弹性力学答案清晰修改
弹性力学基础习题答案
![弹性力学基础习题答案](https://img.taocdn.com/s3/m/93dbc829a32d7375a517801c.png)
1图2.4习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
解:(1)pi iq qj jkpq qj jk pj jk pk δδδδδδδδδδ===;(2)()pqi ijk jkpj qk pk qj jk pq qp e e A A A A δδδδ=-=-;(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。
2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
2.4设a 、b 、c 和d 是四个矢量,证明:()()()()()()⨯⋅⨯=⋅⋅-⋅⋅a b c d a c b d a d b c证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ⨯⋅⨯=⋅=a b c d e e ()()()()()i j l m il jm im jl i i j j i i j j a b c d a c b d a d b c δδδδ=-=- ()()()()=⋅⋅-⋅⋅a c b d a d b c 。
弹性力学简明教程课后习题解答(精校版)
![弹性力学简明教程课后习题解答(精校版)](https://img.taocdn.com/s3/m/e1d5f058af45b307e9719732.png)
弹性力学简明教程(第四版)课后习题解答第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学课后习题答案
![弹性力学课后习题答案](https://img.taocdn.com/s3/m/84777322dcccda38376baf1ffc4ffe473368fdc6.png)
弹性力学课后习题答案弹性力学课后习题答案弹性力学是研究物体在外力作用下发生形变后能够恢复原状的力学学科。
在学习弹性力学的过程中,课后习题是巩固理论知识、检验学习效果的重要方式。
本文将为大家提供一些弹性力学课后习题的答案,希望能够帮助大家更好地理解和应用弹性力学的知识。
1. 一根长度为L,截面积为A的均匀杆,受到一个沿杆轴方向的拉力F。
求杆的伸长量。
答案:根据胡克定律,拉力F和伸长量ΔL之间存在线性关系,即F = kΔL,其中k为弹性系数。
根据定义,弹性系数k等于应力σ和应变ε的比值,即k = σ/ε。
应力σ等于拉力F除以截面积A,即σ = F/A。
应变ε等于伸长量ΔL除以杆的原始长度L,即ε = ΔL/L。
将以上三个等式联立,可以得到ΔL = FL/(kA)。
2. 一个弹簧的弹性系数为k,原长为L。
如果将该弹簧拉长ΔL,求弹簧的应变能。
答案:弹簧的应变能可以通过应变能密度公式计算。
应变能密度W是单位体积内的应变能,等于单位体积内的弹性势能。
对于弹簧来说,单位体积内的弹性势能等于弹簧的弹性系数k乘以弹性势能密度的平方,即W = (1/2)k(ΔL/L)^2。
将ΔL/L替换为应变ε,可以得到W = (1/2)kε^2。
3. 一个圆形薄膜的半径为R,厚度为t,杨氏模量为E。
如果该薄膜受到一个沿法线方向的压力P,求薄膜的弯曲半径。
答案:薄膜的弯曲半径可以通过弯曲方程计算。
弯曲方程表明,弯曲半径R和薄膜的杨氏模量E、厚度t以及法线方向的压力P之间存在线性关系,即R =Et^3/(12P)。
4. 一个长为L,截面积为A的梁,受到一个沿梁轴方向的力F。
如果梁的杨氏模量为E,求梁的弯曲度。
答案:梁的弯曲度可以通过弯曲方程计算。
弯曲方程表明,弯曲度θ和梁的杨氏模量E、力F以及梁的长度L之间存在线性关系,即θ = FL^3/(3EI)。
其中I为梁的截面惯性矩,可以根据梁的几何形状计算得到。
5. 一个长为L,截面积为A的圆柱体材料,受到一个沿轴向的拉力F。
弹性力学(徐芝纶)前四章习题答案
![弹性力学(徐芝纶)前四章习题答案](https://img.taocdn.com/s3/m/ef06c665ba0d4a7303763a7e.png)
著应力,对远处影响忽略不计。
3.解:平衡微分方程组为:
3
其中
fx
V x
V , f y y .
x x
yx y
fx
0
y
y
xy x
fy
0
取该方程组的一组特解: x V , y V , xy 0
齐次方程组
x x y
y
yx y
xy x
0
的通解为
0
所以微分平衡方程组的解为
界条件。
(4)位移单值条件为:令应力分量表达式中可能留有的待定函数或待定常数通过积分产生
的多值项为 0。
1
2.解:
1
F X
Y 图a
F
X
Y 图b
h Z
Y 图c
(1) 在图 b 中,我们由剪力平衡方程和弯矩平衡方程得到:
1
F Q 0 ,即 Q F
M Fx 0 ,即 M Fx
在图 a 中,有:
4
4
x(3h 2 A hB C) 0 即 3h 2 A hB C 0
4
4
以上四式联立得:
A
2 g h2
,
B
0, C
3 g 2h
,
D
g 2
代入(a),并注意 E F G 0 得:
x
6 g h2
x2 y+
4 g h2
y3
6Hy
2K
y
2 g h2
y3
3 g 2h
y
gy
g 2
xy
x
2 y 2
y
2 x2
xy
2 xy
x
2 y 2
V
y
弹性力学(徐芝纶)第四章习题答案
![弹性力学(徐芝纶)第四章习题答案](https://img.taocdn.com/s3/m/de67ff3db90d6c85ec3ac686.png)
第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。
《弹性力学》试题参考答案(2021年整理精品文档)
![《弹性力学》试题参考答案(2021年整理精品文档)](https://img.taocdn.com/s3/m/060aa41c941ea76e59fa04d2.png)
(完整版)《弹性力学》试题参考答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)《弹性力学》试题参考答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)《弹性力学》试题参考答案的全部内容。
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M .4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用.圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替.(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。
弹性力学-04(习题答案)
![弹性力学-04(习题答案)](https://img.taocdn.com/s3/m/8dec52d6852458fb770b56d4.png)
1 )
(sin
22
sin
21)
y
q0
2
2(2
1) (sin
22
sin
21)
xy
q0
2
(cos 22
cos 21)
aa q
证法1:(叠加法)
y
1
O 2
P
x
证法1:(叠加法) 分析思路:
aa q
y
1
O 2
P
x
aa
q
y
O
P x
q
aa
y
O
P x
求解步骤: 由楔形体在一面受均布压力问题的结果:
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45)
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2
《弹性力学》试题答案
![《弹性力学》试题答案](https://img.taocdn.com/s3/m/2fa7e7a74a7302768e9939ff.png)
ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。
抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。
试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。
题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。
),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。
6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。
试说明该方程的物理意义。
三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。
已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。
(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。
试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。
θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。
试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。
(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。
设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。
弹性力学教材习题及解答完整版
![弹性力学教材习题及解答完整版](https://img.taocdn.com/s3/m/5e073e786137ee06eff918c3.png)
弹性力学教材习题及解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1-1. 选择题a. 下列材料中,D属于各向同性材料。
A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。
b. 关于弹性力学的正确认识是A。
A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于B。
A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。
d. 所谓“完全弹性体”是指B。
A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。
2-1. 选择题a.所谓“应力状态”是指B。
A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。
2-2. 梯形横截面墙体完全置于水中,如图所示。
已知水的比重为,试写出墙体横截面边界AA',AB,BB’的面力边界条件。
2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。
试写出楔形体的边界条件。
2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如图所示。
试写出球体的面力边界条件。
2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。
弹性力学-答案
![弹性力学-答案](https://img.taocdn.com/s3/m/21985af26bec0975f565e247.png)
《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。
A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。
A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。
A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。
A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。
A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。
弹性力学简明教程[第四版]_课后习题解答
![弹性力学简明教程[第四版]_课后习题解答](https://img.taocdn.com/s3/m/3772a3a6daef5ef7ba0d3cb2.png)
弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学试题参考答案
![弹性力学试题参考答案](https://img.taocdn.com/s3/m/9e97aed887c24028915fc3f0.png)
《弹性力学》试题参考答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学课后答案
![弹性力学课后答案](https://img.taocdn.com/s3/m/d513ab6aec3a87c24128c40b.png)
弹性力学课后答案第二章习题的提示与答案2-1是2-2是2-3按习题2-1剖析。
2-4按习题2-2剖析。
2-5在的条件中,将出现2、3 阶微量。
当略去 3 阶微量后,得出的切应力互等定理完整相同。
2-6同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的均衡微分方程都相同。
其差别不过在 3 阶微量(即更高阶微量)上,能够略去不计。
2-7应用的基本假定是:均衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大界限上,应分别列出两个精准的界限条件;在小界限(即次要界限)上,依据圣维南原理可列出 3 个积分的近似界限条件来取代。
2-9在小界限OA边上,对于图2-15(a)、(b)问题的三个积分界限条件相同,所以,这两个问题为静力等效。
2-10拜见本章小结。
2-11拜见本章小结。
2-12拜见本章小结。
2-13注意按应力争解时,在单连体中应力重量一定知足(1)均衡微分方程,(2)相容方程,(3)应力界限条件(假定 ) 。
2-14赐教科书。
2-152- 16赐教科书。
赐教科书。
2-17取它们均知足均衡微分方程,相容方程及x=0 和的应力界限条件,因此,它们是该问题的正确解答。
2-18赐教科书。
2-19提示:求出任一点的位移重量和,及转动量,再令, 即可得出。
第三章习题的提示与答案3-1此题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件能否知足,(2)求应力,(3)推求出每一边上的面力进而得出这个应力函数所能解决的问题。
3-2用逆解法求解。
因为此题中l>>h, x=0,l属于次要界限(小界限),可将小界限上的面力化为主矢量和主矩表示。
3-3见3-1例题。
3-4此题也属于逆解法的问题。
第一校核能否知足相容方程。
再由求出应力后,并求对应的面力。
此题的应力解答如习题3-10 所示。
应力对应的面力是:主要界限:所以在界限上无剪切面力作用。
下界限没法向面力;上界限有向下的法向面力 q。
弹性力学(徐芝纶)课后习题及答案
![弹性力学(徐芝纶)课后习题及答案](https://img.taocdn.com/s3/m/7c3fba6fb5daa58da0116c175f0e7cd18425180c.png)
弹性力学(徐芝纶)课后习题及答案弹性力学(徐芝纶)课后习题及答案1. 弹性力学简介弹性力学是物理学的一个重要分支,研究物体在受力作用下的形变和恢复力的关系。
徐芝纶是该领域的知名学者,他的教材《弹性力学》深入浅出地介绍了这一课题。
本文将针对徐芝纶教材中的课后习题提供答案,帮助读者更好地理解弹性力学。
2. 弹性力学习题及答案2.1 习题一问题:一根弹性绳两端固定,绳长为L,质量均匀分布。
若绳以角频率ω振动,求各位置的位移函数。
答案:设绳的线密度为ρ,则单位长度上的质量为ρL。
考虑到绳在振动过程中的位移函数y(x, t),根据弦波方程得到位移函数的表达式为y(x, t) = A sin(kx - ωt),其中A为振幅,k为波数。
对于长度为L的绳子,首先将其离散化为N个小绳段,每个小绳段的长度为Δx = L/N。
然后利用微元法,对每个小绳段的质点计算其受力和位移,最后将每个小绳段的位移函数相加即可得到整根绳子的位移函数。
2.2 习题二问题:一个长为L的均匀杆在一个端点固定,杆的质量为m,细长处密度均匀。
当该杆受到一个力F时,求其在另一端的位移和挠曲角。
答案:设该杆受到的力矩为M,由弹性力学理论可知,弯矩和曲率成正比。
具体而言,弯矩M和挠曲角θ之间的关系为M = EIθ,其中E 为材料的弹性模量,I为截面的转动惯量。
对于均匀杆,其转动惯量可以通过I = (1/3)mL²求得。
由于杆的另一端固定,所以该端点的位移为零。
3. 结语本文介绍了弹性力学(徐芝纶)课后习题及答案。
弹性力学是物理学中的重要课题,对于理解和应用弹性力学理论具有重要意义。
徐芝纶的教材给出了深入浅出的讲解和习题练习,本文提供了部分习题的详细答案,希望能够帮助读者更好地掌握弹性力学的知识。
通过刷题和思考,读者可以进一步加深对弹性力学的理解,为解决实际问题提供理论支持。
弹性力学答案完整版
![弹性力学答案完整版](https://img.taocdn.com/s3/m/d6a2cd7027d3240c8447efe8.png)
x
u , x
y
v v u , xy y x y
a.应力中只有平面应力 b.且仅为 f x, y 第二种:平面应变问题 。
σ x从几方面考虑?各方面反映的是那些变量间的关 系?
答: 在弹性力学利分析问题, 要从 3 方面来考虑: 静力学方面、 几何学方面、 物理学方面。 平 面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问题的平衡 微分方程.平面问题的几何学方面主要考虑的是形变分量与位移分量之间的关系,也就是平 面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关 系,也就是平面问题中的物理方程. 2.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说 明。 答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。(2) 假定物体是完全弹性的。(3)假定物体是均匀的。(4)假定物体是各向同性的。(5)假 定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近 似视为“理想弹性体” 3.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明. 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问
几何方程
物理方程
例1
试列出图中的边界条件。
在小边界 x = l, 当平衡微分方程和其它各边界条件都已满足的条件下, 三个积分的边界条件 必然满足,可以不必校核。
注意在列力矩的条件时两边均是对原点 o 对于 y = h 的小边界可以不必校核。 2 证明:
的力矩来计算的。
简述材料力学和弹性力学在研究对象,研究方法方面的异同点。 答:在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的 构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如 板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进 行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学 推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假 定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。
《弹性力学》试题参考答案
![《弹性力学》试题参考答案](https://img.taocdn.com/s3/m/f03ac7236c85ec3a87c2c53f.png)
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学(徐芝纶)习题答案
![弹性力学(徐芝纶)习题答案](https://img.taocdn.com/s3/m/d4b773aa0029bd64783e2c68.png)
第一章第二章习题答案2-1解:已知 0,0,===-==y x xy y x f f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂y xy y x yxx f x yf yx τστσ23()()⎩⎨⎧=+=+s xy y s yx x l m m l σστστσ 有:t lq t x -=;代入(*4理、几何方程得:(E x u x ==∂∂ε1(1E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=hy yxy τσ 满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y x υσσ12即:2222 2-4、x, y n l σσ2==2l应力主向成∴l()2121σσσ+=n 得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。
证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x yyxx x f f τστσ (a ) 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ (b )显然(a )、(b )是满足的(2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),cos(),cos(y n q y n y -=σ 所以q x -=σ,q y -=σ。
对于单连体,上述条件就是确定应力的全部条件。
(3)对于多连体,应校核位移单值条件是否满足。
该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v (e ) 前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dxx df dy y df )()(21=-等式左边只是y 的函数,而等式右边只是x 的函数。
因此,只可能两边都等于同一个常数ω,于是有ω-=dy y df )(1,ω=dxx df )(2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量⎪⎩⎪⎨⎧++-=+--=vx qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。
从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确的解答。
2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。
试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。
解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横截面对z 轴(中性轴)的惯性矩为123h I z =,根据材料力学公式,弯应力xy hFI y x M z x 312)(-==σ;该截面上的剪力为F x F s -=)(,剪应力22223()346()()24s xy F x y F h I y h h h τ=-=--;并取挤压应力0=y σ(2)经验证,上述表达式能满足平衡微分方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy y y x y yxxx f f τστσ 也能满足相容方程0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ再考察边界条件:在2/h y ±=的主要边界上,应精确满足应力边界条件:0)(2/==h y y σ,0)(2/==h y yx τ; 0)(2/=-=h y y σ,0)(2/=-=h y yx τ。
能满足在次要边界x=0上,列出三个积分的应力边界条件:/20/2/20/2/20/2()0()0()h x x h h x x h h xy x h dy ydy dy F σστ=-=-=-⎧=⎪⎪=⎨⎪⎪=-⎩⎰⎰⎰ 满足应力边界条件。
在次要边界l x =上,列出三个积分的应力边界条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-====⎰⎰⎰⎰⎰⎰-=--=--=-Fy h h F dy Fl ly h F ydy lydy h F dy h h x xy h h h h l x x h h h h l x x h h )4(6)(12)(012)(2232/2/02/2/232/2/2/2/32/2/2/2/τσσ满足应力边界条件因此,他们是该问题的解答。
3-6如题3-6图所示的墙,高度为h ,宽度为b ,h»b ,在两侧面上受到均布剪力q 的作用。
试用应力函数y Bx Axy 2+=Φ求解应力分量。
解(1)相容条件:将应力函数Φ代人相容方程04=Φ∇中,其中044=∂Φ∂x ,044=∂Φ∂y ,0224=∂∂Φ∂yx 很明显满足相容方程。
(2)应力分量表达式022=∂Φ∂=yx σ,Bxy x y 622=∂Φ∂=σ,223Bx A y x xy --=∂∂Φ∂-=τ (3)考察边界条件:在主要边界2/b x ±=上,各有两个应精确满足的边界条件,即0)(2/=±=b x x σ,q b x xy -=±=2/)(τ。
在次要边界0=y 上,0)(0==y y σ,而0)(0==y yx τ的条件不可能精确满足(否则只有A=B=0),可用积分的应力边界条件代替0)(02/2/==-⎰dx y yx b b τ(4)把各应力分量代入边界条件,得 2q A -=,22bq B =。
应力分量为0=x σ,xy bqy 212=σ,)121(222b x q xy -=τ3-8设题3-8图中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。
解(1)相容条件:设3223Dy Cxy y Bx Ax +++=Φ (a)不论上述中的系数取何值,纯三次式的应力函数总能满足相容方程。
(2)体力分量g f o f y x ρ==,由应力函数得应力分量的表达式Dy Cx x f y x x 6222+=-∂Φ∂=σ (b)gy By Ax y f yy y ρσ-+=-∂Φ∂=2622 (c)Cy Bx yx xy222--=∂∂Φ∂-=τ (d)(3)考察边界条件:利用边界条件确定待定系数先考察主要边界上0=y 的边界条件:0)(0==y y σ, 0)(0==y yx τ 将应力分量式(b)和式(c )代入,这些边界条件要求06)(0===Ax y y σ,02)(0=-==Bx y xy τ 得A=0,B=0。
式(b)、(c )、(d )成为Dy Cx x 62+=σ (e ) gy y ρσ-= (f )Cy xy 2-=τ (g )根据斜边界的边界条件,它的边界线方程是αtan x y =,在斜面上没有任何面力,即0==y x f f ,按照一般的应力边界条件,有⎪⎩⎪⎨⎧=+=+====0)()(0)()(tan tan tan tan αααατστσx y xy x y y x y xy x y x l m m l 将(e)、(f )、(g )代入得0)tan 2()tan 62(=-++ααCx m Dx Cx l (h ) 0)tan 2()tan (=-+-ααρCx l gx m (i )由图可见,ααπsin)2cos(),cos(-=+==x n l , αcos ),cos(==y n m代入式(h )、(i)求解C 和D,即得αρcot 2g C =,αρ2cot 3gD -=将这些系数代入式(b)、(c )、(d )得应力分量的表达式2cot 2cot cot x y xy gx gy gygy σραρασρτρα⎧=-⎪=-⎨⎪=-⎩ 4-12楔形体在两侧面上受有均布剪力q ,如题4-12图所示.试求其应力分量。
解 (1)应力函数)2sin 2cos (2D C B A +++=Φϕϕϕρ,进行求解 由应力函数Φ得应力分量⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=∂Φ∂∂∂-=+++=∂Φ∂=--+-=∂Φ∂+∂Φ∂=C B A D C B A D C B A ϕϕρρρτϕϕϕρσϕϕϕϕρρρσρϕϕρ2cos 22sin 2)1()2sin 2cos (2)2sin 2cos (21122222(2)考察边界条件:根据对称性,得0)(2/=αϕσ (a ) q =2/)(αρϕτ (b ) 0)(2/=-αϕσ (c ) q -=-2/)(αρϕτ (d )由式(a )得2cos 2sin 20A B C D ααα+++= (e ) 由式(b )得2sin 2cos A B C q αα--= (f ) 由式(c )得2cos 2sin 20A B C D ααα--+= (g ) 由式(d )得2sin 2cos A B C q αα---=- (h ) 式(e )、(f )、(g )、(h)联立求解,得ααcot 2,0,sin 2qD C B q A -====将以上系数代入应力分量,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=αϕτααϕσααϕσρϕϕρsin 2sin )cot sin 2cos ()cot sin 2cos (q q q 4一13设有内半径为r,外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变,并求圆筒厚度的改变。
解 本题为轴对称问题,只有径向位移而无环向位移。
当圆筒只受内压力q 的情况下,取应力分量表达式(B=0),内外的应力边界条件要求0)(==r ρρϕτ,0)(==R ρρϕτq r -==ρρσ)(,0)(==R ρρσ由表达式可见,前两个关于ρϕτ的条件是满足的,而后两个条件要求⎪⎪⎩⎪⎪⎨⎧=+-=+02222C RA q C r A由上式解得)(2222r R r qR A --=,)(2222r R qr C -= (a) 把A,B,C 值代入轴对称应力状态下对应的位移分量,ϕϕρμρμρsin cos )1()1()(2222K I R r R E qr u ++⎥⎦⎤⎢⎣⎡++--= (b ) 0cos sin =+-=ϕϕρϕK I H u (c)式(c )中的ϕρ,取任何值等式都成立,所以个自由项的系数为零H=I=K=0。
所以,轴对称问题的径向位移式(b )为⎥⎦⎤⎢⎣⎡++--=ρμρμρ2222)1()1()(R r R E qr u , 而圆简是属于平面应变问题,故上式中u E E -→-→1,12μμμ代替,则有)1(1)11()11(22222----+-+=rR E R qu μρρμμμμρ此时内径改变为)1()1()1(1)11()11(2222222222μμμμμμμμ-+-+-=----+-+=rR r R E qr r R Er r R qu r , 外径改变为222222222)1()1(1)11()11(rR RrE qr rR ER R R qu R --=----+-+=μμμμμμ 圆环厚度的改变为)1()1(2μμμ-++---=-r R r R E qr u u r R 4-15在薄板内距边界较远的某一点处,应.力分最为0==y x σσ ,q xy =τ,如该处有一小圆孔.试求孔边的最大正应力。