M、m 恰保持相对静止,此时系统的加速 度 a= a2=2 m/s2 以系统为研究对象,根据牛顿第二定律有
12
4
答案:BCD
13
5:如图甲所示,质量为 M=1 kg的木板静止在粗糙的水
平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左 端放置一个质量为 m=1 kg,大小可忽略的铁块,铁块与木 板间的动摩擦因数μ2=0.4,g 取 10 m/s2,试求:
(1)若木板长 L=1 m,在铁块上加一个水平向右的恒力 F= 8 N,经过多长时间铁块运动到木板右端.
(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦 因数μ2.
(2)木板的最小长度. (3)木板右端离墙壁的最终距离.
19
解:(1)根碰撞后木板速度水平向左,大小也是 v=4 m/s
小物块受到滑动摩擦力而向右做匀减速直线运动, 加速度大小 a2=4-0 m/s2=4 m/s 2
(2)若在铁块上加一个大小从零开始均匀增加的水平向右 的力 F,通过分析和计算后,请在图乙中画出铁块受到木板的 摩擦力 f2 随拉力 F 大小变化的图象.(设木板足够长) 14
甲
乙
图 3-3-5 解:(1)铁块的加速度大小 a1=F-mμ2mg=4 m/s2 木板的加速度大小 a2=μ2mg-μM1M+mg=2 m/s2
1 根据牛顿第二定律有μ2mg=ma2,解得μ2=0.4 木板与墙壁碰撞前,匀减速
板块模型 (两课时)
人教版高一物理选修3-5第十六章动量守恒定律第4节碰撞专题板块模型课件(共16张PPT)

3.质量为M=lkg的箱子静止在光滑水平面上,箱子内侧的两 壁间距为L=2m,另一质量也为m=lkg且可视为质点的物体 从箱子中央以v0=6m/s的速度开始运动,如图所示。已知物 体与箱底的动摩擦因数为μ=0.5,物体与箱壁间发生的是 完全弹性碰撞,g=10m/s2。试求:
(1)物体可与箱壁发生多少次碰撞? n=1
因素μ=0.2,取g=10m/s2。求:
(1)A在车上刚停止滑动时,A和车的速度大小 v=1.4m/s (2)A、B在车上都停止滑动时车的速度及此时车运动了多 长时间 t=4s
(1)木块A的长度 LA=0.6m (2)B和C达到共同速度
是木块A和木块B的间距 Δx=0.009m
5.如图所示,在一光滑的水平面上有两块相同的木板B和C, 重物A(视为质点)位于B的右端,A、B、C的质量相等,现A 和B以同一速度滑向静止的C,B与C发生正碰,碰后B和C粘在 一起运动,A在C上滑行,A与C间有摩擦力,已知A滑到C的右 端而未掉下。求:
-μmgx=0- 1
2
mv
2 0
(4)平板车的绝对位移,对平板车动能定理
-μmgx1=
1 2
Mv12-
1 2
Mv
2 0
-μmgx2=
1 2
Mv22-
1 2
Mv
2 0
(5)涉及作用时间,选择小滑块动量定理
-μmgt=mv2-(-mv0) 选择平板车动量定理 μmgt=Mv2-Mv0
【课堂训练】
1.如图所示,在光滑水平面上,有一质量为M=3kg的薄板和 质量m=1kg的物块,都以v=4m/s的初速度朝相反的方向运动, 它们之间有摩擦,薄板足够长,当薄板的速度为2.4m/s时, 物块的运动情况是( A ) A.做加速运动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对物块的动能定理: fs11 2m Av121 2m Av02 (2) f = m A a 1
对木块的动量定理: ft1m Bv10 (3)
f m Ba2
v1 =v0 a1t 2a1s1=v12v02
v1 = a2t
对木块的动能定理: fs2 12mBv120 (4)
2a2s2=v12 0
几何关系:
(1)要使物块不从长木板右端滑出,长木板的长度L至少为多 少?(至少用两种方法求解)
.
v0
fA
f'
B
s1
s2
L
.
v0
fA
f'
A
B
B
.
v0
fA
f'
A
B
B
s1
s2
L
.
.
.
.
mAv0=(mA+mB)v1
.
good
.
.
.
.
大家最好不要在非地参考系中解题
.
v0
fA
f'
B
s2
mA2m,mBm
现以地面为参照系,给A和B以大小均为4.0m/s,方向相
反的初速度,使A开始向左运动,B开始向右运动,但最
后A并没有滑离B板。站在地面的观察者看到在一段时间
内小木块A正在做加速运动,则在这段时间内的某时刻木
板对地面的速度大小可能是(BC )
A.1.8m/s
B.2.4m/
B
vAv
C.2.6m/s
D.3.0m/s
v0
fA
f'
B
s2
mA2m,mBm
L=s1 s2
v1
s1
A
B
v
v0
mAv0=(mA+mB)v1
v1
C
L
O
解法2:牛顿第二定律+运动学
t1
t
a1
mAg
mA
g
a2
mAg
mB
2g
s1
v0t1
1 2
a1t12
s2
1 2
a 2t12
v1v0a1t1a2t1
.
L=s1 s2
v0
fA
f'
B
s2
mA2m,mBm
(2) (1)
:
s1
v0
v1 2
t1(8)
(2) (1)
:
s2
0v1 2
t1(9)
v
v0
v1
C
将 (8)(9)代 入 (5):L0 2v0t1(10)O . t 1
v0
fA
f'
B
s2
t
v1
s1
A
B
L
f
A
v0
v0
mA2m,mBm
f'
B
v
v0
s2
vB 0
s 2'
s1
fA
B
B
v A v1
v
v
1 2
f'
.
f1
f
A
v0
v0
f'
s2
s1
vB 0 f A
B
mA2m,mBm A与B及B与地间的动摩擦因数均为μ
B
v A v1 f'
f1
v0
v1
v
C
s 1'
A B
O t1
t2t
v0
.
例2、一颗子弹以较大的水平速度水平击穿原来静止在光滑 水平面上的木块,设木块对子弹的阻力恒定,则当子弹射入
速度增大时,下列说法正确的是 ( BD )
L=s1 s2
v1
s1
A
B
L
解法3:v-t图象 1
L = 2 v0t
m Agtm A v1m A v0
mAgt mBv1
.
v
v0
mAv0=(mA+mB)v1
v1 L
C
O
t1
t
a1
mAg
mA
g
a2
mAg
mB
2g
v1v0a1t1a2t1
“板块”两体模型——力学密
搞清楚是对谁列的方程?
码对物块的动量定理: ft1m A v 1 m A v0 (1 )
当两颗子弹均相对木块静止时,下列说法正确的是( C )
A.最终木块静止,d1=d2 B.最终木块向右运动,d1<d2 C.最终木块静止,d1<d2 D.最终木块向左运动,d1=d2
.
例4.(1992年·全国)如图所示,一质量为M、长为l的长
方形木板B放在光滑的水平地面上,在其右端放一质量为
m的小木块A,m<M.现以地面为参照系,给A和B以大小
A.木块获得的动能变大 B.木块获得的动能变小 C.子弹穿过木块的时间变长 D.子弹穿过木块的时间变短
.
例3、质量为M的均匀木块静止在光滑水平面上,木块左 右两侧各有一位拿着完全相同步枪和子弹的射击手。首先左 侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧 射手开枪,子弹水平射入木块的最大深度为d2,如图设子弹 均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。
L=s1 s2
v1
s1
A
B
v
v0
mAv0=(mA+mB)v1
v1
C
L
解法1:动量守恒+动能定理
O
t1
t
mAv0=(mA+mB)v1
•m Ag•s11 2m Av1 21 2m Av0 2
•mAg•s212mBv120
L=s1 s2
•m A g .•L 1 2m A v 0 2 (1 2m A v 1 2 1 2m B v 1 2)
s1s2L (5)
s1 s2 L
系统动量守恒: ( 1 ) ( 3 ):m A v 0 m A v 1 m B v 1 (6 )
系统能量守恒: ( 2 ) ( 4 ) 并 将 ( 5 ) 代 入 :f L 1 2 m A v 0 2 ( 1 2 m A v 1 2 1 2 m B v 1 2 ) ( 7 )
质量为mB=m的长木板B静止在光滑水平面上,现有质量为 mA=2m的可视为质点的物块,以水平向右的速度大小v0从左 端滑上长木板,物块和长木板间的动摩擦因数为μ。求:
s1
v A v1
fA
B
f'
v
v
1 2
O
s
2
'
s
1'
A
vA vB v2
B
v0
课堂练习:求B向左运动的最大距离
怎样表示A在B上滑动的距离?
L=s1s2s1'.s2'
C D
t1 t2 t
例1、如图所示,一质量M=3.0kg的长方形木板B放在光
滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。
相等、方向相反的初速度(如图),使A开始向左运动、B
开始向右运动,但最后A刚好没有滑离木板.以地面为参
考系.
(1)若已知A和B的初速度大小为v0,求它们最后的速度 的大小和方向;
(2)若初速度的大小未知,求小木块A向左运动到达的最
远处(从地面上看)离出发点的距离.
v0
v0
.
v0
A B
“板块”两体模型
m2 v0 m1
2009天津卷
2010新课程卷
A
s=5R
Em
R
B
M
l=6.5R
201Байду номын сангаас. 广东卷
D R
C L
1992全国卷
m2 v0 m1
2009天津卷
1993全国卷
A R
B
2010新课程卷
s=5R
Em
M
l=6.5R
2011. 广东卷
D R
C L
v0
A B
“板块”两体模型
质量为mB=m的长木板B静止在光滑水平面上,现有质量为 mA=2m的可视为质点的物块,以水平向右的速度大小v0从左 端滑上长木板,物块和长木板间的动摩擦因数为μ。求:
O
s 1'
A
vA vB v2
v0
课堂练习:求B向左运动的最大距离
m A v 0 m B v 0= m A v 1 m B 0
v1
1 2
v0
m A v 0 m B v 0= (m A m B ).v 2
v2
1 3
v0
C D
t1 t2 t
f
A
v0
v0
mA2m,mBm
f'
B
v
v0
s2
vB 0
s 2'