浙江工商大学线性代数试卷

合集下载

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。

正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。

正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。

正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。

正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。

正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。

线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。

2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。

行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。

浙江工商大学数学线性代数——行列式计算(二)

浙江工商大学数学线性代数——行列式计算(二)
2
n−2
+ ab
n −1
+b
n
本题小结:形如本题称为三对角行列式,解三对角 行列式的方法是先展开行列式寻求递推公式再求 解 本题又说明行列式各行或各列含0很多而又不便于将非 0 的元素化为0时,可以直接展开计算.课本P24,15(3) (4)(8)都可以这样计算 .
例 6. 证明范德蒙(Vandermonde)行列式
1 x1 D n = x12 M x1n −1
其中连乘积 1≤ j <i≤ n
1 x2 x 22 M x 2n −1
i
1 x3 x 32 M x 3n −1
L L L L
1 xn x n2 M x nn −1
=
1≤ j <i ≤n
∏( x − x )
i j
.
∏ (x
− x j ) = ( x − x )( x − x )L( x − x ) 2 1 3 1 n 1
0
0 L0 0 L0
0 0 0
0 0 0
a+b ab M 0 0
a+b ab L 0
M LM M M 0 L 1 a+b ab 0 L0 1 a+b(n−1)×(n−1)
a+b ab 1 D =(a+b) n 0 M 0 0 1 M 0 0
0
0 L0 0 L0
0 0 0
0 0 0
a+b ab M 0 0
1 1 = 1 M 1
1 1 1 1− − −L − n 2 3 1 2 = n! 1 3 M 1 n
0 1 0 M 0
0 0 1 M 0
L L L M L
0 0 0 M 1

线性代数测试试卷及答案

线性代数测试试卷及答案

线性代数A 卷一﹑选择题每小题3分,共15分1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是 A AB BA = B 222()AB A B = C 222()2A B A AB B +=++ D A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为A nB sC n s -D 以上答案都不正确3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于 A 10, 8 B 8, 10 C 10, 8-- D 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么A 2331A ⎛⎫= ⎪-⎝⎭B 2241A ⎛⎫= ⎪-⎝⎭C 2121A ⎛⎫= ⎪-⎝⎭D 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则 A A 的行向量组和列向量组均线性相关 BA 的行向量组线性相关,列向量组线性无关 C A 的行向量组和列向量组均线性无关 DA 的列向量组线性相关,行向量组线性无关 二﹑填空题每小题3分,共30分1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题每小题9分,共27分1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑10分设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组1有唯一的零解﹔2有无穷多个解,并求出这些解. 五﹑12分求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑6分已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数A 卷答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. 2分下面求1()A I --. 由于110111011A I ⎛⎫ ⎪-= ⎪ ⎪⎝⎭4分而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 7分所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 9分2. 解1234234134124123=10234103411041210123123413411014121123= 4分 123401131000440004-=-- 8分 160= 9分 .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭6分 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组;9分 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- 2分①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; 4分 ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩A 2n =<这里3n =,故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; 7分 ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩A 1n =<这里3n =,所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. 10分 五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭, 2分因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-二重和5. 4分把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1T η=,2(T η=, 8分 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. 10分 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫ ⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. 12分六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= 2分由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= 3分充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, 5分 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. 6分线性代数习题和答案第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a 11A 21+a 12A 22+a 13A 232+a 21A 21+a 22A 22+a 23A 232+a 31A 21+a 32A 22+a 33A 232= . 18.设向量2,-3,5与向量-4,6,a 线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx 1,x 2,x 3,x 4,x 5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T ;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=511 1111 550 ----=5116205506255301040 ---=---=+=.27.解AB=A+2B即A-2EB=A,而A-2E-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=A-2E-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为2,1,1.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解2,1,1T,组合系数为2,1,1.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。

浙江工商大学线性代数试卷

浙江工商大学线性代数试卷

《线性代数(文)》(2)一、填空题(每小题2分,共20分)1、=7654543032001000. 2、方程06427816944321111)(32==x x xx f 的全部根为: . 3、设n 阶方阵A 满足方程022=+-E A A ,则=-1A .4、⎪⎪⎪⎪⎪⎭⎫⎝⎛=003004005006000A ,则=-1A . 5、11111111---x 是关于x 的一次多项式,该式中一次项的系数是 .. 6、向量T )3,2,1(=α与T)31,21,1(=β,则=k T )(βα . 7、设A 为可逆矩阵,2)(=B r ,则=)(AB r .8、设)1,1,1(),0,1,1(),0,0,1(321===ααα,则任意向量),,(321a a a =β可表示为321,,ααα的线性组合为: .9、A 为四阶方阵,*A 是A 的伴随矩阵,若A =2,则*2A = . 10、21,ββ线性相关,且321,,ααα可由21,ββ线性表示,则321,,ααα线性 关. 二、单项选择题(每小题2分,共10分)1、如果d a a a a a a a a a =333231232221131211,则行列式132333122232112131232323a a a a a a a a a ---=( ) (A )-6d (B )6d (C )4d (D )-4d2、矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32164201t t t可逆,则( ) (A )6≠t (B ) 7≠t (C )8≠t (D )9≠t3、已知四阶方阵A 的秩为3,321,,ηηη是b AX =的三个不同解,且T T )4,3,2,1(,)5,4,3,2(321=+=ηηη,则b AX =的通解可表示为:( ) (A )T T C )5,4,3,2()4,3,2,1(+ (B )T T C )6,5,4,3()4,3,2,1(+ (C )T T C )4,3,2,1()5,4,3,2(+ (D )T T C )6,5,4,3()5,4,3,2(+(其中C 为任意常数)4、设,,A B C 均为n 阶方阵,若E ABC =,则下列中总成立的是( ) (A )E CAB = (B )E ACB = (C )E BAC = (D )E CBA =三、(本小题6分)计算行列式111109801000071060541302001=四、(本小题6分) 设23)(2+-=x x x f ,⎥⎦⎤⎢⎣⎡-=4211A ,求)(A f .五、(本小题10分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=410110003A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=321163B ,且满足B A X A X 112--+=,求矩阵X .六、(本小题6分)设⎪⎪⎪⎪⎪⎭⎫⎝⎛------=21101011110022202111A ,求矩阵A 的秩.七、(本小题10分)给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=13251α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=32142α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21113α ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=21434α求该向量组的秩及该向量组的一个极大无关组,并将其余向量用所求的极大无关组线性表示. 八、(本小题12分)当k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++kx k x x k x kx x x x x 32213213211无解,有唯一解,有无穷多解?在有无穷多解时,试用导出组的基础解系表示全部解.九、(本小题6分)设⎪⎪⎪⎪⎪⎭⎫⎝⎛--=1100110000100031A ,求nA十、(本小题8分) 求线性方程组的全部解(利用基础解系表示)⎪⎪⎩⎪⎪⎨⎧-=+++=+++=++=+++12313321220432143214324321x x x x x x x x x x x x x x x十一、证明题(本小题6分)设A 为n 阶可逆矩阵,且E A A =2,证明:A 的伴随矩阵A A =*《线性代数(文)》试卷(2)标准答案一、填空题(1)、24 (2)、2、3、4 (3)、)2(21E A +- (4)、⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛61514131 (5)、2; (6)、k 3 (7)、2 (8)、33232121)()(αααβa a a a a +-+-= (9)、128 (10)、相 二、选择题 BCDAC三、解: 1 四、 解:E A A A f 23)(2+-= =⎪⎪⎭⎫⎝⎛--4422 五、解:B A X A X 112--+=,左乘A B X AX +=2B X E A =-)2( 而012≠-=-E A ,故矩阵E A 2-可逆 ,B E A X 1)2(--=∴ 求得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=--110120001)2(1E A ⎪⎪⎪⎭⎫ ⎝⎛--=∴231463X 六、解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--→01000111000101002111A 4)(=∴A r 七、解:令⎪⎪⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=→00001000011001012231112341123145)(4321 αααα r ∴)(4321αααα=3, 421,,ααα是该向量组的一个极大无关组。

大学物理、数学本科《线性代数》考试题及答案(八套)试卷

大学物理、数学本科《线性代数》考试题及答案(八套)试卷

XXX学年第一学期期末考试试卷本科《线性代数》考试题及答案(H)本科试卷课程代码:适用班级:计算机科学与技术命题教师:任课教师:第一套试卷一、判断是非(每小题2分,共16分)。

1 若行列式等于零,则其中必有两行对应元素成比例。

2 线性无关的向量组的任意部分组必线性无关。

3 等价的两个向量组必含有相同个数的向量。

4 两个矩阵的乘积不满足交换律和消去律。

5 非齐次线性方程组有解的充要条件是其系数矩阵与增广矩阵的秩相等。

6 正交矩阵必是可逆矩阵。

7 相似矩阵的秩一定相等。

注:两个矩阵相似或合同,则两个矩阵一定等价。

因而,他们有相同的秩。

8 在可逆的线性变换下,二次型的标准型一定是唯一的。

二、填空题(每小题2分,共16分)。

1 排列6152734的逆序数是________________。

2 若矩阵A 可逆,则=-1*)(A ___________。

3 设=⎪⎪⎪⎭⎫ ⎝⎛=A A 则),654(321——————。

4 若向量____________),0,1,1,0(),0,1,0,1(='==βαβα则。

5 若三阶实对称矩阵A 的特征值为-1,2,3,则A -1的特征值为______。

6 对于四阶矩阵A ,。

则__________2,1==A A7 若四阶矩阵:。

则且___________),,,,(,2),,,,(432214321=+===B B A A ααααααααα 8 若向量组)(,,,(),,,(5,4,0)02121321-==-=αααt 线性无关,则t=————————。

三、计算下列行列式(12分)。

1 29930030119920020199100101=D22222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a四、(8分)设:B A A AB B A ''-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=及求2,101121121101010101。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数(经管类)真题.docx

线性代数(经管类)真题.docx

线性代数(经管类)试题一. 单项选择题(本大题共10小题,每小题2分,共20分)2. 设/I, B , C 均为〃阶方阵,AB = BA, AC = CA f 贝 ij ABC = ( D ) A. ACBB. CABC. CBAD. BCAABC = (AB)C = (BA)C = B(AC) = B(CA) = BCA .3. 设/为3阶方阵,〃为4阶方阵,且|A|=1, |B|=-2,则行列式\\B\A\之值为(A ) A. -8B. -2C. 2D. 8||B|AH-2A|=(-2)3|A|=-8.%1I a \2°13、<a\\ %]2a\3仃0 0、‘1 0 o'4. A = 。

21 ^22 。

23 ,B =Cl2\% 22 a 23,P 二 0 3 0 ,Q = 3 1 0,则B= ( B )卫31 °32 °33/Z 31彳皎 C/33丿<0 0 b<o o i 丿A. PAB. APC. Q/\D. AQ(a \\%如、<1 0 0、仙1 3如 a \3'AP = a 2\ a 22 a 230 3 0 = a 2\ 3^22 a 23 =B.\a 3\ a n 。

33 >0 bk^31 3畋 。

33丿5. 已知力是一个3x4矩阵,下列命题中正确的是(C )A. 若矩阵力中所有3阶子式都为0,则秩G4)二2B. 若〃中存在2阶子式不为0,则秩(力)二2C. 若秩04)二2,则/I 中所有3阶子式都为0D. 若秩U )=2,则M 中所有2阶子式都不为0 6. 下列命题中错误的是(C )• • A.只含有1个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7・已知向量组a^a 2.a 3线性无关,0线性相关,则(D )1.已知2阶行列式 A. m — nb\ + C]“2 a 2 +c 2a \ a2S b 2 B. n — mb 2b\D. - (m + /?)b\a2b\C ]C. m + nb2a 2 + c 2A. 必能由a2,a3,f3线性表出B. a2必能由a x.a3.0线性表出注:0]心2,%3是4|,02,%3,0的一个极大无关组.8. 设/!为加XH 矩阵,则方程组月尸0只有零解的充分必要条件是力的秩(D ) A.小于刃B.等于刃C.小于刀D.等于刀注:方程组Ax=O 有n 个未知量.9. 设力为可逆矩阵,则与力必有相同特征值的矩阵为(A ) A. "B. A 2C. A _,D. A*| AE-A 7H (AE-A)T \=\AE-A\f 所以力与屮有相同的特征值. 10. 二次型/(x p x 2,x 3) = x^ +X2 +X3 +2x^2的正惯性指数为(C ) A. 0B. 1C. 2D. 3/(x 1,x 2,x 3) = (x l +x 2)2+X3 =yf + 迟,正惯性指数为 2.二、填空题(本大题共10小题,每小题2分,共20分)了 = 30 — 24 = (9,3,—3,12)' -(6-2,0,4) =(3,5-3,8)7 . 14.设力为〃阶可逆矩阵,且\A\=-~,则| | A'1 |= n15.设力为〃阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax=0的解,则11 •行列式的值为 _____________13.设a = (3,—l,0,2)T, 0 = (3,1,-1,4)7',若向量了 满足2a + y = 30,则卩二 2007 2008 2009 201016. _________________________________________________________________ 齐次线性方程组+兀2 +兀3 =°的基础解系所含解向量的个数为 ________________________________________12X| - x 2 + 3兀3 = 0基础解系所含解向量的个数为« - r = 3 - 2 = 1.17. ___________________________________________________________________ 设〃阶可逆矩阵力的一个特征值是-3,则矩阵必有一个特征值为 __________________________________________-2、0的特征值为4,1,-2 ,则数兀二0」20.二次型 /(X ),x 2,x 3) = -4x }x 2 +2兀]£ + 6X 2X 3的矩阵是 _______________-2 r 0 33 0,三、计算题(本大题共6小题,每小题9分,共54分)ab c 21.计算行列式a 2b 2c 2的值. a + a 3h + b 3c + c 3甘町有特征畤"1 -2 18.设矩阵-2 x、一2 0 由第1. 2列正交, 即它们的内积(d + b) = 0 ,-21 b c 解:D =a2b2c2a + cdb + b3c + c31 1 1=abc0 b-a c-a0 b2-a2 c2-a2a b c 1 1 1 a2 b2 c2= abc a b c a3b3 c39 cr b2 c2= abc b-a c-b2-a2c2-•a■a2=abc(b 一 a)(c - a)(c — b) •(2)注意到CB T = (1,2,3) 1 =13,所以34A 2= (B rC)(B rC) = B r(CB T )C = \3B T C = \3A = \3 1 2线性无关组,并用该极人线性无关组表示向量组屮的其余向量•<2>‘2 4 6、 解:(1) A = B rC =1 (1,2,3)= 12 32丿<3 6 9,己知矩阵 B = (2,1,3), C = (123),22. "2 1-1 1、<1 10 r<1 1 0 1 、 1 2 1 1 T1 211T0 1103 0 -3 13 0 -3 10 -3 -3 -210 1J<2 1 -1 1丿k 0 -1 -1 一1丿解:A = (a|,(^2 9 oc^, )—<1 1 0 1、<1 1 0 1、<1 0 -1 n0 1 1 00 1 1 00 1 1 0 0 0 0-20 0 0 10 0 0 10 0 一1丿<0 0 0 0丿<0 00 0>,向量组的秩为 关组,旳=-Q| +a 2 •3, a }.a 2,a 4是一个极大无"12 3、<-14 ] 24.已知矩阵人=0 1 2 ,B = 25<0 ° bU 一3丿(1) 求A"1; (2)解矩阵方程AX = B.=abc(b 一 d)(c — a) 求(1) A = B T C ; (2)23. 设向量组內=(2」,3」几勺=(120」几&3=(—1」厂3,0八勺=(1」丄1卩求向量组的秩及一个极人2 31 0 0、2 0 1 0 -3、 解:(1)(A,E) = 0 1 20 1 00 1 0 0 1 -2<00 10 010 0 1 0 0 1」Z\ /<1 0 0 1 -21、1 -21、0 1 0 0 1 -2 /T0 1-2■ 9<0 0 1 0 01丿0 01 ZX] + 2 兀2 + 3 兀3 = 42X 2 4- ax 3 = 2有惟一解?有无穷多解?并在有解时求出其解(在有2x t + 2X 2 + 3X 3 = 6"2 3 4、"2 0 4、 工3时,r(A,ft) = r(A) = 3,有惟一解,此时(A,b)->0 2 a 20 2 0 2<0 0 10; \<0 0 10; \ /0、a 的三个特征值分别为1,2,5,求正的常数曰的值及可逆矩阵",使 3丿‘1 0 0、P'XAP= 0 2 00 0 5丿2 0 03 a解:由 |A|= 0 3 67 =2=2(9-/)= ix2x5,得宀 4, a = 2.a 30 a 3<1 -2 1、<-1 4>‘-4 - 9)X=A~}B = 0 1 -225 =0 11<0 ° 1 丿<1 一3丿、1 -3,(2)2 3 4、有无穷多解,此时0 2 3 2<o 0 0 o>G = 3 时,r(A,b) = r(A) = 2< /?,‘1 0 0 2>‘1 00 2、0 2 3 20 1 3/2 1 <0 0 0 0丿<0 0 0 0? Z〔2厂0、通解为 1 + k -3/2< 1 >其中R 为任意常数.25•问日为何值时,线性方程组解:<1 2 3 4、234、<1 234(必)= 0 2 a 20 2a 20 2a 2<2 2 3 6丿-2 -3 -2丿\ 0 ci _ 3 0 丿‘1 0 0 2>‘1 0 0 2、0 2 0 20 1 0 1,0 0 1 0丿,0 0 1 0丿‘2 0 26.设矩阵0 3 (0 a无穷多解时,要求用一个特解和导出组的基础解系表示全部解)./° = 1 ;兀3 = °2 0 0、AE-A= 0 2-3 -2 ..0 -2 2-3丿对于人=1,解(/IE —A)兀=0:"-1 0 0、"1 0 0、%! =0 <0、AE-A =0 -2 -2 0 1 1 9 v x2 =-x3 ,取门=-1<0 -2 一2丿<0 0 ° 丿无3 = 兀3对于兄2=2,解(/i£—A)兀=0:r0 0 0、‘0 1 0、x\ =x\TAE-A =0-1-2 T0 0 1 X2 = 0 ,取#2 = 0<0 -2 -1;0 0, 兀3 =0O对于几3=5,解(征一心=0:厂3 00、厂1 0X| =0 ◎九E —A =0 2-2 —> 0 1 -1 兀2 =兀3,P3 = 1,0-2 2 丿<0 0 0 ;\X3 = X3<1>'0 10、"0 0、令P =("|, “2 ' “3)= -1 0 1 ,则P是可逆矩阵,使P~'AP =0 2 0<10 1; <0 0 5丿四、证明题(本题6分)27.设昇,B, A+B均为〃阶正交矩阵,证明(4 + 3)7 =4一】+3".证:J, B, A + B均为/?阶正交阵,则A r=A-!, B T =B~\ (4+B)7 =(A + B)T,所以(A + B)T =(A + B)T = A1^ + B T = A~l + B~l・。

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵

【浙江工商大学】05-06高等数学(下)试卷答案

【浙江工商大学】05-06高等数学(下)试卷答案

浙江工商大学05/06学年第二学期《高等数学》试卷参考答案与评分标准一、 填空(每小题3分,满分15分) 1.dz zdy y dx x 321++ 2.144492/143/2-=--=-z y x 3. )2121(2)1(33131≤<--∑∞=-x xn n nn n 4. x (ax +b )x e 2- 5. 4R π二、 单项选择(每小题3分,满分15分) 1. B. 2. D. 3. C. 4. C. 5. B. 三、 计算题(每小题7分,满分28分)1. 解、两边同时对x 求导得,2z z zxz z x x =- (4分) z x zz x += (7分) 2. 解、.'2'1yf f z x += (4分) '2"22"21"12''11)(f xf f y xf f z xy ++-++-= (7分)3. 解、原式 =⎰⎰--+-aax a a x a y y x 22222d 2d (3分)=⎰--aax x a a d 222(5分) =32)21(2a a a ππ= (7分)4. 解、,!)1()(n x n x u n n += 0)1()2(lim )()(lim 221=++=∞→+∞→n x n x u x u n n n n , (3分) 故级数的收敛域为),(∞+-∞ (4分)x x n n n n xe e n x x n x x s +-=-+=∑∑∞=-∞=1)!1(!)(111 (7分)四、计算题(每小题7分,满分21分)5. 解、设p y p y '=''=',,则原方程为p p x -=' (2分)⎰⎰-=dx x dp p 11, xC p C x p 11,ln ln ln =+-= (5分)211ln C x C dx xC y +==⎰(C 1,C 2为任意常数) (7分) 6. 解、设球面上一点为),,(000z y x ,则(*)9202020=++z y x (1分) 令9),,(222-++=z y x z y x F ,则 ),,//()2,2,2(000000z y x z y x n =(3分) 切平面为 0)()()(000000=-+-+-z z z y y y x x x ,因与022=-+z y x 平行, 故)2/(1/2/000-==z y x , 即 00002,2y z y x -== (5分) 代入(*)得10±=y , 所求切点为 )2,1,2(-± (7分)7. 解、原式 =σσd d 11⎰⎰⎰-zze z (3分)=z z e z e z z zd )1(d 21111-=⎰⎰--πσ (5分) = eez z ππ4)1)(1(112=--- (7分) 五、计算下列各题(每小题8分,满分16分)1. 解、将xe y =代入方程得 )1()(-=-xe x x P (2分)解线性齐次方程 0)1('=-+-y e y x的通解为 xe x Ce y -+= (4分)令 1)1('=-+-y ey x的解为xe x e x C y -+=)(,得 C e x C xe +=--)(, 因此xe x x Ce e y -++= (5分)将 0)2(ln =y 代入得 2/1--=e C , 故 2/1-+-+=x e x xee y (8分)2. 解、设长方体的边平行于坐标轴,其顶点在锥面的坐标是(x ,y , z ), 其体积 V = 4xy ( 1-z ) =4)1(22y x xy +-(3分)=∂∂x V 222222)2(4y x y x y x y +--+, 222222)2(4yx y x y x x y V +--+=∂∂, (6分)由0,0=∂∂=∂∂y V x V ,得唯一驻点:,32==y x 32=z ,最大体积278=V .(8分)六、证、⎰⎰⎰⎰=101100)()()()(xy dx y f x f dy dy y f x f dx (2分)⎰⎰=10)()(x dy y f x f dx (3分)⎰⎰101)()(xdy y f x f dx +⎰⎰1)()(xdy y f x f dx =⎰⎰11)()(dy y f x f dx=⎰⎰⎰=121010])([)()(dx x f dy y f dx x f (4分)故⎰⎰101)()(xdy y f x f dx =210])([21⎰dx x f (5分)。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

大学线性代数练习试题及标准答案

大学线性代数练习试题及标准答案

大学线性代数练习试题及答案————————————————————————————————作者:————————————————————————————————日期:23第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a a a a 11122122=m ,aa a a 13112321=n ,则行列式aa a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )A. –6B. 6C. 2D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )4A.秩(A )<nB.秩(A )=n -1C.A=0D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数试题库(含答案,适合期末复习,考研同学使用)

线性代数试题库(含答案,适合期末复习,考研同学使用)

《线性代数》复习一:选择题1. 如果111213212223313233a a a a a a a a a = M ,则111213212223313233222222222a a a a a a a a a = ( )A. 8MB. 2 MC. MD. 6 M2. 若A ,B 都是方阵,且|A |=2,|B |=-1,则|A -1B|=( )A. -2B.2C. 1/2D. –1/2 3. 已知可逆方阵13712A --⎛⎫= ⎪-⎝⎭, 则A =( )A. 2713-⎛⎫ ⎪-⎝⎭B. 2713⎛⎫ ⎪⎝⎭C. 3712-⎛⎫ ⎪-⎝⎭D. 3712-⎛⎫ ⎪-⎝⎭4. 如果n 阶方阵A 的行列式|A | =0, 则下列正确的是( )A. A =OB. r (A )> 0C. r (A )< nD. r (A ) =05. 设A , B 均为n 阶矩阵, A ≠O , 且AB = O , 则下列结论必成立的是( )A. BA = OB. B = OC. (A +B )(A -B )=A 2-B 2D. (A -B )2=A 2-BA +B 2 6. 下列各向量组线性相关的是( )A. α1=(1, 0, 0), α2=(0, 1, 0), α3=(0, 0, 1)B. α1=(1, 2, 3), α2=(4, 5, 6), α3=(2, 1, 0)C. α1=(1, 2, 3), α2=(2, 4, 5)D. α1=(1, 2, 2), α2=(2, 1, 2), α3=(2, 2, 1)7. 设AX =b 是一非齐次线性方程组, η1, η2是其任意2个解, 则下列结论错误 的是( )A. η1+η2是AX =O 的一个解B. 121122ηη+是AX =b 的一个解C. η1-η2是AX =O 的一个解D. 2η1-η2是AX =b 的一个解8. 设A 为3阶方阵, A 的特征值为1, 2, 3,则3A 的特征值为( )A. 1/6, 1/3, 1/2B. 3, 6, 9C. 1, 2, 3D. 1, 1/2, 1/3 9. 设A 是n 阶方阵, 且|A |=2, A *是A 的伴随矩阵, 则|A *|=( )A. 21B. 2nC. 121-nD. 2n -110. 若⎪⎪⎪⎭⎫ ⎝⎛100321z x y 正定, 则x , y , z 的关系为( )A. x +y =zB. xy =zC. z >xyD. z >x +y参考答案:1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设2301λλ=-,则λ取值为( )A. λ=0或λ=-1/3B. λ=3C. λ≠0且λ≠-3D. λ≠0 2. 若A 是3阶方阵,且|A |=2,*A 是A 的伴随矩阵,则|A *A |=( ) A. -8 B.2 C.8 D. 1/2 3. 在下列矩阵中, 可逆的是( )A. 000010001⎛⎫ ⎪ ⎪⎝⎭B. 110220001⎛⎫ ⎪ ⎪⎝⎭C. 110011121⎛⎫ ⎪ ⎪⎝⎭D. 100111101⎛⎫⎪ ⎪⎝⎭4. 设n 阶矩阵A 满足A 2-2A +3E =O , 则A -1=( ) A. E B. 1(2)3-E A C. 23-A E D. A 5. 设A 1111a a a aa a a a a a a a⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=, 若r (A )=1, 则a =( ) A.1 B.3 C.2 D.46. 若齐次线性方程组1231231230,0,0x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解, 则常数λ= ( )A.1B.4C. -2D. -17. 设A , B 均为n 阶矩阵, 则下列结论正确的是( )A. BA = ABB. (A -B )2=A 2-BA - AB +B 2C. (A +B )(A -B )=A 2-B 2D. (A -B )2=A 2-2 AB +B 28. 已知α1=(1, 0, 0), α2=(-2, 0, 0), α3=(0, 0, 3), 则下列向量中可以由α1, α2, α3线性表示的是( )A. (1, 2, 3)B. (1, -2, 0)C. (0, 2, 3)D. (3, 0, 5) 9. n 阶方阵A 可对角化的充分条件是( )A. A 有n 个不同的特征值B. A 的不同特征值的个数小于nC. A 有n 个不同的特征向量D. A 有n 个线性相关的特征向量10. 设二次型的标准形为2221233f y y y =-+,则二次型的正惯性指标为( )A.2B.-1C.1D.3参考答案: 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4阶方阵,且|A |=2,则|-2A |=( )A. 16B. -4C. -32D. 322. 行列式34657128k 中元素k 的余子式和代数余子式值分别为( )A. 20,-20B. 20,20C. -20,20D. -20,-20 3. 已知可逆方阵2713⎛⎫⎪⎝⎭=A , 则1-A =( ) A. 2713-⎛⎫ ⎪-⎝⎭ B. 2713⎛⎫ ⎪⎝⎭ C. 3712-⎛⎫ ⎪-⎝⎭ D. 3712-⎛⎫ ⎪-⎝⎭4. 如果n 阶方阵A 的行列式|A | =0, 则下列正确的是( )A. A =OB. r (A )> 0C. r (A )< nD. r (A ) =0 5. 设A , B 均为n 阶矩阵, 则下列结论中正确的是( )A. (A +B )(A -B )=A 2-B 2B. (AB )k =A k B kC. |k AB |=k |A |⋅|B |D. |(AB )k |=|A |k ⋅|B |k 6. 设矩阵A n ⨯n 的秩r (A )=n , 则非齐次线性方程组AX =b ( )A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解 7. 设A 为n 阶方阵, A 的秩 r (A )=r <n , 那么在A 的n 个列向量中( ) A. 必有r 个列向量线性无关 B. 任意r 个列向量线性无关C. 任意r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出 8. 已知矩阵44⨯A 的四个特征值为4,2,3,1,则A =( )A.2B.3C.4D.24 9. n 阶方阵A 可对角化的充分必要条件是( )A. A 有n 个不同的特征值B. A 为实对称矩阵C. A 有n 个不同的特征向量D. A 有n 个线性无关的特征向量 10. n 阶对称矩阵A 为正定矩阵的充要条件是( ) A. A 的秩为n B. |A |>0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案: 1.D 2. A 3. D 4. C 5. D 6. C 7. A 8. D 9. D 10. D1. 行列式3462578y x 中元素y 的余子式和代数余子式值分别为( )A. 2,-2B. –2,2C. 2,2D. -2,-2 2. 设A , B 均为n (n ≥2)阶方阵, 则下列成立是( ) A. |A +B |=|A |+|B | B. AB =BAC. |AB |=|BA |D. (A +B )-1=B -1+A -1 3. 设n 阶矩阵A 满足A 2-2A = E , 则(A -2E )-1=( )A. AB. 2 AC. A +2ED. A -2E4. 矩阵111122223333⎛⎫⎪= ⎪⎝⎭A 的秩为( )A.1B.3C.2D.45. 设n 元齐次线性方程组AX =O 的系数矩阵A 的秩为r , 则方程组AX =0的基 础解系中向量个数为( )A. rB. n - rC. nD. 不确定 6. 若线性方程组⎩⎨⎧=+-=+-212321321x x x x x x λ无解, 则λ 等于( )A.2B.1C.0D. -17.n 阶实方阵A 的n 个行向量构成一组标准正交向量组,则A 是( ) A.对称矩阵 B.正交矩阵 C.反对称矩阵 D.|A |=n8. n 阶矩阵A 是可逆矩阵的充要条件是( )A. A 的秩小于nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设η1, η2是非齐次线性方程组Ax =b 的任意2个解, 则下列结论错误的是( ) A. η1+η2是Ax =0的一个解 B.121122+ηη是Ax =b 的一个解 C. η1-η2是Ax =0的一个解 D. 2η1-η2是Ax =b 的一个解10. 设二次型的标准形为2221233f y y y =-+,则二次型的秩为( )A.2B.-1C.1D.3参考答案: 1. D 2. C 3. A 4. A 5. B 6. A 7.B 8. D 9.A 10. D1. 设000101a b b a =-=D ,则a ,b 取值为( )A. a =0,b ≠0B. a =b =0C. a ≠0,b =0D. a ≠0,b ≠0 2. 若A 、B 为n 阶方阵, 且AB = O , 则下列正确的是( ) A. BA =O B. |B |=0或|A |=0 C. B = O 或A = O D. (A -B )2=A 2+B 2 3. 设A 是3阶方阵,且|A |=-2,则|A -1|等于( )A. -2B. 12-C.2D. 124. 设矩阵A , B , C 满足AB =AC , 则B =C 成立的一个充分条件是( )A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵 5. 如果n 阶方阵A ≠O 且行列式|A | =0, 则下列正确的是( )A. 0<r (A ) < nB. 0≤r (A )≤ nC. r (A )= nD. r (A ) =0 6. 若方程组123232378902020x x x x x x bx ++=⎧⎪-+=⎨⎪+=⎩存在非零解, 则常数b =( )A.2B.4C.-2D.-47. 设A 为n 阶方阵, 且|A |=0, 则( ) A. A 中必有两行(列)的元素对应成比例B. A 中任意一行(列)向量是其余各行(列)向量的线性组合C. A 中必有一行(列)向量是其余各行(列)向量的线性组合D. A 中至少有一行(列)的元素全为零8. 设A 为3阶方阵, A 的特征值为1, 2, 3,则3A 的特征值为( )A. 1/6, 1/3, 1/2B. 3, 6, 9C. 1, 2, 3D. 1, 1/2, 1/3 9. 如果3阶矩阵A 的特征值为-1,1,2,则下列命题正确的是( ) A. A 不能对角化 B. 0=AC. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为2221233f y y y =--,则二次型的正惯性指标为( )A.2B.-1C.1D.3参考答案: 1. B 2. B 3. B 4. C 5. A 6. D 7. C 8. B 9. D 10. C1. 如果111213212223313233a a a a a a a a a =M ,则111112132121222331313233444a a a a a a a a a a a a ---=( ) A. -4M B. 0 C. -2 M D. M2. 设A ij 是n 阶行列式D =|a ij |中元素a ij 的代数余子式, 则下列各式中正确的是( ) A.10nij ij i a A ==∑B.10n ij ij j a A ==∑ C. 1nij ij j a A D ==∑D.121ni i i a A D ==∑3. 已知100010301⎛⎫⎪= ⎪⎪⎝⎭A ,200221333⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则|AB |=( )A.18B.12C.6D.364. 方阵A 可逆的充要条件是( )A. A ≠OB. |A |≠0C. A *≠OD. |A |=1 5. 若A 、B 为n 阶方阵, A 为可逆矩阵, 且AB = O , 则( )A. B ≠ O , 但r (B )<nB. B ≠ O , 但r (A )<n , r (B )<nC. B = OD. B ≠ O , 但r (A )=n , r (B )<n 6. 设β1, β2是非齐次线性方程组AX =b 的两个解, 则下列向量中仍为方程组 解的是( )A. β1+β2B. β1-β2C. 121(2)2+ββD. 12325+ββ7. n 维向量组α1, α2, ⋅⋅⋅ , αs 线性无关, β为一n 维向量, 则( )A. α1, α2, ⋅⋅⋅ , αs , β线性相关B. β一定能被α1, α2, ⋅⋅⋅ , αs 线性表出C. β一定不能被α1, α2, ⋅⋅⋅ , αs 线性表出D. 当s =n 时, β一定能被α1, α2, ⋅⋅⋅ , αs 线性表出 8. 设A 为三阶矩阵, A 的特征值为-2, 1, 2, 则A -2E 的特征值为( ) A. -2, 1, 2 B. -4, -1, 0 C. 1, 2, 4 D. 4, 1, -4 9.若向量α=(1,-2,1)与β=(2, 3,t )正交,则t =( )A.-2B.0C.2D.410. 若⎪⎪⎪⎭⎫ ⎝⎛100321z x y 正定, 则x , y , z 的关系为( ) A. x +y =z B. xy =z C. z >xy D. z >x +y参考答案: 1.A 2.C 3. C 4. B 5. C 6. D 7. D 8. B 9.D 10. C1.行列式3462578y x中元素x的余子式和代数余子式值分别为()A.–9,-9B.–9,9C. 9,-9D. 9,92.1111234533334344=()A.2B.4C.0D.13.设A为4阶矩阵, |A|=3,则其伴随矩阵A*的行列式|A*|=()A.3B.81C.27D.94.设A,B均为n阶可逆矩阵,则下列各式中不正确的是()A. (A+B)T=A T+B TB. (A+B)-1=A-1+B-1C. (AB)-1=B-1A-1D. (AB)T=B T A T5.设n阶矩阵A满足A2+A+E=O,则(A+E)-1=()A.AB. -(A+E)C.–AD. -(A2+A )6.设n阶方阵A,B,则下列不正确的是()A. r(AB)≤r(A)B. r(AB)≤r(B)C. r(AB)≤min{ r(A),r(B)}D. r(AB)>r(A)7.已知方程组AX=b对应的齐次方程组为AX=O,则下列命题正确的是()A.若AX=O只有零解,则AX=b有无穷多个解B.若AX=O有非零解,则AX=b一定有无穷多个解C.若AX=b有无穷解,则AX=O一定有非零解D.若AX=b有无穷解,则AX=O一定只有零解8.已知矩阵10102010x⎛⎫⎪=⎪⎝⎭A的一个特征值是0,则x=()A.1B.2C.0D.39.与100021012⎛⎫⎪=-⎪-⎝⎭A相似的对角阵是()A.113⎛⎫⎪=⎪⎝⎭Λ B.123⎛⎫⎪=⎪⎝⎭Λ C.113⎛⎫⎪=-⎪⎝⎭Λ D.114⎛⎫⎪=⎪⎝⎭Λ10.设A为3阶方阵,A的特征值为1,0,3,则A是()A.正定B.半正定C.负定D.半负定参考答案: 1. C 2. C 3. C 4. B 5. C 6. D 7. C 8. A 9. A 10.B1.设A,B都是n阶方阵,k是一个数,则下列()是正确的。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

18-19浙江工商大学线性代数(答)

18-19浙江工商大学线性代数(答)

浙江工商大学2018 / 2019学年第一学期考试试卷(A)一、填空题(每小题3分,共15分)1. -1, 2、8a+8b, 3、2, 4、()()1,2,1111,2Tk +-5、36二、单项选择(每小题3分,共15分) 1. D 2、A 3、A 4、 B 5、B三、计算题 (本题共65分)1.求行列式1111111111111111x x y y+-+-的值. (8分)111111111111111100111100x x x x x y x y yxy++---=+---- 4分222222111111111110001001010001010101x x y yx y yx y x y x y -------=-=-= 4分2. 已知A 、B 是三阶矩阵,且满A B AB 42=-, ①证明:矩阵E A 2-可逆,②若⎪⎪⎪⎭⎫ ⎝⎛-=200021021B ,求矩阵A. ( 12分)解:① 由A B AB 42=-,得E E B E A =--8)4()2(,故)2(E A -可逆,且84)2(1EB E A -=-- . …………… (4分) ②由E E B E A =--8)4()2(,得1)4(8)2(--=-E B E A , 从而1)4(82--+=E B E A , …………… (2分)而11121000838104141200021023)4(---⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----=-E B ,…………… (4分) 故⎪⎪⎪⎭⎫ ⎝⎛---=200011020A . ……………… (2分)3、已知矩阵123246369A ⎛⎫⎪= ⎪ ⎪⎝⎭,试求n A (7)()121233A ⎛⎫⎪= ⎪ ⎪⎝⎭ 3分114n n A A -= 4分4. 用行初等变换求列秩:将所给列向量组成矩阵,并施以行变换,得到阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----==62606311201401214321),,,(A αααα−−→−--4132214r r r r r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------3130643024700121 −−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−−→−---331144342323130930042100121r r r r r r r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---15500310042100121 −−→−-345r r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000310042100121∑=, 8分 阶梯形矩阵的非零行数为3,所以向量组的秩为3.记),,,(4321ββββ∑=,显然321βββ,,是∑的极大线性无关组,所以321ααα,,也是A 列极大线性无关组的.由观察法得到 2分321432ββββ+-=,所以321432αααα+-=. 2分5. 问k 为何值时, 线性方程组⎪⎩⎪⎨⎧-=+-=++-=++4243212321321x x x k x kx x kx x x 有唯一解、无解、有无穷多组解? 在有无穷多组解的情况下求出其通解.(12)解 对其增广矩阵进行初等行变换,即⎪⎪⎪⎭⎫ ⎝⎛---=4211114112k k k A ⎪⎪⎪⎭⎫ ⎝⎛---+++−−→−-+8220411041121312kk k k k r r r r ⎪⎪⎪⎭⎫ ⎝⎛+++---−−→−↔41108220411232k k k kk r r⎪⎪⎪⎭⎫⎝⎛--+---−−−→−++)k (k /)k )(k (kkr k r 424100822041123214分(1)当341==≠-≠)A (r )A (r ,k k 时且, 故方程组有唯一解; 2分(2)当⎪⎪⎪⎭⎫⎝⎛--→-=500083204111,1A k 时, 因)A (r )A (r ≠, 故方程组无解; 2分(3)当4=k 时,⎪⎪⎪⎭⎫ ⎝⎛→000041104411A , 因32<==)A (r )A (r , 故方程组有无穷多组解.所以非齐次方程组的通解为 034101x c c R -⎛⎫⎛⎫⎪ ⎪=+-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(4分).6. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=142412222A ,判断A 是否可以对角化,若可以写出对角矩阵Λ及可逆矩阵P ,使得Λ=-AP P 1.(12分)解:特征矩阵为()()222221436241E A λλλλλλ---⎛⎫ ⎪-=---=+- ⎪ ⎪---⎝⎭………4分当13λ=-特征值为()1210T α=-,()2201Tα=-; 3分 当26λ=特征值为()3122Tα=, 3 分所以:221102012P --⎛⎫ ⎪= ⎪ ⎪⎝⎭, 336-⎛⎫⎪Λ=- ⎪ ⎪⎝⎭ 2分 四.证明题 (5分)解: 1)线性方程组有非零解对应行列式为零 2分 2)特征值为0,-2 可对角化 3分。

浙工大《线性代数》试卷精选(1-3)

浙工大《线性代数》试卷精选(1-3)


4.
若向量组α1,α 2 ,α 3 线性无关,且 k1α1 + k2α 2 + k3α 3 = 0 ,则数 k1, k2 , k3
⎜⎛1 3 2 1 0 ⎟⎞
5.
线性方程组
AX
=
b
的增广矩阵化为阶梯形矩阵
B
=
⎜0
⎜ ⎜⎜⎝
0 0
2 0 0
1 0 0
0 0 0
1⎟
a
− 0
1⎟⎟⎟⎠
,当
a
=
时, AX = b 有解,且有
(2) (2) 当 c 为何值时,α1 ,α 2 ,α3 线性相关。
六、判别下列向量组的线性相关性,并求出向量组的秩。
α1 = (1,2,3,2),α2 = (−1,−2,0,1),α3 = (2,4,6,4) ,α4 = (1,−2,−1,2),α5 = (0,0,1,1)

⎪ ⎪
x1
⎨x1
− −
5.
矩阵的行秩不一定等于列秩。
6.
若 A 是可逆矩阵,则矩阵 AX = B 的解是 X = BA−1 (
二、填空题
() () ()

1.
设 A 为三阶矩阵,且 A = 3 ,则 (− )A −1 =
, AT =
2. 若 A 即是上三角矩阵,又是下三角矩阵,则 A 一定是
矩阵。
3. n阶可逆矩阵 A 的秩等于
()
4. 矩阵 A 的秩 (A) 等于 A 中不为零的子式的阶数
()
5. 零向量是任意一组同维向量的线性组合
()
6. 若矩阵 A, B 可作乘积运算 AB ,则 AB = A B
二、填空题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A) (B) (C) (D)
三、(本小题6分)计算行列式
=
四、(本小题6分) 设,,求.
五、(本小题10分)设,,且满足,求矩阵.
六、(本小题6分)设,求矩阵的秩. 七、(本小题10分)给定向量组
求该向量组的秩及该向量组的一个极大无关组,并将其余向量用所求 的极大无关组线性表示.
八、(本小题12分)当取何值时,线性方程组
二、单项选择题(每小题2分,共10分)
1、如果,则行列式=( )
(A)-6 (B)6 (C)4 (D)-4
2、矩阵可逆,则( )
(A) (B) (C) (D)
3、已知四阶方阵的秩为3,是的三个不同解,且,则的通解可表示
为:( )
(A) (B)
(C) (D)
(其中为任意常数)
4、设均为阶方阵,若,则下列中总成立的是( )
《线性代数(文)》(2)
一、填空题(每小题2分,: .
3、设阶方阵满足方程,则
.
4、,则
.
5、是关于的一次多项式,该式中一次项的系数是
..
6、向量与,则
.
7、设为可逆矩阵,,则
.
8、设,则任意向量可表示为的线性组合为:
.
9、为四阶方阵,是的伴随矩阵,若=2,则=
.
10、线性相关,且可由线性表示,则线性 关.
九、设
…… …

十、
有无穷多解.
同解方程组为:

取有特解:
对应齐次方程组
令,则有基础解系:
原方程组得全部解为:
,为任意常数.
十、证明题 证:,两边右乘,得 ……
二、选择题 BCDAC 三、解: 1 四、 解: = 五、解:,左乘A
而,故矩阵可逆 , 求得
六、解: 七、解:令 =3, 是该向量组的一个极大无关组。且 八、解:
(1)当时,方程组有唯一解.
(2)当时,方程组无解.
(3)当时,方程组有无穷多解.
此时,其同解方程组为:取, 则其通解为:(其中为任意常数).
无解,有唯一解,有无穷多解?在有无穷多解时,试用导出组的基
础解系表示全部解.
九、(本小题6分)设,求
十、(本小题8分) 求线性方程组的全部解(利用基础解系表示)
十一、证明题(本小题6分) 设为阶可逆矩阵,且,证明:的伴随矩阵
《线性代数(文)》试卷(2)标准答案
一、填空题 (1)、24 (2)、2、3、4 (3)、 (4)、 (5)、2; (6)、 (7)、2 (8)、 (9)、128 (10)、相
相关文档
最新文档