The neutral theory of molecular evolution分子进化的中性理论
犬MC1R基因的分子进化分析
蛋历史与人类密不可分, 犬的毛色也是 人类的重点选择目标之一。由于 MC1R 是毛色重要
候选基因, 本研究利用分子进化分析软件及比较基 因组方法, 对犬 MC1R 基因的分子进化进行正选择 作用预测, 为进一步研究 MC1R 的生物学功能和确 定毛色候选分子标记奠定基础。
1 材料和方法
1.1 蛋白质及 cDNA 序列获取
Analysis on molecular evolution of MC1R gene in dog
NIE Qing-Hua, LIU Qing-Shen, FANG Mei-Xia, XIE Liang, ZHANG Xi-Quan
College of Animal Science, South China Agricultural University, Guangzhou 510642, China
NP_032585
NM_008559
NP_001008690
NM_001008690
NP_001026633
NM_001031462
NP_851301
NM_180970
NP_001027732
NM_001032560
第4期
聂庆华等: 犬 MC1R 基因的分子进化分析
471
分析[11], 以保证在BLAST过程中cDNA的各密码子 3 个碱基不被打散, 及插入、缺失的碱基均为 3 的整 数倍。根据cDNA的BLAST结果, 利用MEGA3.1 程 序计算物种间的遗传距离, 并通过邻近归并法 (Neighbor-Joining)构建种间系统发生树。
诺贝尔奖
人物简介:
山中伸弥,1962年出生于日本大阪府,日本医学家,京都大学再生医科研究所干细胞生物系教授,大阪市立大学医学博士(1993年),美国加利福尼亚州旧金山心血管疾病研究所高级研究员。
山中伸弥是诱导多功能干细胞(iPScell)创始人之一。2007年,他所在的研究团队通过对小鼠的实验,发现诱导人体表皮细胞使之具有胚胎干细胞活动特征的方法。此方法诱导出的干细胞可转变为心脏和神经细胞,为研究治疗目前多种心血管绝症提供了巨大助力。这一研究成果在全世界被广泛应用,因为其免除了使用人体胚胎提取干细胞的伦理道德制约。
化学奖部分:
2011年以色列科学家丹尼尔.舍特曼因发现准晶体而获奖。
2010年诺贝尔化学奖授予美国科学家理查德-赫克、日本科学家根岸荣一和铃木章在钯催化交叉偶联反应方面的卓越研究
2009年诺贝尔化学奖:三位科学家文卡特拉曼.拉马克里希南、托马斯.施泰茨和阿达.约纳特因“对核糖体的结构和功能的研究”而获得诺贝尔化学奖。
据日本《朝日新闻》报道,山中伸弥是第19位获得诺贝尔奖的日本人,是继1987年利根川进之后第二位获得诺贝尔医学生理学奖的日本人。
约翰.戈登,1933年出生于英国汉普郡。1971年当选英国皇家学会会员,1983年进入剑桥大学动物系,担任细胞生物学讲座教授,现任职于剑桥大学戈登学院。1989年获得以色列沃尔夫医学奖。被誉为动物细胞全能型研究的先驱。
2001年,诺贝尔化学奖奖金一半授予美国科学家威廉.诺尔斯与日本科学家野依良治,以表彰他们在“手性催化氢化反应”领域所作出的贡献;另一半授予美国科学家巴里.夏普莱斯,以表彰他在“手性催化氧化反应”领域所取得的成就。
科学思维
1998年诺贝尔生理学或医学奖(NO是体内重要的信号分子)科学思维
穆拉德发现硝化甘油等一些化学物质能激活GC(可溶性鸟氨酸环化酶),把这些物质加入到气管、肠等组织中,发现还能使这些组织的平滑肌松弛。
而这些物质都能通过反应生成NO。
由此他推测是NO使平滑肌细胞松弛。
弗奇戈特研究乙酰胆碱对血管扩张作用时,发现乙酰胆碱仅能使内皮细胞扩张,不能使平滑肌细胞扩张。
由此他做了一系列实验,发现内皮细胞产生了一种信使分子EDRF, 作用于平滑肌细胞而使平滑肌细胞扩张。
伊格纳罗通过比较NO和EDRF的生物化学性质,发现他们的很多性质都非常相似。
再通过灌流——生物鉴定法等,从不同侧面证明了EDRF就是NO。
以上三位科学家的发现综合说明了是NO使平滑肌细胞舒张,从而在扩张血管中起到重要信号分子的作用。
2016年诺贝尔生理学或医学奖自体吞噬的机制解读
在机体感染后,自噬能够消灭外来入侵的细菌和病毒,而且自噬对于胚胎发育和细胞分化也很关键,细胞还能够利用自噬来消除损伤的蛋白质和细胞器,这种细胞内部的质量控制机制对于应对老化带来的副作用也发挥着至关重要的作用。
干扰自噬作用或许和老年人患帕金森疾病、2型糖尿病及其它机体障碍直接相关,自噬基因的突变往往也会引发遗传性疾病的发生,干扰自体吞噬过程或许会诱发机体癌症发生,如今研究者需要进行更为深入的研究来开发新型靶向作用自噬作用的疗法来治疗多种类型的疾病。
eating)。
20世纪50年代中期,科学家门观察到了一种新型特殊的细胞区室,名为细胞器,细胞器中含有多种酶类能够消化蛋白质、碳水化合物和脂质;这种特殊的细胞区室被看做是溶酶体,其能够发挥降解细胞组分的重要作用。1974年来自比利时的科学家Christian
de Duve因发现了溶酶体而获得了当类的酵母突变体,同时通过使得细胞饥饿来刺激自体吞噬作用的发生,结果非常惊人!随着时间过去,细胞液泡中慢慢充满了小型的囊泡结构,而且这些囊泡结构并不会被降解;这些囊泡结构就是自噬体,而且研究者的实验证明了在酵母细胞中的确存在自体吞噬过程,尽管该过程非常重要,如今Yoshinori
20世纪60年代,随着科学研究的深入,科学家们又有了新的发现,他们在溶酶体内部有时候能够发现细胞组分甚至是整个细胞器,而细胞似乎有一种策略能够将大型的“货物”运输到溶酶体中;自体吞噬这种概念是20世纪60年代提出来的,当时科学家们首次观察到细胞能够通过将自身内容物裹入到膜结构中来破坏内容物,从而形成袋装的囊泡结构,这种囊泡结构能够被运输到再循环小泡结构中进行降解,这种小泡结构称之为溶酶体,研究这种现象的困难性意味着到现在为止科学家们对此知之甚少,直到20世纪90年代早期研究者Yoshinori
生命起源与演化(5)
四、非达尔文主义的进化论
2. 分子进化的中性理论
中性理论的核心
并不是所有分子突变都是中性的;实际上, 大部分突变是有害的,但它们会很快被淘汰 掉,因而对种群的遗传结构及进化没有什么 意义。 正突变很少,它们对种群的遗传结构也无甚 贡献。
四、非达尔文主义的进化论
2. 分子进化的中性理论
中性理论的核心
自然选择只对有害突变和正突变起作用,而 不能影响对种群的遗传结构起重要作用的中 性或近中性突变,即中性或近中性突变的命 运只能由随机因素决定。
四、非达尔文主义的进化论
2. 分子进化的中性理论
分子水平上的进化对中性理论的支持
同义替换出现的频率高(比非同义替换高得多) 非基因(非编码)的DNA上有较多的变异 基因间隔、内含子、重复序列、假基因
四、非达尔文主义的进化论
3. 间断平衡论与新灾变论
间断平衡论的理论要点
新种只能以跳跃的方式快速形成(量子式物 种形成);新种一旦形成就处于保守的或进 化停滞状态,直到下一次物种形成事件发生 之前,表型上都不会有明显变化。 进化是跳跃与停滞相间,不存在匀速、平滑、 渐变的进化。
四、非达尔文主义的进化论
四、非达尔文主义的进化论
2. 分子进化的中性理论
分子水平上的进化与表型进化的关系
因此,即使表型进化是受自然选择的作用, 在分子水平上仍是与中性突变和随机漂移有 关的进化。
中性突变也有潜在的受自然选择作用的属性: 中性的变异可成为适应性进化的原材料。
四、非达尔文主义的进化论
2. 分子进化的中性理论
四、非达尔文主义的进化论
1. 分子生物学的兴起
既非有害、又非有利的分子变异普遍存在
蛋白质和DNA都可有很多不影响其本身功能 的“多态性”(polymorphisms) 同工酶
分子进化简介
• 科间:核糖体RNA • 科内:核糖体RNA基因的ITS区
域,mtDNA,分子标记
基因树
• 根据来自各个物种的同源 基因构建的进化树
• 基因树往往不同于物种树
其他序列分析
Sequences diversity
Percentage of pairwise comparison
• Ka/ks ≈ 1:该基因受到中性选择 (neutral selection)
计算工具
• DnaSP • KaKs_calculator • PAML • MEGA
• 最好考虑物种密码子偏好性和转换/颠换 (transition/transversion)比
系统发育树 (Phylogenetic tree)的构建
• 同义突变 (Synonymous substitutions) vs
非同义突变 (Non-synonymous substitutions)
• 不同物种中,编码同一氨基酸的不同同义密码子的频 率不一致
Ka/ks
• 用于评估编码蛋白质的基因受到的选择压力 • Ka:发生非同义突变的位点数/所有非同义位点数 • Ks:发生同义突变的位点数/所有同义位点数
• 多次重复后,原始树中每个分支得到1的次数百分比 被计算,成为bootstrap(自展置信)值。
• 多个自展树中,自展值最大的分支被组合起来,重建 成自展一致树。它不一定与原始树的拓扑结构相同
• 一般来说,bootstrap >50%的分支被认为是可信的
• 并不是说自展值低的分支就一定毫无意义 • 每种方法构建的原始树都是这个方法的最优结果
• 染色体序列比对:
• Mauve • Lastz • MUMer
分子轨道理论
s,px 沿y轴重迭,β= 0, LCAO无效,对称性不允许. s,px沿x轴重迭, Sab>0,|β| 增大,对称性允许.
Sab>0, 对称性匹配, 是MO形成的首要条件,决定能否成键。
其它两条件解决效率问题。
只有对称性相同的AO才能组成MO。
S ab a* bd
对称性允许 +
+ + 相长
Eb
a Ea
A
U
1
E1
AB
B
两个AO形成两个MO时,AO能级差越小,形 成的MO能级分裂越大,电子转移到低能量的成键 MO后越有利。 反之,AO能级差越大,形成的MO 能级分裂越小,电子转移到低能量的成键MO后能 量下降越不明显.
在低能量的成键MO中, 低能量的AO组份较多; 在高能量的反键MO中, 高能量的AO组份较多。
轨道重叠与共价键的方 向性有密切关系. 例如, 环丙 烷中C采取sp3杂化,应以 109.5o重叠成键, 而键角只有 60o . 所以, 杂化轨道在核连 线之外重叠成弯键. 重叠不能 达到最大, 成键效率不高.
弯键模型
以往的解释是: 沿核连线成键 时, 为适应键角所要求的60o , sp3 杂化键被迫弯曲而产生“张力”.
分子轨道理论
分子轨道理论(MO理论) 1932年美国科学家莫立根(Mulliken)洪特(Humd)等人先后 提出了分子轨道理论 (Molecular Orbital Theory)
一. 理论要点: 1、分子轨道理论的基本观点是把分子看作一个整体,其中电子
不再从属于某一个原子而是在整个分子的势场范围内运动。 分子中每个电子的运动状态也可用相应的波函数来描述。 2、分子轨道是由分子中原子的原子轨道线性组合而成,简称 LCAO。组合形成的分子轨道数目与组合前的原子轨道数目 相等。 3、原子轨道线性组合成分子轨道后,每一个分子轨道都有一相 应的能量,分子轨道中能量高于原来的原子轨道者称为反键 轨道,能量低于原来的原子轨道者称为成键轨道。 4、分子轨道中的电子的排布原则:保里不相容、能量最低、洪 特规则。 5、根据分子轨道的对称性不同,可分为σ键和π键。
聚焦诺贝尔医学奖,自噬系统的前世今生
聚焦诺贝尔医学奖,自噬系统的前世今生作者:解螺旋.子非鱼如需转载请注明来源:解螺旋·医生科研助手导语2016年诺贝尔物理奖刚刚揭晓!三位英美科学家因其在“拓扑相变及拓扑材料方面的理论发现”而荣获桂冠。
而昨日诺贝尔生理医学奖已经花落日本科学家大隅良典,其在细胞自噬领域做出了杰出的贡献,本文就扒一扒细胞自噬的前世今生。
昨日诺贝尔生理/医学奖揭开面纱在273名被提名的科学家中大隅良典(Yoshinori Ohsumi)因其在自噬反应做出的卓越贡献杀出重围,脱颖而出荣获桂冠大隅良典在接到获奖通知时非常惊讶彼时他还正在实验室进行研究那时正在为祖国母亲庆生而无心研究的我奉献出了自己的膝盖1945.2.9出生于日本福冈,1974年获得东京大学理学博士学位,之后在纽约洛克菲勒大学做博后。
1977年返回日本,就职于东京大学。
他是日本第23个诺奖得主以及第6位医学奖得主。
2015~2016年间,他已共获得5项国际医学或生理学大奖,包括本次的诺贝尔生理学及医学奖、2015年盖尔德纳基金会国际奖(Gairdner FoundationInternational Award)及2016年威利奖(WileyPrize in Biomedical Sciences)。
然而这并不是自噬领域中第一次获此殊荣早在1963年,该领域里的开山祖师爷——比利时科学家Christian de Duve便首次提出了自噬(autophagy)概念并因1955年发现的溶酶体而获得诺奖然而,该现象背后的机理研究一直困难重重此后70、80年代,科研者的注意力一直聚焦于胞内蛋白降解系统——蛋白酶体也因此成就了2004年三名诺贝尔化学奖得主他们虽然解释了单个蛋白质在胞内的降解过程但却不能解释自噬如何对细胞器进行清除直至1992年大隅良典教授发现酵母菌在饥饿时出现大量的自噬现象并进行了自噬相关基因遗传筛选研究才于1993年找到了自噬相关的酵母突变体4年后,他因发现了第一个自噬基因ATG1 和自噬特征蛋白LC3,成为了该领域里的泰斗至今其研究团队已经克隆了35个ATG基因今年7月发表的Cell论文成功探明了细胞自噬的启动机制这也成为了将他推上诺奖的“最终一击”。
2013年诺贝尔生理学和医学奖得主托马斯·聚德霍夫
2013年诺贝尔生理学和医学奖得主托马斯·聚德霍夫托马斯·聚德霍夫(Thomas Sudhof)博士是一位穿着随意,但做起研究来却一丝不苟的人。
即使是加州炎热的艳阳天,他仍然穿着厚运动衫。
当接到获奖的电话时,他像对待科学问题一样询问:你是认真的吗?2013年10月7日,斯坦福大学医学院细胞与分子生理学系的托马斯·聚德霍夫博士成为诺贝尔生理学和医学奖得主之一,正是他长期的开创性的工作让我们知道了神经细胞是如何进行信息传递的。
一、学生时代和早期的科研训练生涯托马斯·聚德霍夫于1955年出生于德国哥廷根,他的外祖父母跟随德国改革派的教育学家鲁道夫·史代纳(Rudolf Steiner)在华德夫(Waldorf)学校工作,他的父母都是内科医生,父亲同时还从事医学学术研究。
聚德霍夫出生时,他的父亲正在美国旧金山进行生物化学方面的学习。
聚德霍夫在哥廷根和汉诺威两地度过了愉快的童年,并于1975年从汉诺威的华德夫学校毕业。
那时,聚德霍夫不到20岁,他对除体育以外的很多科目都有浓厚的兴趣。
受家庭的影响,聚德霍夫最终选择到医学院读书。
他先后在亚琛和哥廷根的医学院学习,也正是在哥廷根——魏玛共和国时期的科学中心——聚德霍夫得到了非常好的训练,而且对科研越来越感兴趣。
在哥廷根学习期间,聚德霍夫进入了马克思-普朗克生物物理及生物化学研究所中的神经化学系,师从著名生物化学家维克托·惠特克(Victor Whittaker)博士,用生物化学的方法探究脑功能。
作为第一位用生物化学的方法分离哺乳动物突触囊泡的科学家,维克托·惠特克博士对突触囊泡胞吐和胞吞研究非常有兴趣。
聚德霍夫在维克托·惠特克实验室里研究了肾上腺髓质中的分泌囊泡,还探索了其他有趣的生理现象。
聚德霍夫于1982年在哥廷根大学获得博士学位,他的博士论文阐述了肾上腺髓质嗜铬细胞的结构和功能。
1989年诺贝尔生理及医学奖.
研究背景
逆转病毒是一类能在动物身上产生肿瘤的R N A 病毒。早在1 9 1 6 年, R o us 就从鸡的肉瘤滤出液中发现了第一种逆转病毒, 后来称为R o u s S ar co m a V ir us ( R S V )。然而, 一直到5 0 年代, 逆转病毒的致癌特 性才重新引起人们的研究兴趣, R o su 也因此获得19 6 6 年的诺贝尔生 理学或医学奖。逆转病毒的一个特点是其生活周期中有一将基因组R N A 逆转录成D N A 的过程。 对逆转录过程的研究, 终于导致D.B al it m or e 和H.MT e m in 等于1 9 7 0 年分别从R S V 中分离出逆转录酶。这一发现补充了中心法则中遗 传信息的流向, 也为遗传工程的发展提供了必要的工具酶。他们获得了1 9 7 5 年诺贝尔生理学或医学奖, 主要是由于逆转录酶的工作。1 9 7 0 年GM ar it n 获得转化功能缺失的R S V 温度敏感变种, 从而证明R S V 的致癌能力来自基因组中的一个基因。应该说M ar t in 是第一个瞥见了 癌基因的人。很快,第一个癌基因。。 。就被许多人相继从R SV 中鉴定 出来。B s h o p 和V ar m us 的工作证明了:基因的细胞起源, 从而导 致一大批细胞癌基因的发现。
意义
因为毕晓普和瓦慕斯发现的机制似乎为一切癌瘤的发生所共有,所以 他们的工作对于癌瘤研究贡献极大.至1989年科学家已在动物中鉴定 出40个以上的具有致癌潜能的基因. 从而他们也否定了以前的看法 癌 基因必然源自病毒。
毕晓普与H.E 瓦尔默斯一起,说明了位于细胞核内的原癌基因正常情 况下是不活跃的,不会导致癌症;当受到物理、化学、病毒等因素的 刺激后被激活,成为致癌基因,即原癌基因被激活后转化为致癌基因 的复制过程,并发现动物的致癌基因不是来自病毒,而是来自动物体 内正常细胞内所存在的一种基因──原癌基因,即逆转录病毒癌基因 的起源,因而了荣获1989年诺贝尔生理或医学奖。
英发现使受损脊髓神经再生的酶(图)
英 国科 学 家 发 现 了一种 名 为 软 骨 素
酶 的 细 菌 酶 , 种 软 骨 素 酶 能 消 化 脊 髓 这
图片 来 源 : C A U L
癌 患者 和 2 O名 健 康 人 的 头 发样 本 , 在 “ 每 份 头 发 样 本 中都 成 功 地 一再 发 现 了
锻 炼 相 结 合 , 受 损 脊 髓 神 经 再 生 的效 使 果 可 能 比 使 用 任 何 单 一 方 法 都 好 , 还 但 有 待 临床 试 验 检 验 。
新 材 料 属 于 “ 石 咪 唑 酯 骨 架 结 构 材 沸
料” Z F ) 是 一类 具 有 可 调 整 孔 洞 大 小 ( Is ,
死 大 量 的 癌 细 胞 。负 责 此 项 研 究 的 沃 尔 夫・ 西德洛说 ,c 结构独特 . 够 自 拉 SA 能 然与纳米粒子结合 , 因此 可 用 于 借 助 纳
米技 术 的 靶 向疗 法 。
英 发 现 使 受损 脊 髓 神 经 再 生 的酶 l ) 图
记 , 撑是 关键 性 的 。 在 试 验 中 发 现 。 t支 Z
到 1 O倍 , 就 是 说 , 白质 可 以 决定 记 也 蛋
叫 “ 人 鱼 的 头 发 ” 海 藻 中分 离 出 来 美 的
的 。 尽 管 这 种 海 藻 有 毒 . 但 分 离 出 的 S A 无 毒 、 作 用 。 具 有 极 强 的 抗 癌 c 副 并 杀伤 力 。 使 用 很 少 量 的 S A 就 可 以杀 且 c
离 并 捕获 C 分 子 的 新 型 材 料 。Y g i O ah
模 式” 乳 腺 癌 患 者 头 发 的 X 光 放 射 图 。 具 有 以 上 相 同 的 特 征 , 但 唯 一 不 同 的 “ 是 它 叠 加 了一 个 新 特 征 ” 那 是 一个 独 。 特 的低 亮 度 光 环 。依 靠这 个 特 征 能 相 当 精 确 地 辨 识 出乳 腺癌 患者 。进 一 步 研 究 显 示 . 环 的 亮度 从 发 根 至 发 梢 衰减 。 光
分子动力学发展历程
分子动力学发展历程分子动力学是计算物理学的一个分支,它是研究分子运动及其相互作用的一种强大的模拟方法。
分子动力学旨在通过对分子的运动状态进行数值计算来揭示分子的性质和行为。
分子动力学的历史可以追溯到1953年。
当时,一位名叫Dr.Alder的物理学家使用了第一台真正的数值计算机,在模拟荷兰人Heinrich Hertz提出的“硬球”模型。
这是一个简单的分子模型,其中每个分子都用一个空心硬球表示。
通过计算分子之间的碰撞,这个模型可以预测气体的行为。
随着电子计算机的发展和数值方法的改进,分子动力学得到了广泛的应用。
1960年代和1970年代,分子动力学在材料科学、地球化学和生物物理学等领域中得到应用。
这些应用包括对流体、固体、高聚物和蛋白质的性质和动力学行为的研究。
在20世纪80年代和90年代,计算能力的提高和算法的改进使得分子动力学成为模拟分子级别系统的首选方法。
计算机模拟已成为许多领域的理论和实验研究的重要组成部分。
从此以后,分子动力学作为一种模拟分子级别现象的强大工具得到了广泛的应用。
如今,分子动力学已成为研究分子和材料的基础方法之一。
它在纳米科学和技术、材料科学、生物物理学、生物化学、环境地球化学和化学反应动力学等领域中得到广泛应用。
在这些领域,分子动力学模拟被广泛应用于预测分子之间的相互作用、物理性质和动力学行为。
总之,分子动力学模拟方法的发展史充满了奇迹,一代又一代的科学家不断探索、发现,通过计算机模拟的方式推动了分子科学的发展和进步。
分子动力学模拟的应用范围也在不断扩大,相信在未来,这个方法的发展还将持续并产生更多意义深远的进展。
生态学名词解释
1中性突变(neutral mutation):大多数分子水平的遗传变异,在选择上是中性的,即他们并不影响生存适合度,其命运主要是由随机漂变而不是自然选择决定的。
这些遗传变异称为中性突变。
这一进化理论称为中性理论,不适合于解释其他层次的进化现象。
2 负选择和正选择(negative selection & positive selection ):能降低生存适合度的突变成为有害突变(deleterious mutation ), 他们在选这种处于劣势,因而自然选择想将其从中群众淘汰的方向进行,这种选择称为负选择。
偶尔也会繁盛能提高生存适合度的突变,称为有利突变(advantageous mutation); 有利突变在选择中处于优势,因而自然选择倾向于把它们在种群众固定下来,这种形式的选择校正选择。
3 固定(dixation):指等位基因在种群中的频率达到1,即种群的所有个体在该位点上都是同一等位基因的纯合体。
4 位点(locus):遗传学上泛指染色体上为一个基因所占据的位置;分子生态学中指染色体上为一个DNA分子标记(不管编码与否)所占据的位置。
5 谱系(lineage):只具有连续共同进化历程、享有共同祖先的一个支系;它可以是一组亚种群,一个物种,一组物种。
6 单倍型(haplotype):具有独特遗传特征的、连锁的DNA序列。
7 基因流(gene flow):指基因通过个体迁移或其他途径在种群间的传播、交换。
8 随机遗传漂变(random genetic drift):指中群众等位基因频率或基因型频率受随机抽样误差影响在世代间的的波动,又称遗传漂变。
9 搭载效应(hitchhiking effect):指一个等位技艺频率的改变不是因为它本身受选择影响,而是因为已经他连锁的另外一个位点受到选择而被牵连的现象。
10 非同源相似(homoplasy):指性状的等同状态是通过不同进化途径形成的巧合。
中性进化
中性进化
小组成员:陈诚、普金 1968年日本人木村资 生,根据分子生物学的 研究,提出了分子进 化中性学说,即中性 进化论 。 • 1969年美国人J.L. King和T. H. Jukes用 大量的分子生物学资 料进一步充实了这一 学说。
四、小进化-遗传变异与自然选择
五、研究层次
层次 主导因 素 进化方 向 进化速 率 中性学说 达尔文主义、现代达 尔文主义 个体或种群 分子水平 自然选择 中性突变本身 与环境有关 于环境无关 生物 分子随机自由结 合 不受自然选择的 作用
受环境 生物世代因 素
Thank you
三、遗传漂变是分子进化的基本动 力
• 遗传漂变并不限于小群体,对任何一个大小 一定的群体,都能通过遗传漂变引起基因的 固定,从而导致发生进化性变化。
假设有16个小岛,每个岛上都有遗传型为Aa的公羊和母 羊各一头。这一对羊相互交配,子一代的基因型应为1AA︰ 2Aa︰1aa。如果群体较小,每岛仅留下雌雄羊各一头进行 繁殖,就会产生16个小岛中,1个小岛只留下AA雌和AA雄, A基因的频率就从0.5变为1;另1小岛只留下aa雌和aa雄,a 基因就得到了固定;其他14个小岛上,A和a则以不同的比 例保存。而对16个岛进行统计分析,基因A和a的频率仍为 0.5,三种基因型之比仍为1︰2︰1。
• 中性学说(the neutral theory)认为分 子水平上的大多数突变是中性或近中性的, 自然选择对它们不起作用,这些突变全靠 一代又一代的随机漂变而被保存或趋于消 失,从而形成分子水平上的进化性变化或 种内变异。
谷氨酸载体在中枢神经系统中的作用
文章编号: 100820872 (1999) 0320252205谷氨酸载体在中枢神经系统中的作用陶锋, 孙凤艳(上海医科大学医学神经生物学国家重点实验室, 上海200032)摘要: 自1992 年以来, 随着各亚型谷氨酸载体氨基酸顺序逐渐被阐明, 有关它们在中枢神经系统中的作用研究越来越深入, 本文就谷氨酸载体的分布和结构、耦联的离子流、在中枢神经系统发育中的表达变化以及它们的生理作用和病理意义等几方面作一介绍。
关键词: 谷氨酸载体; 中枢神经系统; 兴奋毒效应中图分类号: Q189 文献标识码: AR OL E O F G L UTAM A T E TRA N SPO R TERS IN CENTRAL NERV O U S SY STEMTA O F e n g, SU N F e n g2yan(N a t i ona l K ey L abo ra to ry of M ed ica l N eu rob io logy of S h a ng h a i M ed ica l U n iv e r s i ty , S h a ng h a i 200032)A bstra c t: W ith th e h e l p o f de t e r m in ed am ino ac i d sequen ce s o f d iffe r en t g l u tam a t e t r an s p o r t e r sub typ e s, g rea t un de r stan d in g abo u t th e ir ro le in cen t ra l n e rvo u s sy stem (C N S) h a s been ach ieved sin ce 1992. I n th is rev iew , w e h ave d iscu ssed th e recen t p ro g re ss in th e fo llow in g top ic s: (1) d ist r ibu t i o n an d st ruc tu re o f g l u ta2 m a te t ran sp o r te r s; ( 2) i o n f lux co up lin g o f g lu tam a t e t ran sp o r t; ( 3) a lte red exp re ssi o n o f g lu t a m a t e t r an s2 p o r t e r s du r i n g th e dev e l opm en t o f C N S; (4) th e p h y s i o lo g i ca l ro le an d p a t ho lo g i ca l sign if i can ce o f g l u tam a t e t r an spo r t e r s in C N S.Key word s: g l u tam a t e t r an spo r t e r s;cen t r a l n e r vo u s sy s tem (C N S) ; ex c i to t o x ic i ty谷氨酸(g l u tam a t e, G l u )是中枢神经系统(cen2 t ra l n e rvo u s sy stem , C N S) 中重要的兴奋性神经递质。
生态学名词解释
48 集合众群(metapopulation):表示一组局域种群构成的种群。
49 局域种群(local population):传统意义上指一群个体组成的种群。
50 空间异质性(spatial heterogeneity):指生态学过程和歌剧在空间分布上的不均匀性及其复杂性,一般可以理解为空间的斑块性(patchness)和梯度(gradient)。
25 体温调节(thermoregulation, body temperature regulation):动物通过物理或生理方式,将体温维持在一定的范围内的过程。
26 基础代谢率(basal metabolic rate, BMR):是恒温动物在空腹、清醒、静止状态下热中性区内的最低代谢率。
22 驯化或室内驯化(acclimation):有机体对环境条件变化而进行的生理性调节,尤其是对温度的升高和降低。
23 气候驯化或季节驯化(acclimatization):季节性或长期的生理性调节,自然环境条件下,生物在生命过程中面对自然气候因子的胁迫而产生的适应性心理反应。
24 异速生长(allometry): 有机体的生物学变量与其个体大小的依赖性关系。Y=aXb,Y 为生物学变量,X 为个体大小,a为常数,b为幂。
61 边际值原理(marginal value theorem):不是这在一个斑块的最佳停留时间为不是这在离开这一板块时的能量获取率(即这一斑块的边际值)。
62协同进化(co-evolution):是一个物种的性状作为对另一个物种性状的反应而进化,而后一个物种的这一形状本身又是对前一物种的反应而进化。
59 数值反应(numerical response):指不是这摄食猎物后,对自身种群数量影响的动态关系。
美国有机化学家威廉·诺尔斯
美国有机化学家—威廉·诺尔斯2019年诺贝尔化学奖授予美国科学家威廉·诺尔斯、日本科学家野依良治和美国科学家巴里·夏普雷斯,以表彰他们在不对称合成方面所取得的成绩,三位化学奖获得者的发现则为合成具有新特性的分子和物质开创了一个全新的研究领域。
现在,像抗生素、消炎药和心脏病药物等,都是根据他们的研究成果制造出来的。
瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。
而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。
这些药是消旋体,它的左旋与右旋共生在同一分子结构中。
在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。
2019年的化学奖得主就是在这方面做出了重要贡献。
他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。
诺尔斯的贡献是在1968年发现可以使用过渡金属来对手性分子进行氢化反应,以获得具有所需特定镜像形态的手性分子。
他的研究成果很快便转化成工业产品,如治疗帕金森氏症的药L-DOPA就是根据诺尔斯的研究成果制造出来的。
1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的对映体。
他的研究被迅速应用于一种治疗帕金森症药物的生产。
后来,野依良至进一步发展了对映性氢化催化剂。
夏普雷斯则因发现了另一种催化方法——氧化催化而获奖。
他们的发现开拓了分子合成的新领域,对学术研究和新药研制都具有非常重要的意义。
其成果已被应用到心血管药、抗生素、激素、抗癌药及中枢神经系统类药物的研制上。
现在,手性药物的疗效是原来药物的几倍甚至几十倍,在合成中引入生物转化已成为制药工业中的关键技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The neutral theory of molecularevolutionIntroductionI didn’t make a big deal of it in what we just went over,but in deriving the Jukes-Cantor equation I used the phrase“substitution rate”instead of the phrase“mutation rate.”As a preface to what is about to follow,let me explain the difference.•Mutation rate refers to the rate at which changes are incorporated into a nucleotide sequence during the process of replication,i.e.,the probability that an allele differs from the copy of that in its parent from which it was derived.Mutation rate refers to the rate at which mutations arise.•An allele substitution occurs when a newly arisen allele is incorporated into a popula-tion,e.g.,when a newly arisen allele becomesfixed in a population.Substitution rate refers to the rate at which allele substitutions occur.Mutation rates and substitution rates are obviously related related—substitutions can’t happen unless mutations occur,after all—,but it’s important to remember that they refer to different processes.Early empirical observationsBy the early1960s amino acid sequences of hemoglobins and cytochrome c for many mam-mals had been determined.When the sequences were compared,investigators began to notice that the number of amino acid differences between different pairs of mammals seemed to be roughly proportional to the time since they had diverged from one another,as inferred from the fossil record.Zuckerkandl and Pauling[8]proposed the molecular clock hypothesis to explain these results.Specifically,they proposed that there was a constant rate of amino acid substitution over time.Sarich and Wilson[6,7]used the molecular clock hypothesis to propose that humans and apes diverged approximately5million years ago.While thatc 2001-2012Kent E.Holsingerproposal may not seem particularly controversial now,it generated enormous controversy at the time,because at the time many paleoanthropologists interpreted the evidence to indicate humans diverged from apes as much as30million years ago.One year after Zuckerkandl and Pauling’s paper,Harris[1]and Hubby and Lewontin[2,5] showed that protein electrophoresis could be used to reveal surprising amounts of genetic variability within populations.Harris studied10loci in human populations,found three of them to be polymorphic,and identified one locus with three alleles.Hubby and Lewontin studied18loci in Drosophila pseudoobscura,found seven to be polymorphic,andfive that had three or more alleles.Both sets of observations posed real challenges for evolutionary geneticists.It was difficult to imagine an evolutionary mechanism that could produce a constant rate of substitution. It was similarly difficult to imagine that natural selection could maintain so much polymor-phism within populations.The“cost of selection,”as Haldane called it would simply be too high.Neutral substitutions and neutral variationKimura[3]and King and Jukes[4]proposed a way to solve both empirical problems.If the vast majority of amino acid substitutions are selectively neutral,then substitutions will occur at approximately a constant rate(assuming that mutation rates don’t vary over time) and it will be easy to maintain lots of polymorphism within populations because there will be no cost of selection.I’ll develop both of those points in a bit more detail in just a moment, but let mefirst be precise about what the neutral theory of molecular evolution actually proposes.More specifically,let mefirst be precise about what it does not propose.I’ll do so specifically in the context of protein evolution for now,although we’ll broaden the scope later.•The neutral theory asserts that alternative alleles at variable protein loci are selectively neutral.This does not mean that the locus is unimportant,only that the alternative alleles found at this locus are selectively neutral.–Glucose-phosphate isomerase is an esssential enzyme.It catalyzes thefirst stepof glycolysis,the conversion of glucose-6-phosphate into fructose-6-phosphate.–Natural populations of many,perhaps most,populations of plants and animalsare polymorphic at this locus,i.e.,they have two or more alleles with differentamino acid sequences.–The neutral theory asserts that the alternative alleles are selectively neutral.2•By selectively neutral we do not mean that the alternative alleles have no effect on physiology orfitness.We mean that the selection among different genotypes at this locus is sufficiently weak that the pattern of variation is determined by the interaction of mutation,drift,mating system,and migration.This is roughly equivalent to saying that N e s<1,where N e is the effective population size and s is the selection coefficient on alleles at this locus.–Experiments in Colias butterflies,and other organisms have shown that differentelectrophoretic variants of GPI have different enzymatic capabilities and differentthermal stabilities.In some cases,these differences have been related to differencesin individual performance.–If populations of Colias are large and the differences infitness associated with dif-ferences in genotype are large,i.e.,if N e s>1,then selection plays a predominantrole in determining patterns of diversity at this locus,i.e.,the neutral theory ofmolecular evolution would not apply.–If populations of Colias are small or the differences infitness associated withdifferences in genotype are small,or both,then drift plays a predominant role indetermining patterns of diversity at this locus,i.e.,the neutral theory of molecularevolution applies.In short,the neutral theory of molecular really asserts only that observed amino acid substi-tutions and polymorphisms are effectively neutral,not that the loci involved are unimportant or that allelic differences at those loci have no effect onfitness.The rate of molecular evolutionWe’re now going to calculate the rate of molecular evolution,i.e.,the rate of allelic sub-stitution,under the hypothesis that mutations are selectively neutral.To get that rate we need two things:the rate at which new mutations occur and the probability with which new mutations arefixed.In a word equation#of substitutions/generation=(#of mutations/generation)×(probability offixation)λ=µ0p0.Surprisingly,1it’s pretty easy to calculate bothµ0and p0fromfirst principles.1Or perhaps not.3In a diploid population of size N,there are2N gametes.The probability that any one of them mutates is just the mutation rate,µ,soµ0=2Nµ.(1) To calculate the probability offixation,we have to say something about the dynamics of alleles in populations.Let’s suppose that we’re dealing with a single population,to keep things simple.Now,you have to remember a little of what you learned about the properties of genetic drift.If the current frequency of an allele is p0,what’s the probability that is eventuallyfixed?p0.When a new mutation occurs there’s only one copy of it,2so the frequency of a newly arisen mutation is1/2N andp0=12N.(2)Putting(1)and(2)together wefindλ=µ0p0=(2Nµ) 1 2N=µ.In other words,if mutations are selectively neutral,the substitution rate is equal to the mutation rate.Since mutation rates are(mostly)governed by physical factors that remain relatively constant,mutation rates should remain constant,implying that substitution rates should remain constant if substitutions are selectively neutral.In short,if mutations are selectively neutral,we expect a molecular clock.Diversity in populationsProtein-coding genes consist of hundreds or thousands of nucleotides,each of which could mutate to one of three other nucleotides.3That’s not an infinite number of possibilities, but it’s pretty large.4It suggests that we could treat every mutation that occurs as if it were completely new,a mutation that has never been seen before and will never be seen again.Does that description ring any bells?Does the infinite alleles model sound familiar? It should,because it exactlyfits the situation I’ve just described.2By definition.It’s new.3Why three when there are four nucleotides?Because if the nucleotide at a certain position is an A,for example,it can only change to a C,G,or T.4If a protein consists of400amino acids,that’s1200nucleotides.There are41200≈10720different sequences that are1200nucleotides long.4Having remembered that this situation is well described by the infinite alleles model,I’m sure you’ll also remember that we can calculate the equilibrium inbreeding coefficient for theinfinite alleles model,i.e.,f=14N eµ+1.What’s important about this for our purposes,is that to the extent that the infinite alleles model is appropriate for molecular data,then f is the frequency of homozygotes we should see in populations and1−f is the frequency of heterozygotes.So in large populations we shouldfind more diversity than in small ones,which is roughly what we dofind.Notice, however,that here we’re talking about heterozygosity at individual nucleotide positions,5 not heterozygosity of halpotypes.ConclusionsIn broad outline then,the neutral theory does a pretty good job of dealing with at least some types of molecular data.I’m sure that some of you are already thinking,“But what about third codon positions versusfirst and second?”or“What about the observation that histone loci evolve much more slowly than interferons or MHC loci?”Those are good questions,and those are where we’re going next.As we’ll see,molecular evolutionists have elaborated the framework extensively6in the last thirty years,but these basic principles underlie every investigation that’s conducted.That’s why I wanted to spend a fair amount of time going over the logic and consequences.Besides,it’s a rare case in population genetics where the fundamental mathematics that lies behind some important predictions are easy to understand.7References[1]H Harris.Enzyme polymorphisms in man.Proceedings of the Royal Society of London,Series B,164:298–310,1966.[2]J L Hubby and R C Lewontin.A molecular approach to the study of genic heterozy-gosity in natural populations.I.The number of alleles at different loci in Drosophila pseudoobscura.Genetics,54:577–594,1966.5Since the mutation rate we’re talking about applies to individual nucleotide positions.6That mean’s they’ve made it more complicated.7It’s the concepts that get tricky,not the algebra,or at least that’s what I think.5[3]M Kimura.Evolutionary rate at the molecular level.Nature,217:624–626,1968.[4]J L King and T L Jukes.Non-Darwinian evolution.Science,164:788–798,1969.[5]R C Lewontin and J L Hubby.A molecular approach to the study of genic heterozygosityin natural populations.II.Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura.Genetics,54:595–609,1966.[6]V M Sarich and A C Wilson.Immunological time scale for hominid evolution.Science,158:1200–1203,1967.[7]A C Wilson and V M Sarich.A molecular time scale for human evolution.Proceedingsof the National Academy of Sciences U.S.A.,63:1088–1093,1969.[8]E Zuckerkandl and L Pauling.Evolutionary divergence and convergence in proteins.InV Bryson and H J Vogel,editors,Evolving Genes and Proteins,pages97–166.Academic Press,New York,NY,1965.Creative Commons LicenseThese notes are licensed under the Creative Commons Attribution-ShareAlike License.To view a copy of this license,visit /licenses/by-sa/3.0/or send a letter to Creative Commons,559Nathan Abbott Way,Stanford,California94305,USA.6。