第八章统计热力学基础
大学物理第8章:热力学基础
说明:A. 准静态过程为理想过程
弛豫时间 ( ):系统的平衡态被 破坏后再恢复到新的平衡态所需 要的时间。
气缸
B.一个热力学过程为准静态过程的必要条件为过程 所经历的时间大于驰豫时间 t 如:若气缸缸长 L 101 (m ),则 103 ~ 104 ( s ) 若活塞以每秒几十次的频率运动时, 每移动一次经 1 tt 时 t 10 ( s ) ,则满足 , C.准静态过程可以用宏观参量图给予表示
讨论: (1) n=0, 等压过程,Cp=CV+R ,过程方程: T/V=C4; (2) n=1, 等温过程,CT = , 过程方程: pV=C5; (3) n= , 等体过程, CV =iR/2 , 过程方程: p/T=C6; (4) n= , 绝热过程,CQ=0, 过程方程:
pV C1 , TV
RdT
由 pV=RT 于是得
C CV
pdV
pdV+Vdp=RdT
R pdV (1 ) Vdp 0 C CV dp R dV (1 ) 0 p C CV V
令
R 1 n —多方指数 C C V
21
dp dV n 0 p V
完成积分就得多方过程的过程方程:
V1
V2
i ( p2V2 p1V1 ) 2
只与始末状态有关
M i RT 2
( if
c const )
Q cM (T2 T1 )
与过程有关
特点
与过程有关
对微小过程:dQ=dE + dA
M i dQ RdT pdV 2
14
例题 8-2 如图所示,一定量气体经过程abc吸热 700J,问:经历过程abcda吸热是多少? 解 Q= E2-E1 + A i 过程abc : 700= Ec -Ea+ Aabc= ( pcVc paVa ) Aabc
统计热力学基础
统计热力学基础教学目的与要求:通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。
重点与难点:统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。
概论统计热力学的研究任务和目的统计力学的研究对象是大量微观粒子所构成的宏观系统。
从这一点来说,统计热力学和热力学的研究对象都是一样的。
但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。
由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。
而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。
统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。
统计力学建立了体系的微观性质和宏观性质之间的联系。
从这个意义上,统计力学又可称为统计热力学。
相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。
对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。
当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。
由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。
同时模型本身也有近似性,所以由此得到的结论也有近似性。
热力学统计物理习题及答案第八章玻色统计和费米统计
159第八章 玻色统计和费米统计8.1 试证明,对于玻色或费米统计,玻耳兹曼关系成立,即ln .S k Ω=解: 对于理想费米系统,与分布{}l a 相应的系统的微观状态数为(式(6.5.4))()!,!!l ll l l Ωa a ωω=-∏(1)取对数,并应用斯特令近似公式,得(式(6.7.7))()()ln ln ln ln .l l l l l l l l lΩa a a a ωωωω=----⎡⎤⎣⎦∑ (2)另一方面,根据式(8.1.10),理想费米系统的熵为()ln ln ln ln S k ΞΞΞk ΞN Uαβαβαβ⎛⎫∂∂=-- ⎪∂∂⎝⎭=++ ()ln ,l l l k Ξa αβε⎡⎤=++⎢⎥⎣⎦∑ (3)其中费米巨配分函数的对数为(式(8.1.13))()ln ln 1.l l lΞe αβεω--=+∑ (4)由费米分布e 1l ll a αβεω+=+易得1e l l l la αβεωω--+=- (5)和l n.l ll la a ωαβε-+= (6)将式(5)代入式(4)可将费米巨配分函数表示为ln ln.l l ll lΞa ωωω=-∑ (7)将式(6)和式(7)代入式(3),有160 ln ln l l ll l l l l l aS k a a a ωωωω⎛⎫-=+ ⎪-⎝⎭∑ ()()ln ln ln .l l l l l l l l lk a a a a ωωωω=----⎡⎤⎣⎦∑ (8)比较式(8)和式(2),知ln .S k Ω= (9)对于理想玻色系统,证明是类似的.8.2 试证明,理想玻色和费米系统的熵可分别表示为()()()()B.E.F.D.ln 1ln 1,ln 1ln 1,s s s s ss s s s sS k f f f f S k f f f f =-++⎡⎤⎣⎦=-+--⎡⎤⎣⎦∑∑其中s f 为量子态s 上的平均粒子数. s∑表示对粒子的所有量子态求和. 同时证明,当1s f <<时,有()B.E. F.D.M.B.ln .s s s sS S S k f f f ≈≈=--∑解: 我们先讨论理想费米系统的情形. 根据8.1题式(8),理想费米系统的熵可以表示为()()()F.D.ln ln ln ln ln l l l l l l l l ll l l l l l l l l S k a a a a a a k a a ωωωωωωωω=----⎡⎤⎣⎦⎡⎤-=--+⎢⎥⎣⎦∑∑1ln 1ln ,lll l l l lll l aa a a k ωωωωω⎡⎤⎛⎫⎛⎫=---+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∑ (1) 式中l∑表示对粒子各能级求和. 以ls la f ω=表示在能量为l ε的量子态s 上的平均粒子数,并将对能级l 求和改为对量子态s 求和,注意到~,l lsω∑∑上式可改写为()()F.D.ln 1ln 1.s s s s sS k f f f f =-+--⎡⎤⎣⎦∑ (2)161由于1s f ≤,计及前面的负号,式(2)的两项都是非负的. 对于理想玻色气体,通过类似的步骤可以证明()()F.D.ln 1ln 1.s s s s sS k f f f f =--++⎡⎤⎣⎦∑ (3)对于玻色系统0s f ≥,计及前面的负号,式(3)求和中第一项可以取负值,第二项是非负的. 由于绝对数值上第二项大于第一项,熵不会取负值. 在1s f <<的情形下,式(2)和式(3)中的()()()()1ln 11s s s s s f f f f f ±≈±≈-所以,在1s f <<的情形下,有()B.E. F.D.ln .s s s sS S k f f f ≈≈--∑ (4)注意到s sf N =∑,上式也可表示为B.E. F.D.ln .s s sS S k f f Nk ≈≈-+∑ (5)上式与7.4题式(8)一致,这是理所当然的.8.3 求弱简并理想费米(玻色)气体的压强和熵. 解: 式(8.2.8)已给出弱简并费米(玻色)气体的内能为32252311122π2N h U NkT g V mkT ⎡⎤⎛⎫⎢⎥=± ⎪⎢⎥⎝⎭⎢⎥⎣⎦(1) (式中上面的符号适用于费米气体,下面的符号适用于玻色气体,下同). 利用理想气体压强与内能的关系(见习题7.1)2,3Up V=(2) 可直接求得弱简并气体的压强为32252111,2π2h p nkT n g mkT ⎡⎤⎛⎫⎢⎥=± ⎪⎢⎥⎝⎭⎢⎥⎣⎦(3) 式中Nn V=是粒子数密度. 由式(1)可得弱简并气体的定容热容量为162 32272311,22π2V VU C T h Nk n mkT ∂⎛⎫= ⎪∂⎝⎭⎡⎤⎛⎫⎢⎥= ⎪⎢⎥⎝⎭⎢⎥⎣⎦(4)参照热力学中的熵的积分表达式(2.4.5),可将熵表示为()0.VC S dT S V T=+⎰(5) 将式(4)代入,得弱简并气体的熵为()322072311ln .22π2hS Nk T Nk n S V g mkT ⎛⎫=±+ ⎪⎝⎭ (6) 式中的函数()0S V 可通过下述条件确定:在322312πN hn V mkT λ⎛⎫=<< ⎪⎝⎭的极限条件下,弱简并气体趋于经典理想气体. 将上述极限下的式(6)与式(7.6.2)比较(注意补上简并度g ),可确定()0S V ,从而得弱简并费米(玻色)气体的熵为332227222π511ln .22π2mkT h S Nk ng h g mkT ⎧⎫⎡⎤⎛⎫⎪⎪⎛⎫⎢⎥=+±⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭(7) 弱简并气体的热力学函数也可以按照费米(玻色)统计的一般程序求得;先求出费米(玻色)理想气体巨配分函数的对数ln Ξ,然后根据式(8.1.6)、(8.1.8)和(8.1.10)求内能、压强和熵. 在求巨配分函数的对数时可利用弱简并条件作相应的近似. 关于费米(玻色)理想气体巨配分函数的计算可参阅王竹溪《统计物理学导论》§65和§64.8.4 试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-受因斯坦凝聚.解: 如§8.3所述,令玻色气体降温到某有限温度c T ,气体的化学势将趋于-0. 在c T T <时将有宏观量级的粒子凝聚在0ε=的基态,称为玻色-爱因斯坦凝聚. 临界温度c T 由条件163()0d e 1c kT D n εεε+∞=-⎰(1)确定.将二维自由粒子的状态密度(习题6.3式(4))()222πd d L D m hεεε=代入式(1),得2202πd .e 1c kT L m n hεε+∞=-⎰ (2) 二维理想玻色气体的凝聚温度c T 由式(2)确定. 令cx kT ε=,上式可改写为2202πd .e 1c x L x mkT n h +∞=-⎰ (3) 在计算式(3)的积分时可将被积函数展开,有()()211e 1e e ,e 1e 1e x x xx x x----==+++-- 则d 111e 123xx +∞=+++-⎰11.n n∞==∑ (4) 式(4)的级数是发散的,这意味着在有限温度下二维理想玻色气体的化学势不可能趋于零. 换句话说,在有限温度下二维理想玻色气体不会发生玻色-爱因斯坦凝聚.8.5 约束在磁光陷阱中的原子,在三维谐振势场()22222212x y x V m x y z ωωω=++中运动. 如果原子是玻色子,试证明:在c T T ≤时将有宏观量级的原子凝聚在能量为()02x y z εωωω=++164 的基态,在3,0,N N ωω→∞→保持有限的热力学极限下,临界温度c T 由下式确定:31.202,c kT N ω⎛⎫=⨯ ⎪⎝⎭其中()13.x y z ωωωω=温度为T 时凝聚在基态的原子数0N 与总原子数N 之比为31.c N T N T ⎛⎫=- ⎪⎝⎭解: 约束在磁光陷阱中的原子,在三维谐振势场中运动,其能量可表达为222222222111,222222y x z x y z p p p m x m y m z m m m εωωω⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1) 这是三维谐振子的能量(哈密顿量). 根据式(6.2.4),三维谐振子能量的可能值为,,111,222xyzn n n x x y y z z n n n εωωω⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,0,1,2,x y z n n n = (2)如果原子是玻色子,根据玻色分布,温度为T 时处在量子态,,x y z n n n 上的粒子数为,,11112221.e1x y z x x y y z z n n n n n n kT a ωωωμ⎡⎤⎛⎫⎛⎫⎛⎫+++++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=- (3) 处在任一量子态上的粒子数均不应为负值,所以原子气体的化学势必低于最低能级的能量,即()0.2x y z μεωωω<≡++(4) 化学势μ由()01,,1e1x x y y z z x y zn n n n n n kT N ωωωεμ⎡⎤+++-⎣⎦=-∑(5)确定. 化学势随温度降低而升高,当温度降到某临界值c T 时,μ将趋于0.ε临界温度c T 由下式确定:165()1,,1,e1x x y y z z x y zn n n n n n kT N ωωω⎡⎤++⎣⎦=-∑(6) 或,,1,e1x y zx y zn n n n n n N ++=-∑(7) 其中(),,.ii i cn n i x y z kT ω==在1ickT ω<< 的情形下,可以将i n 看作连续变量而将式(7)的求和用积分代替. 注意到在d d d x y z n n n 范围内,粒子可能的量子态数为3d d d ,c x y z kT n n n ω⎛⎫ ⎪⎝⎭即有3d d d ,1x zy x y zc n n n kT n n n N eω++⎛⎫= ⎪⎝⎭-⎰ (8)式中()13.x y z ωωωω=为了计算式(8)中的积分,将式中的被积函数改写为()()()011e 1e 1ee e .x y z x y z x y z x y z x y z n n n n n n n n n n n n l n n n l ++-++++∞-++-++==⎡⎤--⎢⎥⎣⎦=∑积分等于00003d d de d e d e d e 111.202.y xz x y z x y z l n l n l n x y zn n n l l n n n n n n l ∞+∞+∞+∞---++=∞==-==∑⎰⎰⎰⎰∑ 所以式(8)给出166 13.1.202C N kT ω⎛⎫= ⎪⎝⎭(9)式(9)意味着, 在,0N ω→∞→而3N ω保持有限的极限情形下,C kT 取有限值. 上述极限称为该系统的热力学极限.在c T T <<时,凝聚在基态的粒子数0N 由下式确定:30 1.202,kT N N ω⎛⎫-= ⎪⎝⎭上式可改写为31.C N T N T ⎛⎫=- ⎪⎝⎭(10) 式(9)和式(10)是理想玻色气体的结果. 实验上实现玻色凝聚的气体,原子之间存在弱相互作用,其特性与理想玻色气体有差异. 互作用为斥力或吸力时气体的特性也不同. 关于互作用玻色气体的凝聚可参阅Dalfovo et al. Rev. Mod. Phys. 1999, 71(465).8.6 承前8.5题,如果,z x y ωωω>>,则在z kT ω<< 的情形下,原子在z 方 向的运动将冻结在基态作零点振动,于是形成二维原子气体. 试证明C T T <时原子的二维运动中将有宏观量级的原子凝聚在能量为()02x y εωω=+的基态,在2,0,N N ωω→∞→保持有限的热力学极限下,临界温度c T 由下式确定:21.645,C kT N ω⎛⎫= ⎪⎝⎭其中()12.x y ωωω=温度为T 时凝聚在基态的原子数0N 与总原子数N 之比为21.C N T N T ⎛⎫=- ⎪⎝⎭解: 在,z x y ωωω>>的情形下,原子z 方向的运动将冻结在基态作零点振动,于是形成二维原子气体. 与8.5题相似,在c T T <时将有宏观量级的原子 凝聚在能量为()02x y εωω=+的基态. 临界温度c T 由下式确定: 2d de 1x yx yC n n kT n n N ω+∞+⎛⎫= ⎪-⎝⎭⎰16721.645,C kT ω⎛⎫= ⎪⎝⎭(1)其中()12,x y ωωω=201d d 11.645.e 1x y x y n n l n n l∞+∞+===-∑⎰(2)在,0N ω→∞→而2N ω保持有限的热力学极限下c kT 为有限值,有12.1.645C N kT ω⎛⎫= ⎪⎝⎭(3) C T T ≤时凝聚在基态的原子数0N 与总原子数N 之比由下式确定:20 1.645,kT N N ω⎛⎫-= ⎪⎝⎭或21.C N T N T ⎛⎫=- ⎪⎝⎭(4) 低维理想玻色气体玻色凝聚的理论分析可参看8.5题所引Dalfovo et al及其所引文献. 低维玻色凝聚已在实验上得到实现,见Gorlirz et al.Phys.Rev.Lett.2001,87(130402).8.7 计算温度为T 时,在体积V 内光子气体的平均总光子数,并据此估算(a )温度为1000K 的平衡辐射.(b )温度为3K 的宇宙背景辐射中光子的数密度.解: 式(8.4.5)和(8.4.6)已给出在体积V 内,在ω到d ωω+的圆频率范围内光子的量子态数为()223d d .πV D c ωωωω=(1) 温度为T 时平均光子数为()()d ,d .e1kTD N T ωωωωω=- (2) 因此温度为T 时,在体积V 内光子气体的平均光子数为168 ()223d .πe1kTVN T cωωω+∞=-⎰(3) 引入变量x kTω=,上式可表示为 ()3223033233d πe 12.404.πx V kT x xN T c kVT c +∞⎛⎫= ⎪-⎝⎭=⎰或()332332.404.πk n T T c =(3)在1000K 下,有163210.n m -≈⨯在3K 下,有835.510.n m -≈⨯8.8 试根据普朗克公式证明平衡辐射内能密度按波长的分布为()58πd ,d ,e1hc kThcu T λλλλλ=-并据此证明,使辐射内能密度取极大的波长m λ满足方程m hc x kT λ⎛⎫=⎪⎝⎭5 5.x e x -+=这个方程的数值解为 4.9651.x = 因此,4.9651m hcT kλ=m λ随温度增加向短波方向移动.解: 式(8.4.7)给出平衡辐射内能按圆频率的分布为()3231,d d .πe 1kTu T c ωωωωω==- (1)根据圆频率与波长熟知的关系2cπωλ=,有16922πd d .cωλλ=(2)如果将式(1)改写为内能按波长的分布,可得()58πd ,d .e1hc kThcu T λλλλλ=-- (3)令hcx kTλ=,使(),u T λ取极大的波长m λ由下式确定: 5d 0.d e 1x x x ⎛⎫= ⎪-⎝⎭(4) 由式(4)易得55e .x x --= (5)这方程可以用数值方法或图解方法求解. 图解方法如下:以x 为横坐标,y 为纵坐标,画出两条曲线1e ,,5x y xy -=-= 如图所示. 两条曲线的交点就是方程(5)的解,其数值约为4.96. 精确的数值解给出 4.9651.x = 所以使(),u T λ为极大的m λ满足4.9651m hcT kλ=32.89810m K.-=⨯⋅ (6)右方是常量,说明m λ随温度的增加向短波方向移动,称为维恩位移定律.值得注意,式(6)确定的使(),u T λ为极大的m λ与式(8.4.11)给出的使(),u T ω为极大的m ω并不相同. 原因是(),u T λ是单位波长间隔的内能密度,170 (),u T ω是单位频率间隔的内能密度. m λ与m ω分别由5d 0d e 1x x x ⎛⎫= ⎪-⎝⎭(4) 和3d 0d e 1x x x ⎛⎫= ⎪-⎝⎭(7) 确定,其中.hcx kT kTωλ== 由这两个方程解得m x 显然不同.8.9 按波长分布太阳辐射能的极大值在480nm λ≈处,假设太阳是黑体,求太阳表面的温度. 解: 由上题式(6)知32.89810m K.m T λ-=⨯⋅假设太阳是黑体,太阳表面温度的近似值为392.89810K 6000K.48010T --⨯==⨯8.10 试根据热力学公式d VC S T T=⎰及光子气体的热容量求光子气体的熵.解: 式(8.4.10)给出光子气体的内能为24433π.15k U VT c =(1) 由此易得其定容热容量为243334π15V V U k C VT T c ∂⎛⎫== ⎪∂⎝⎭(2) 根据热力学关于均匀系统熵的积分表达式(2.4.5),有0d d ,V V C p S T V S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ (3)171积分沿任意一条积分路线进行. 如果取积分路线为由(0,V )到(T ,V )的直线,即有242423333304π4πd ,1545Tk k V S T T T c c ==⎰ (4)其中已取积分常量0S 为零.如果取其他积分路线,例如由(0,0)至(T ,V )的直线,结果如何?8.11 试计算平衡辐射中单位时间碰到单位面积器壁上的光子所携带的能量,由此即得平衡辐射的通量密度.u J 计算6000K 和1000K 时u J 的值. 解: 根据式(8.4.3)和(6.2.15),在单位体积内,动量大小在p 到d p p +,动量方向在θ到d ,θθϕ+到d ϕϕ+范围内,平衡辐射的光子数为232sin d d d ,e 1cpp p h βθθϕ- (1) 其中已利用式(8.4.2)将动量为p 的光子能量表示为cp ,因子2是计及光子自旋在动量方向的两个可能投影而引入的.以d A 表示法线方向沿z 轴的器壁的面积元. 以d d d ΓA t 表示在d t 时间内碰到d A 面积上,动量大小在p 到d p p +,方向在θ到d ,θθϕ+到d ϕϕ+范围的光子数. 它等于以d A 为底,以cos d c t θ为高,动量在d d d p θϕ范围内的光子数. 因此单位时间(d 1t =)内,碰到单位面积()d 1A =的器壁上(或穿过单位面积),动量在d d d p θϕ范围内的光子所携带的能量为232sin d d d cos .e 1cp p p c cp h βθθϕθ⋅⋅- (2)对式(2)积分,p 从0到,θ+∞从0到π,2ϕ从0到2π,即得到辐射动量密度u J 为π232π2300023302d sin cos d d e 12πd .e 1u cp cp c p p J h c p p h ββθθθϕ+∞+∞=⋅⋅-=-⎰⎰⎰⎰ 令x cp β=,上式可表示为172 4233042432π1d e 12ππ6,90u x c x x J h c c kT h c β+∞⎛⎫=⋅ ⎪-⎝⎭⎛⎫=⋅⋅ ⎪⎝⎭⎰或24423π.60u k J T c =(3) 在6000K ,有727.1410J m ;u J -=⨯⋅在1000K ,有520.5510J m .u J -=⨯⋅8.12 室温下某金属中自由电子气体的数密度283610m ,n -=⨯某半导体中导电电子的数密度为28310m n -=,试验证这两种电子气体是否为简并气体. 解: 根据§8.5,在e 1α>>,即31n λ<<的情形下费米气体满足非简并性条件,遵从玻耳兹曼分布;反之,在e 1α<<,即31n λ>>的情形下,气体形成强简并的费米气体.3223,2πh n n mkT λ⎛⎫= ⎪⎝⎭(1) 将283300,610m T K n -==⨯代入,得33101,n λ≈>> (2)说明该金属中的自由电子形成强简并的费米气体. 将203300K,10m T n -==代入,得35101,n λ-≈<<所以该半导体中的导电电子是非简并气体,可以用玻耳兹曼统计讨论. 金属中自由电子数密度的估计见§8.5,半导体中导电电子数密度的估计请参阅补充题3.8.13 银的导电电子数密度为28 3.5.910m -⨯试求0 K 时电子气体的费米能量、费米速率和简并压.173解: 根据式(8.5.6)和(8.5.8),0 K 下金属中自由电子气体的费米能量(电子的最大能量)、费米速率(电子的最大速率)和电子气体的压强取决于电子气体的密度n . 式(8.5.6)给出()()222303π.2n mμ= (1) 将31342839.110kg, 1.0510J s, 5.910m m n ---=⨯=⨯⋅=⨯ 代入,即得()1800.87610J 5.6eV.μ-=⨯= (2)费米速率F υ等于61F 1.410m s .υ-==⨯⋅ (3)式(8.5.8)给出0 K 下电子气体的压强为()()10200 2.110Pa.5p n μ=≈⨯ (4)8.14 试求绝对零度下自由电子气体中电子的平均速率.解: 根据式(8.5.4),绝对零度下自由电子气体中电子动量(大小)的分布为F 1,,f p p =≤F 0,,f p p => (1)其中F p 是费米动量,即0 K 时电子的最大动量. 据此,电子的平均动量为FF34F30F 23F38π1d 34.8π14d 3p p Vp pp h p p V p p p h ===⎰⎰(2) 因此电子的平均速率为F F 33.44p p υυm m === (3)8.15 试证明,在绝对零度下自由电子的碰壁数可表示为1,4n υΓ=174 其中Nn V=是电子的数密度,υ是平均速率. 解: 绝对零度下电子速率分布为F F 1,,0,,f υυf υυ=≤=> (1)式中F υ是0 K 时电子的最大速率,即费米速率. 单位体积中速率在d υd d θϕ间隔的电子数为()32F 32sin d d d .m υυυυh θθϕ≤ (2)单位时间内上述速度间隔的电子碰到法线沿z 轴的单位面积器壁上的碰撞数为3232cos sin d d d .m d υυυhΓθθθϕ=⋅ (3)将上式积分,υ从0到F ,υθ从0到π,2ϕ从0到2π,得0 K 时电子气体的碰壁数为F π32π32300034F 32d sin cos d d 211242υm υυh m υh Γθθθϕπ==⋅⋅⋅⎰⎰⎰ 34F 3π.2m υh = (4) 但由式(2)知单位体积内的电子数n 为F 3π2π2300033F 32d sin d d 2122π3υm υυh m υh Γθθϕ==⋅⋅⋅⎰⎰⎰ 33F 38.3m υh π= (5) 所以F 31.444n υn υΓ=⋅=最后一步用了8.14题式(3).8.16已知声速a= 1.8.8)),试证明在0 K理想费米气体中a=解: 式(1.8.8)已给出声速a为a=(1)式中的偏导数是熵保持不变条件下的偏导数. 根据能氏定理,0 K下物质系统的熵是一个绝对常数,因此0 K下物理量的函数关系满足熵为不变的条件.根据式(8.5.8)和(8.5.6),0 K下理想费米气体的压强为()()()2252322523π52p nnmμ==()()22523353213π.52mmρ=(2)故()2222F32213π,323Sppnm m mρ⎛⎫∂==⎪∂⎝⎭即a==(3)8.17 等温压缩系数Tκ和绝热压缩系数Sκ的定义分别为1TTpVκρ⎛⎫∂=- ⎪∂⎝⎭和1.SSpVκρ⎛⎫∂=- ⎪∂⎝⎭175176 试证明,对于0 K 的理想费米气体,有()()()3100.20T S n κκμ==解: 根据式(8.5.6)和(8.5.4),0 K 下理想费米气体的压强为()()5223232203π.552N p n mV μ⎛⎫== ⎪⎝⎭(1) 在温度保持为0 K 的条件下,p 对V 的偏导数等于()2223223π.32T p N V m V ∂⎛⎫⎛⎫=- ⎪ ⎪∂⎝⎭⎝⎭由式(A.5)知()()222232313.23π2T TV V p p N N V m V -⎛⎫∂== ⎪∂∂⎛⎫⎝⎭⎛⎫ ⎪∂ ⎪⎝⎭⎝⎭(2) 所以0 K 下()()5223231331.2203π2T T V VV p n N mV κμ⎛⎫∂=-==⎪∂⎝⎭⎛⎫⎪⎝⎭(3) 根据能氏定理,T =0 的等温线与S =0 的等熵线是重合的,因此0 K 下.T SV V p p ⎛⎫⎛⎫∂∂= ⎪ ⎪∂∂⎝⎭⎝⎭ 由此可知()131.20S S V V p n κμ⎛⎫∂=-= ⎪∂⎝⎭ (4) 式(4)也可以从另一角度理解. 式(2.2.14)和(2.2.12)给出s VT pC C κκ= (5) 和2.p V TVT C C ακ-=(6)由式(6)知,0 K 下,p V C C =177所以式(5)给出0 K 下.S T κκ8.18 试求在极端相对论条件下自由电子气体在0K 时的费米能量、内能和简并压.解: 极端相对论条件下,粒子的能量动量关系为.cp ε=根据习题6.4式(2),在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()238πd d .VD ch εεεε=(1) 式中已考虑到电子自旋在动量方向的两个可能投影而将习题6.4式(2)的结果乘以因子2.0 K 下自由电子气体的分布为()()()1,0;0,0.f μμεμμ≤⎧⎪=⎨>⎪⎩(2)费米能量()0μ由下式确定:()()()()023338π8π1d 0,3VV N ch ch μεεμ==⋅⎰ 故()1330.8n ch μπ⎛⎫=⎪⎝⎭(3) 0 K 下电子气体的内能为()()()()()()0003343d 8πd 8π104U D Vch V ch μμεεεεεμ===⋅⎰⎰()30.4N μ=(4) 根据习题7.2式(4),电子气体的压强为178 ()110.34U p n V μ== (5)8.19 假设自由电子在二维平面上运动,面密度为.n 试求0 K 时二维电子气体的费米能量、内能和简并压.解: 根据6.3题式(4),在面积A 内,在ε到d εε+的能量范围内,二维自由电子的量子态数为()24d d .AD m hπεεε=(1) 式中已考虑到电子自旋在动量方向的两个可能投影而将6.3题式(4)的结果乘以2.0 K 下自由电子的分布为()()()1,0;0,0.f μμεμμ≤⎧⎪=⎨>⎪⎩ (2)费米能量()0μ由下式确定:()()02204π4πd 0,A AN m m h hμεμ==⎰ 即()220.4π4πh N h m A mμ== (3)0 K 下二维自由电子气体的内能为()()()022204π4πd 00.22A A m NU m h h μεεμμ===⎰ (4) 仿照习题7.1可以证明,对于二维的非相对论粒子,气体压强与内能的关系为.Up A=(5) 因此0 K 下二维自由电子气体的压强为()10.2p n μ= (6)8.20 已知0 K 时铜中自由电子气体的化学势()07.04eV,μ=试求300 K 时的一级修正值.179解: 根据式(8.5.17),温度为T 时金属中自由电子气体的化学势为()()()22π01,120kT T μμμ⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦300 K 下化学势()T μ对()0μ的一级修正为()()()22350 1.121001207.8810eV.kT πμμμ-⎡⎤-=-⨯⎢⎥⎣⎦=-⨯ 这数值很小,不过值得注意,它是负的,这意味着金属中自由电子气体的化学势随温度升高而减小. 这一点可以从下图直接看出. 图中画出了在不同温度下电子分布函数()f ε随ε的变化. 0 K 时电子占据了能量ε从零到()0μ的每一个量子态,而()0εμ>的状态则全部未被占据,如图中的0T 线所示. 温度升高时热激发使一些电子从能量低于μ的状态跃迁到能量高于μ的状态. 温度愈高,热激发的电子愈多,如图中的1T 线和2T 线所示()12.T T < 费米分布1e 1hT f εμ-=+要求在任何温度下εμ=的状态12f =,即占据概率为1.2从图8-2可以看出,化学势μ必然随温度升高而减少,即()210.μμμ<<8.21 试根据热力学公式VC S dT T=⎰,求低温下金属中自由电子气体的熵.解: 式(8.5.19)给出低温下金属中自由电子气体的定容热容量为()2π.20V kTC Nk μ= (1)180 根据热力学关于均匀系统熵的积分表达式(2.4.5),有0d d .V V C p S T V S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ (2)取积分路线为(0,V )至(T ,V )的直线,即有()()2220ππd ,2020T Nk kTS T Nk μμ==⎰ (3)其中已取积分常量0S 为零.8.22 由N 个自旋极化的粒子组成的理想费米气体处在径向频率为r ω,轴向频率为r λω的磁光陷阱内,粒子的能量(哈密顿量)为()()222222221.22x y z r m p p p x y z m εωλ=+++++ 试求0 K 时费米气体的化学势(以费米温度表示)和粒子的平均能量. 假设5-1210,3800s ,8r N ωλ===,求出数值结果.解: 由式(6.2.4)知,粒子的能量本征值为(),,,xyzn n n r x y z n n n εωλ=++,,0,1,2,x y z n n n = (1)式中已将能量零点取为1.2r λω⎛⎫+ ⎪⎝⎭理想费米气体的化学势(),T N μ由下式确定:(),,1.e1r x y z x y zn n n n n n N βωλμ⎡⎤++-⎣⎦=+∑(2) 如果N 足够大使大量粒子处在高激发能级,粒子的平均能量远大于r ω ,或者温度足够高使r kT ω>> ,式(2)的求和可以改写为对能量的积分. 令,,,d ,d ,d ,x x r y y r z z r x r y r z r n n n εωεωελωεωεωελω======式(2)可表达为()()3d d d 1.e 1x y z x y zr N βεεεμεεελω+++=+⎰ (3)引入新的积分变量x y z εεεε=++,可进一步将式(2)改写为181()()31d d d ,e 1xyrN βεμεεελω-=+⎰⎰⎰ (4)式中被积函数只是变量ε的函数,与x ε和y ε无关. 对一定的ε,d x ε和d y ε的积分等于以x ε轴、y ε轴和x y εεε+=三条直线为边界的三角形面积,如图所示,这面积等于21.2ε 所以式(4)可表达为()()d ,1D N eβεμεε-=+⎰(5)其中()()231d d .2r D εεεελω=(6)它是能量在ε到d εε+范围内粒子的状态数.0 K 时系统尽可能处在能量最低的状态. 由于泡利原理的限制,粒子将从能量为零的状态开始,每一量子态填充一个粒子,到能量为()0μ的状态止.()0μ由下式确定:()()()()30233011d .322rr N μμεελωλω==⎰由此可得()()1306.r N μωλ= (7)0 K 时费米气体的能量为182 ()()()()()()0003343d 1d 20142r r E D μμεεεεελωμλω===⎰⎰()30.4N μ=(8) 粒子的平均能量为()30.4εμ= (9)对于题给的数据,可得30nK,r ω=()0 3.5μK,F T kμ==2.7μK.Ek=8.23 承上题,试求低温极限F T T <<和高温极限F T T >>下,磁光陷阱中理想费米气体的化学势、内能和热容量.解: 首先讨论低温极限F T T <<的情形. 根据式(8.5.13)和(8.5.16),积分()d ,e 1kT I εμηεε+∞-=+⎰(1)在低温极限下可展开为()()()220πd 6I kT μηεεημ'=++⎰ (2) 对于磁光陷阱中的理想费米气体,有20d ,e 1kT c N εμεε+∞-=+⎰(3)其中()31.2r c λω=上式确定费米气体的化学势. 利用式(1),(2)可得1832321π,3c kT N μμ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因此11233231πN kT c μμ-⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()()22π01.30kT μμ⎧⎫⎡⎤⎪⎪≈-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(4) 气体的内能为30d ,1kTc U e εμεε+∞-=+⎰利用式(1),(2)可得()()()()()()24242224242224212π4π0112π430034π0112π4300C kT U C kT kT kT kT N μμμμμμμμ⎡⎤⎛⎫=+⎢⎥⎪⎝⎭⎢⎥⎣⎦⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪≈-⋅+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪≈-⋅+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭()()223201π.430kT N μμ⎧⎫⎡⎤⎪⎪≈+⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(5) 热容量为()2d π.d 0U kTC Nk T μ== (6) 在高温极限F T T >>的情形下,有Fe ee1.T kTTμα--=≈≈ (7)磁光陷阱内的费米气体是非简并的,遵从玻耳兹曼分布. 按照玻耳兹曼统计求热力学函数的一般程序,先求粒子配分函数184 ()()1023e d 1ed 2rZ D βεβεεεεελω+∞-+∞-==⎰⎰()3312.2r βλω=(8)内能为1ln 3.U NZ NkT β∂=-=∂ (9) 上式与能量均分定理的结果相符. 根据式(7.6.7),气体的化学势为()31Z ln ln 6.0kT kT kT N μμ⎧⎫⎡⎤⎪⎪=-=-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(10)最后一步用了式(8)和补充题4式(7).实验已观察到处在磁光陷阱内的费米气体在温度低于费米温度时所显示的费米简并性和费米压强. 见B. DeMarco, D. S. Jin. Science. 1999,285(1703). A. G . Truscott et al. Science. 2001,191(2570).8.24 关于原子核半径R 的经验公式给出()151/31.310m ,R A -=⨯⋅式中A 是原子核所含核子数. 假设质子数和中子数相等,均为A /2,试计算二者在核内的密度.n 如果将核内的质子和中子看作简并费米气体,试求二者的()0μ以及核子在核内的平均能量.核子质量271.6710kg.n m -=⨯ 解: 根据核半径的经验公式()11531.310m ,R A -=⨯⋅假设核内质子数和中子数相等,均为2A,则二者的密度均为 ()45-31520.0510m .4π1.310m 3A n A -=≈⨯⨯⋅如果将核内的质子和中子看作简并费米气体,根据式(8.5.6),费米能量()0μ185为()()22231103π20.4310J 27MeV.n mμ-==⨯≈由式(8.5.7)知,核子在核内的平均能量为()113050.2610J 16MeV.εμ-==⨯≈ 核的费米气体模型是20世纪30年代提出的核模型. 它在定性描述原子核的粗略性质方面取得了一定的成功. 核的费米气体模型把核子看作是约束在核内的无相互作用的自由粒子. 从核子散射实验知道,核子之间存在很强的相互作用,其中包含非常强的排斥心. 将核子看作核内无相互作用的自由粒子,可以这样理解:排斥心的半径约为150.410m -⨯,核内核子之间的平均距离约为152.410m -⨯,因此原子核的“最密集”体积与实际体积之比约为30.412.4100⎛⎫≈ ⎪⎝⎭,这样核子实际上感受到的只是相互作用中较弱的“尾巴”部分. 其 次,由于泡利原理的限制,大多数核子(特别是处在费米面深处低能态的粒子)发生碰撞时,其状态很难发生改变,仅在费米面附近的少数核子有可能在碰撞时改变其状态. 作为一个初步近似,费米气体模型忽略了核子之间的相互作用.8.25 3He 是费米子,其自旋为1/2在液3He 中原子有很强的相互作用. 根据朗道的正常费米液体理论,可以将液3He 看作是由与原子数目相同的3He 准粒子构成的费米液体. 已知液3He 的密度为-381kg m ⋅,在0.1 K 以下的定容热容量为 2.89.V C NkT = 试估算3He 准粒子的有效质量*.m解: 我们首先粗略地介绍一下朗道费米液体理论的有关概念.如§8.5所述,在0 K 理想费米气体处在基态时,粒子占满了动量空间中半径为费米动量F p 的费米球:()123F 3π,p n = (1)F p p >的状态则完全未被占据. 气体处在低激发态时,有少量粒子跃造到186 F p p >的状态,而在费米球中留下空穴. F p 的大小取决于气体的数密度.n朗道假设,如果在理想费米气体中逐渐加入粒子间的相互作用,理想费米气体将过渡为费米液体,气体的粒子过渡为液体的准粒子. 液体中的准粒子数与原来气体或液体中的实际粒子数相同. 对于均匀系统,准粒子的状态仍可由动量p 和自旋S 描述. 在0 K 费米液体处在基态时,准粒子占满了动量空间中半径为F p 的费米球,F p 仍由式(1)确定,但n 是液体的粒子数密度. 费米液体处在低激发态时,有少量准粒子跃迁到F p p >的状态,而在费米球中留下空穴.以()d f p ω表示单位体积中动量在p 到d p p +的准粒子数. 在自旋量子数为1/2的情形下,有32d d .ph ω=()f p 满足归一化条件()d .f p n ω=⎰ (2)由于费米液体的准粒子之间存在相互作用,单个粒子的能量()p ε与其他准粒子所处的状态有关,即与准粒子的分布有关. 因此,与理想费米气体不同,费米液体的能量不能表达为单个准粒子的能量之和,即()()d ,Ep f p Vεω≠⎰ (3) 而是分布函数()f p 的泛函. 准粒子能量()p ε由下式定义:()()δδd ,Ep f p Vεω=⎰ (4) 或()()δ.δE V p f p ε⎛⎫∂ ⎪⎝⎭=∂⎡⎤⎣⎦(5) 上式的意义是,准粒子能量()p ε等于增加一个动量为p 的粒子所引起的系统能量的增加. ()p ε既与液体中准粒子的分布有关,也是分布函数()f p 的泛函. 习题8.2曾得到处在平衡状态的理想费米气体的熵的表达式()()()(){}ln 1ln 1d ,S kV f p f p f p f p ω=-+--⎡⎤⎡⎤⎣⎦⎣⎦⎰ (6)式中的两项可以分别理解为由于粒子具有分布()f p 和空穴具有分布()1f p -所导致的熵. 式(6)不仅适用于平衡态,也适用于非平衡态. 如果()f p 是某187非平衡态下粒子的分布,相应的熵也由式(6)表达. 在总粒子数、总能量和体积给定的情形下,平衡态的分布(费米分布)使式(6)的熵取最大值. 根据前述朗道的假设,费米液体的准粒子与理想费米气体的粒子存在一一对应的关系. 将式(6)中的()f p 理解为费米液体中准粒子的分布,费米液体的熵亦可由式(6)表达. 在总粒子数、总能量和体积给定的情形下,平衡态的分布使式(6)的熵取最大值. 可以证明,平衡态的分布具有下述形式:()()1.e1p kTf p εμ-=+ (7) 这是平衡态下费米液体中准粒子的分布函数,1kT 和kTμ是拉氏乘子. 显然,T 和μ分别是费米液体的温度和化学势. 需要强调,虽然式(7)形式上与费米分布相似,但由于()p ε是分布函数()f p 的泛函,式(7)实际上是分布函数()f p 的一个复杂的隐函数表达式.以()()()()00,f p p ε和()0μ分别表示0 K 时的分布函数、准粒子能量和化学势. 由式(7)可知,()()0f p 是一个阶跃函数:()()()()()()()()0001,0;0,0.p f p p εμεμ⎧≤⎪=⎨>⎪⎩ (8)上式给出0 K 时费米液体准粒子的动量分布,与前述的图像一致.在接近0 K 的低温下,分布函数应与阶跃分布()()0f p 接近. 作为一级近似,可以用()()0f p 近似地确定准粒子的能量().p ε 这意味着()p ε简单地成为p 的确定的函数()()0.p ε 对于F p p ≈的动量值,可以将函数()()0p ε按F p p -作泰勒展开,即()()()()0F F 0,p υp p εμ-=- (9)其中()()F0F p p υp ε⎡⎤∂=⎢⎥∂⎢⎥⎣⎦ (10)是准粒子在费米面的速度. 对于理想费米气体,有()2F F ,.2p p p υm mε==可以类似地引入准粒子有效质量*m 的概念,定义188 *FF,p m υ=(11) 并将()0μ和F ~p p 处的()()0p ε简单地记为()2F*0,2p mμ= (12)()()()20F *.2p p p p mε=≈ (13)如§8.5所述,仅费米面附近的电子对理想费米气体的低温热容量有贡献,其表达式为(式(8.5.19)和(8.5.6))()()222223ππ.203πV C kT mkTNk n μ== (14)根据费米液体与理想费米气体的相似性,可以直接写出低温下费米液体的热容量为()()22*2223ππ,203πV C kT m kTNk n μ== (15) 其中*m 是费米液体准粒子的有效质量. 将题中所给液3He 的实测数据代入,注意3He 的质量密度nm ρ=(m 是3He 原子的质量),可得3He 准粒子的有效质量约为*3.m m ≈ (16)关于朗道费米液体理论,可参看《量子统计物理学》(北京大学编写组)§5.5和Lifshitz, Pitaevskii. Statistical Physics Ⅱ. §1, §2.189补充题1 写出二维空间中平衡辐射的普朗克公式,并据此求平均总光子数、内能和辐射通量密度.解: 根据(6.2.14),二维空间中在面积A 内,在x p 到d ,x x y p p p +到d y yp p +的动量范围内,光子可能的量子态数为22d d .x yA p p h(1)换到平面极坐标,并对辐角积分,可得在面积A 内,动量大小在p 到d p p +范围内,光子的量子态数为24πd .Ap p h(2) 再利用光子的能量动量关系cp ε=和能量频率关系εω= ,可得二维空间中在面积A 内,在ω到d ωω+的频率范围内的光子的量子态数为()2d d .AD cωωωωπ=(3) 根据玻色分布和式(3),可得温度为T 时二维平衡辐射在面积A 内,在ω到d ωω+的频率范围内的光子数为()2,d d .πe 1A N T c βωωωωω=- (4)对频率积分,得温度为T 时二维平衡辐射击的总光子数为()()02220,d d πe 11d πe 1x N T N T A cA x x c βωωωωωβ+∞+∞+∞==-⎛⎫= ⎪-⎝⎭⎰⎰⎰2222π.6A k T c =(5) 温度为T 时在面积A 内,在ω到d ωω+的频率范围内,二维平衡辐射的能量为()22,d d .πe 1A u T c βωωωωω=- (6)这是二维平衡辐射的普朗克公式. 对频率积分,得温度为T 时二维辐射场的内能为190 ()223220d πe 11d πe 1x Au T cA x x c βωωωβ+∞+∞=-⎛⎫=⎪-⎝⎭⎰⎰33222.404.πA k T c =(7) 参照式(2.6.7)或8.11题,可得二维辐射场的辐射通量密度u J 与内能密度的关系为33221.202.2πu c J u k T c π==(8) 应当说明,随着人工微结构材料研究的进展,目前已有可能研制出低维的光学微腔. (参阅E. Yablonovitch. Jour. Mod·Opt. 1994,41(173). 章蓓. 光学微腔. 见:介观物理. 北京:北京大学出版社,1995.276). 不过光学微腔中辐射场的模式分布与(3)所表达的自由空间中的模式分布是不同的.补充题 2 金属中的自由电子在外磁场下显示微弱的顺磁性. 这是泡利(Pauli )根据费米分布首先从理论上预言的,称为泡利顺磁性. 试根据费米分布导出0K 金属中自由电子的磁化率.解: §7.8和习题7.27讨论的顺磁性固体,其顺磁性来自磁性离子的磁矩在外磁场作用下的取向. 离子磁矩是其不满壳层的束缚电子的轨道磁矩与自旋磁矩之和,磁性离子是定域的,遵从玻耳兹曼分布。
大学物理 第八章 热力学基础
CV
2019/5/21
P.12/42
§8.2 热力学第一定律
热力学基础
§8.2.1 热力学第一定律 本质:包括热现象在内的能量守恒和转换定律。
E2 E1 W Q (E2 E1) W E W
Q
dQ dE dW
Q
E E2 E1
W
+ 系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
2019/5/21
P.13/42
热力学基础
热力学第一定律适用于任何系统(气液固)的任何过 程(非准静态过程也适用),
Q E PdV
热力学第一定律的另一叙述:第一类永动机 是不可 能制成的。
第一类永动机:Q = 0, E = 0 ,A > 0的机器;
过一系列变化后又回一开始的状态,用W1表示外界对 气体做的功,W2表示气体对外界做的功,Q1表示气体 吸收的热量,Q2表示气体放出的热量,则在整个过程中 一定有( A )
A.Q1—Q2=W2—W1 ; B.Q1=Q2
C.W1=W2 ;
D.Q1>Q2
2019/5/21
P.16/42
【例8-4】如图,一个四周绝热的气缸热,力中学基间础 有 一固定的用导热材料制成的导热板C把气缸分 成 A.B 两部分,D是一绝热活塞, A中盛有 1mol He, B中盛有1mol N2, 今外界缓慢地
等压膨胀过程 V2>V1 , A>0 又T2>T1, 即E2-E1>0 ∴Q>0 。气体吸收的热量,一部分用于内能的增加,
一部分用于对外作功;
等压压缩过程 A<0 , T2<T1, 即E2-E1<0 ∴Q<0 。
第八章 热力学第一定律1
i2 2 , i i 1
R 1 T1 T2 p1V1 p2V2 A 1 1
V 1 p1V1 1 1 1 V2
1
气体的摩尔定压热容为:
C p ,m 1 dQ 1 dE p dV dT p dT p dT p
i E RT , pV RT 2
C p,m
i RR 2
Qp C p,m T2 T1 C p,mT
QV CV ,m T2 T1 CV ,mT
热力学第一定律为: dQV dE 理想气体内能:
i E RT 2
i E RT CV , m T 2
i E RT CV , m T 2
p
2 ( p ,V , T ) 2 2 1
V
( p1 ,V , T1 )
p p1
p2
V T 1 ( p1, 1, )
p p1
2
V2
1 ( p1, 1, ) V T
( p2 , 2 ,T ) V
A
V1
p2
( p2 , 2 ,T ) V
A
V1
2
V2
o
V
o
V
QT
E
A
QT
E
A
等温膨胀,从外界吸热,等温压缩,气体对外界放热
例题8.1
气体等温过程:vmol的理想气体在保持温度T不变 的情况下,体积从V1经过准静态过程变化到V2。求 这一等温过程中气体对外做的功和它从外界吸收的 热。 解: pV=vRT 代入(9)式:
间为1s。内燃机的压缩时间0.01s。均可视这一过程为准静 态过程 • 3 准静态过程的表示方法:p-V图(p-T图、V-T图) a 曲线上的每一个点都是一个 准静态过程 b 非平衡态不能用一定的状态 参量描述,即不能表示为状态 图中的一条线!
热力学 统计物理:第八章 玻色统计和费米统计
y
y l
e l • ( ) • ( l )
1
[ y
l
l
ln(1 e l
)]
1
l
l
y 1 e l
l
l l
e l 1 y
Y 1 ln p 1 ln
y
V
N ln
U ln
Y 1 ln
y
dN d ( ln )
dU d ( ln )
Ydy 1 ln dy
U ln ln[ (1 e l )l ]
l
[
l
l ln(1 e l )]
l
l
e l • ( l )
1 e l
l
ll
e l 1
广义力Y是 l 的统计平均值:
y
Y
l
l
y
al
l
l l
e l 1 y
Y也可通过配分函数求得:
Y 1 ln 1 ln[ (1 e l )l ]
y
(dU Ydy dN ) d ( ln ) ln dy d ( ln )
y
(dU Ydy dN ) d ( ln ) ln dy d ( ln )
y
d ( ln ) ln • d ln • d ln dy d ( ln ) ln • d ln • d
e l 1
在实际应用中,两种分布的区别在于将和看作已知常量(开系条件
的平均分布),还是将N和U看作已知常量(孤立系统的最概然分布)。
说明: 本节推导玻色系统和费米系统热力学量的 统计表达式时,采用平均分布观点,也就
是将、和y(粒子能量含外参量y)看作 已知参量,而将热力学量表达为、和y的
函数。
回顾:
统计热力学基础第八章
压力 P
质量 m
熵 S
内能 U
Gibbs自由能G
统计热力学 热力学
量子力学
统计热力学
优点:将体系的微观性质与宏观性质联系起来, 对于简单分子计算结果常是令人满意的。不需要 进行复杂的低温量热实验,就能求得相当准确的 熵值。 局限性:计算时必须假定结构的模型,而人们对 物质结构的认识也在不断深化,这势必引入一定 的近似性。另外,对大的复杂分子以及凝聚体系, 计算尚有困难。
微观态:系统的力学状态。 确定方法:①可分辨的全同粒子系统(玻耳兹曼系统); ②不可分辨的全同粒子系统(玻色、费米系)
宏观性质是大量微观粒子运动的集体表现; 宏观物理量是相应微观物理量的统计平均值。
确定各微观状态出现的概率就能用统计的方法求 出微观量的统计平均值,从而求出相应宏观物理量, 因此确定各微观状态出现的概率是统计物理学的基本 问题。
玻色子和费米子
ˆ 12 表示交换 设两个微观全同粒子的状态|1,2>, P
两个粒子的操作, P ˆ 12 1, 2 2,1 根据量子力学原理,全同的微观粒子不可分辨的, 交换两个粒子的操作只能有两种结果
ˆ 12 1, 2 1, 2 P
全同粒子的交换或者是对称的,或者是反对称的。
N个不同粒子实现这种分布的可能性有 ?种
数学知识
(6) 将N个不同的物体分成k份,要保证: 第一份:n1个 第二份:n2个 …………… 第 k 份:nk个 则组合数:
N! n1!n2! nk !
N! ni ! i 1
k
定域子系的微观状态数
对E V N确定的系统
e1 w1
• 玻尔兹曼分布-最概然分布 • 求物理量的统计平均值
《大学物理》习题册题目及答案第8单元 热力学基础(二)
第8单元 热力学基础(二)序号 学号 姓名 专业、班级一 选择题一 选择题[ B ]1.在下列各种说法中,哪些是正确的? (1)热平衡过程就是无摩擦的、平衡力作用的过程。
(2) (3) (4)热平衡过程在p-V(A)(1)、(2) (B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)[ B ]2.下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的符号。
[ D ]3.设有以下一些过程:(1) 两种不同气体在等温下互相混合。
(2) 理想气体在定容下降温。
(3) 液体在等温下汽化。
(4) 理想气体在等温下压缩。
(5) 理想气体绝热自由膨胀。
在这些过程中,使系统的熵增加的过程是: (A)(1)、(2)、(3); (B)(2)、(3)、(4); (C)(3)、(4)、(5); (D)(1)、(3)、(5)。
[ A ]4.一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的(A) 内能不变,熵增加; (B) 内能不变,熵减少; (C) 内能不变,熵不变; (D) 内能增加,熵增加。
二 填空题1. 热力学第二定律的克劳修斯叙述是:热量不能自动地从低温物体传向高温物体;开尔文叙述是:不可能制成一种循环动作的热机,只从单一热源吸热完全转变为有用功而其它物体不发生任何变化。
2. 从统计的意义来解释:不可逆过程实际上是一个 从概率较小的状态到概率较大的状态的转变过程。
一切实际过程都向着状态的概率增大(或熵增加)的方向进行。
3. 熵是大量微观粒子热运动所引起的无序性的定量量度。
若一定量的理想气体经历一个等温膨胀过程,它的熵将增加 (填入:增加,减少,不变)。
三 计算题*1.一致冷机用理想气体为工作物质进行如图所示的循环过程,其中ab 、cd 分别是温度为T 2、T 1的等温过程,bc 、da 为等压过程.试求该致冷机的致冷系数. 解:在ab 过程中,外界作功为 1221ln ||p p RT M MA mol =' 在bc 过程中,外界作功 )(||121T T R M MA mol -=''在cd 过程中从低温热源T 1吸取的热量2Q '等于气体对外界作的功2A ',其值为 ='='22A Q 122ln p p RT M Mmol在da 过程中气体对外界作的功为 )(122T T R M M A m o l -=''致冷系数为 22112||||A A A A Q w ''-'-''+''=)(ln )(ln ln 1212112122121T T p p T T T p p T p p T ----+=121T T T -=2.已知一定量的理想气体经历如图所示的循环过程。
《统计热力学基础》课件
分布函数的定义
分布函数是描述系统微观状态分布的函数,它表示在某一时刻, 系统中的粒子在各个状态上的概率分布情况。
微观状态数的概念
微观状态数是描述系统内部可能的状态数量的一个概念,它与系统 的宏观状态和微观状态有关。
分布函数的应用
通过分析分布函数,可以了解系统的微观结构和性质,从而更好地 理解系统的宏观行为和变化规律。
02
概率分布
概率分布用于描述粒子集合中不同微观状态的概率分布情况。最常见的
概率分布有玻尔兹曼分布和麦克斯韦-玻尔兹通过概率分布可以计算各种物理量的平均值,如粒子的平均速度和平均
动能。同时,涨落描述了粒子集合中物理量的偏离平均值的情况。
统计热力学的发展历程
早期发展
经典统计热力学
统计热力学的重要性
在科学研究和工程应用中,统计热力学提供了理解和预测物质性质、能量转换 和热力学过程的基础理论框架。它对于化学工程、材料科学、环境科学等领域 具有重要意义。
统计热力学的基本概念
01
微观状态和宏观状态
微观状态是指单个粒子的状态,如位置和速度;宏观状态是指大量粒子
集合的整体状态,如温度、压力和体积。
05
02
详细描述
热力学的第二定律指出,在一个封闭系统中 ,自发过程总是向着熵增加的方向进行,即 熵总是向着增加的方向变化。
04
详细描述
根据热力学的第二定律,热机的效率 不可能达到百分之百,因为总会有一 些能量以热的形式散失到环境中。
06
详细描述
热力学的第二定律还排除了第二类永动机的存 在,即不能从单一热源吸收热量并将其完全转 化为机械功而不产生其他影响。
熵的概念和性质
1 2
熵的定义
第八章 统计热力学
12. 若规定粒子在 0K 的能值为零, 则在 0K 时, 系统的热力学函数不一定等于零的是 (A) U (B) H (C) A (D) S 答案:D 13.统计热力学主要研究。 (A) 平衡体系 (B) 近平衡体系 (C) 非平衡体系 (D) 耗散结构 (E) 单个粒子的行 为 答案:A 14.体系的微观性质和宏观性质是通过( )联系起来的。 (A) 热 力 学 (B) 化 学 动 力 学 (C) 统 计 力 学 (D) 经 典 力 学 (E) 量 子 力 学 答案:C 15.在台称上有 7 个砝码,质量分别为 1g、2g、5g、10g、50g、100g,则能够称量的质量 共有:
U Ni i
i
答案:B
26. 对于单原子理想气体在室温下的一般物理化学过程, 若欲通过配分函数来求过程中热力 学函数的变化 (A) 必须同时获得 qt、qr、qV、qe、qn 各配分函数的值才行 (B) 只须获得 qt 这一配分函 数的值就行; (C) 必须获得 qt、qr、qV 诸配分函数的值才行 (D) 必须获得 qt、qe、qn 诸配 分函数的值才行。 答案:B 27. 通过对谐振子配分函数的讨论, 可以得出 1mol 晶体的热容 CV,m=3R, 这一关系与下列哪 一著名定律的结论相同? (A) 爱因斯坦(Einstein)定律 (B) 杜隆-柏蒂(Dulong-Petit)定律; (C) 德 拜 (Debye) 立 方 定 律 ; (D) 玻 兹 曼 分 布 定 律. 答案:B 28. 单维谐振子的配分函数 qV=[exp(-h /2kT)]/[(1-exp(-h /kT)]在一定条件下可演化 为 kT/h , 该条件是 (A) h kT, m 1 (B) kT h , m 1 (C) 0 = 0, kT >> h (D) 0 = 0, kT h (E) 0 = 0, m 1. 答案:C 29.根据热力学第三定律, 对于完美晶体, 在 S0=kln0 中, 应当是 (A) 0 = 0 ; (B) 0 0 ; (C) 0 = 1 ; (D) 0 1 ; (E) 0 1
统计物理10-第八章
l
e
l
配分函数的
含义和求法
热力学量的 统计表达式
单原子分子 固体的
理想气体
热容量
分 布
al
l
e kT 1
光子气体μ=0
推导普朗克 公式和内能
分 布
al
l
e kT 1
自由电子气体
0K时费米系 统的性质
一、基本框架
热力学小结
热运动的 宏观理论
热
平衡态理论
力
研究方法:由观
学
察和实验归纳出 的热力学的基本
p N ln Z1
V
开系的热力 学基本方程
dU TdS Ydy dN
dS 1 (dU dN Ydy)
T
S k(U N ln )
1
kT
kT
S k ln
粒子化学势
玻尔兹曼 关系式
S k ln
玻尔兹曼 关系式
对三种系统普遍适用! 对非平衡态同样适用!
熵的统计意义 熵是系统微观粒子作无规则运动混乱程度的量度。
第八章 玻色统计和费米统计
§8.1 热力学量的统计表达式 §8.2 光子气体
§8.3 金属中的自由电子气体
§8.1 热力学量的统计表达式
一、玻色和费米系统的巨配分函数
A 0
al
l
e l
A
A A
1 1
M-B分布 B-E分布 F-D分布
l
Ξ
1 Ae l A
l
巨配分函数
ln l ln(1 Ae l )
非平衡态理论
定律 。
热力学小结
二、基本知识点
推导maxwel关
系
化学势的概念 开系的热力学基本
统计热力学基础
例2. 定域子系统中只有3个一维谐振子,它们分别在 A,B,C三个定点上振动,总能量为 9 hv,分析系统 2 可能有的能级分布及状态分布。 能级 能级分布 Ⅰ Ⅱ Ⅲ n0 n1 n2 n3
状态分布 0
3 0 0 WⅠ= 6 WⅡ = 3 WⅢ = 1 Ω = WⅠ+WⅡ+WⅢ=10
0=
1=
例如,某能级分布的微态数为WD,总微态数为Ω, 则该能级分布的数学概率 P 为:
WD 1 PD = Ω × WD = Ω
系统状态确定时,Ω为定值,微态数最大的分布 WD 最大,热力学概率也最大,称为最概然分布。
4、最概然分布与平衡分布 最概然分布虽然代表了系统微态数最多的一种 能级分布方式,但是它的数学概率是随着粒子数的 增多而减小的。 以粒子的空间分布为例来进行分析 例如,某一气体系统,粒子数为N,当系统达平 衡时,粒子在整个空间上的分布应是均匀的。 如果把整个空间分为大 小相等的两部分,则两部 分中所包含的粒子数应相 等,均为 N 。
2、等概率定理
对于U, V 和 N 确定的某一宏观系统,任何一 个可能出现的微观状态,都有相同的数学概率。 这个假设称为等概率定理。 例如,某宏观系统的总微态数为Ω ,则每一 种微观状态出现的数学概率 P 都相等,即:
1 P=Ω
3、最概然分布(最可几分布) 对于U, V 和 N 确定的宏观系统,微观上可能会 有多种能级分布方式,不同的能级分布所包含的状 态分布数不同,根据等概率定理,各微态出现的概 率相等,则各能级分布出现的概率不同。
§9.1
粒子各运动形式的能级及能级的简并度
根据前面的讨论及上述计算结果可以看出,各 种运动的能级间隔遵循如下关系:
Δn>Δe>Δv>Δr>Δt
第八章 热力学作业(答案)
第八章 热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆AB E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。
[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。
第八章 波色统计和费米统计
必有可观数目粒子出现在零能
级。 ——玻色—爱因斯坦凝聚。
热统
22
Tc
2
(2.612)2/ 3
2 mk
n2/ 3
因此,为了容易实现玻色-爱因斯坦 凝聚,需要提高临界温度。 为此,要提高气体密度,减小气体粒 子质量。
二、热力学量 T<T c时
n
2
h3
(2m)3/ 2
0
1/ 2d
e kT 1
热统
25
§8.4 光子气体
一、光子气体特性
光子——辐射场能量的量子化,自旋 1-玻色子。 平衡辐射场中,光子数不守恒。
空窖壁不断吸收和发射光子,保持能量守恒,但光子能量 有高有低,发射光子平均能量高发射光子数目少,被吸收的 光子平均能量低,被吸收的光子数目就多,因此不要求光子 数守恒。
光子气体服从玻色分布
l
l
l
S k(ln U N )
? k ln F.D k( l lnl al lnal (l al ) ln(l al ))
l
l
l
热统
11
al
l
e l
1
e l l al
al
l
ln l al
al
1 e l l l al
ln l ln(1 e l )
l
l
ln
0
N
g(
2m kT
h2
)3
/
2Ve
(1
1 23/ 2
e )
热统
14
内能
U D( )a( ) d 0
3 2
g
(
2mk
h2
T
)3
/
第八章--统计热力学
第八章统计热力学选择题1. 统计热力学研究的主要对象是(A) 微观粒子的各种变化规律(B) 宏观系统的各种性质(C) 宏观系统的平衡性质(D) 系统的宏观性质与微观结构的关系答案:D2. 为了方便研究,常将统计热力学系统分为独立子系和相倚子系。
下面诸系统中属独立子系的是(A) 纯液体 (B) 理想液态溶液(C) 理想气体 (D) 真实气体答案:C。
粒子间无相互作用的系统称为独立子系。
3. 对于一个子数、体积和能量确定的系统,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是(A) 玻耳兹曼分布定律 (B) 分子运动论(C) 等几率假定 (D) 统计学原理答案:C4. 经典粒子的零点能标度选择不同时,必定影响(A)配分函数的值 (B) 粒子的分布规律(C)系统的微观状态数 (D) 各个能级上粒子的分布数答案:A5. 对于定域子系和离域子系,它们的热力学函数的统计表达式形式相同的是(A) 熵、吉布斯函数、亥姆霍兹函数(B) 焓、吉布斯函数、亥姆霍兹函数(C) 内能、焓、热容(D) 内能、亥姆霍兹函数、热容答案:C6. 关于粒子配分函数的单位,正确的说法是(A) 所有配分函数都无单位(B) 所有配分函数的单位都是J·mol-1(C) 所有配分函数的单位都是J·K(D) 定域子和离域子的配分函数的单位不同答案:A8. 对于玻耳兹曼分布,下面的表述中不正确的是(A) 玻耳兹曼分布就是平衡分布(B) 最可几分布一定是玻耳兹曼分布(C) 玻耳兹曼分布就是微观状态数最大的分布(D) 服从玻耳兹曼分布的系统不一定是理想气体答案:B9. 关于振动能谱εV = (v+ 1/2)hν的下列说法中不正确的是(A) 该式只适用于单维谐振子(B) 任意相邻两能级的差值都是一恒值(C) 振动量子数只能是正整数(包括零)(D) 振动能与温度无关答案:D10. 在N个NO分子组成的晶体中,•每个分子都有两种可能的排列方式,即NO和ON,也可将晶体视为NO和ON的混合物。
热力学统计物理第八章
d
ln y
dy
d
ln
ln
d
d
ln
d
ln
d
ln
d(ln ln ln )
是 dU Ydy dN 的积分因子。
1
对于开系: dU Ydy dN , 存在积分因子 T
1 (dU Ydy dN ) dS
T
比较可知: 1
kT
kT
因此:dS kd(ln ln ln )
d ,
h3
e 1 x
0
U
g
2V
(2mkT )3/2 kT
x3/2
d ,
h3
e 1 0 x
1
1
e (1 e ) x
x
e 1 e (1 e ) x
x
x
e x是小量。
利用: 1 1 q q2
1 q
( q 是小量)
N
g
2V
(2mkT )3/2 e [
x e dx e 1/2 x
x1/2e2 x dx],
§8.3 波色-爱因斯坦凝聚 Bose-Einstein condensation (BEC)
20世纪头20年,物理学界正在萌发量子力学的新兴学科。 在黑体辐射和光电效应的研究中诞生了量子的概念,光的量子被称为光子。 德国物理学家普朗克找到了一个经验公式,很好地符合了黑体辐射观测得到的曲线, 但是他当时不能解释这一经验公式的物理含义。时光推到1924年,当时年仅30岁的玻色, 接受了黑体辐射是光子理想气体的观点,他研究了“光子在各能级上的分布”问题, 采用计数光子系统所有可能的各种微观状态统计方法, 以不同于普朗克的方式推导出普朗克黑体辐射公式, 证明了普朗克公式可以从爱因斯坦气体模型导出。 兴奋之余,他写了一篇题为《普朗克准则和光量子假设》 的文章投到英国的《哲学杂志》,但被拒绝了。不得已, 他把那篇只有六页的论文寄给了爱因斯坦,期望爱因斯坦能理解他的发现。 爱因斯坦立即意识到玻色工作的重要性,他亲自将文章翻译成了德文,帮助在 《德国物理学报》发表了。之后,爱因斯坦把波色统计方法推广到静止质量不为零、 粒子数不变的系统上,建立了量子统计学中波色—爱因斯坦统计。爱因斯坦将玻色的 理论用于原子气体中,于1924和1925年发表了两篇文章,他推测到,在正常温度下, 原子可以处于任何一个能级,但在非常低的温度下,大部分原子会突然跌落到最低的 能级上,原来不同状态的原子突然“凝聚”到同一状态。 后来物理界将这种现象称为玻色-爱因斯坦凝聚
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平动量子数 nx、ny、nz的值只能取
m
正整数(1,2,3, ),一组(nx、 ny、nz)就规定了三维平动子的一
a
c
个量子状态
Page 17
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
随着人们对物质结构层次认识的深入,知识了原子内部 还有其他的运动形式,例如“夸克”和“层子”的运动 形式等,但是对于系统在宏观过程中发生的一般物理化 学变化,涉及不到这些运动形式,因此,这里,我们主 要考虑上述5种运动形式
Page 15
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
X,每一种分布方式称为一 个能级分布(简称分布)
(n0 ,
n1,
n2 ,, ni ,
) X
Page 27
2019年11月7日星期四 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
系统状态分布
实现一个能级分布可以有不同的方式,每一种方式 都对应着系统的一个微观状态,系统的微观状态是 指系统中每一个微观粒子都确定了的量子状态
3=2
n3=0 个微观状态
2=1 A B C n2=3
1=0
n1=0
Page 29
2019年11月7日星期四 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
4=3
C
B
A
3=2
2=1
1=0 A B
A
C
BC
n1=2,n2=0,n3=0,n4=1
分布2具有3个微观状态
统计热力学从微观粒子的结构信息和运动规律出发, 利用统计的方法,得到由大量微观粒子构成的宏观物 质体系的宏观规律性
Page 4
2019年11月7日星期四 扬州大学化学化工学院
WH Introduction
统计热力学研究的对象
统计热力学研究时,虽然是从单个物质微粒的性质 (例如分子的振动频率、分子的转动惯量、分子能谱 等等)出发,但是,统计热力学研究的对象却不是单 个的分子,或者原子,其研究的对象和热力学的研究 对象一样,也是由大量的分子、原子、或者离子等基 本粒子构成的宏观物质体系
(2 , 2 , 2)
能级的能量值 ε
3h2
2
8mV 3
3h2
2
4mV 3
9h2
2
8mV 3
3h2
2
2mV 3
简并度 g
1 3
3 1
Page 20
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
刚性转子的能级
粒子的转动可以用刚性转子的转动进行描述,一个 双原子分子,近似认为两原子之间的距离不变时, 可以看作是刚性转子
r
J
JLeabharlann 1h28 2
I
(J 0, 1, 2, )
J是转动量子数
I是刚性的转子的转动惯量
Page 21
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
刚性转子的能级
粒子的转动可以用刚性转子的转动进行描述,一个 双原子分子,近似认为两原子之间的距离不变时, 可以看作是刚性转子
粒子的能量
粒子的每种运动形式都具有相应的能量,粒子所具 有的能量就等于各运动形式的能量之和
t r v e n
微观运动形式能量的量子化 量子力学的研究指出:粒子微观形式的能量都是量 子化的,能量值从低到高是不连续的,就象阶梯或 台阶一样。每一个能量值称之为一个能级,量子力 学给出了每一种运动形式的能级表达式
Page 11
2019年11月7日星期四 扬州大学化学化工学院
WH1) 分子整体在空间中的平动(t)
发生平动时,分子的形状不变化,分子各部
Pag分e 1的2 之间的相201对9年坐11标月7不日星变期四
扬州大学化学化工学院
WH2) 分子绕其质心的转动(r)
Page 13
2019年11月7日星期四 扬州大学化学化工学院
Page 16
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
在统计力学中,将在空间作三维平动的粒子称为
“三维平动子”。平动子具有的“平动能”(t)是量
b 子t化的8hm2
nx2 a2
ny2 b2
nz2 c2
独立子体系 体系中粒子之间的相互作用可以忽 略不计,粒子之间没有作用势能,体系的内能是 体系中每个粒子所具有的能量之和
U nii
i
Page 7
2019年11月7日星期四 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
ny2 b2
nz2 c2
根据量子力学,平动量子nx、ny、nz的值只能取正整数(1, 2,3, ),所以三维平动子的能量()肯定是一些不 连续的值,就构成了一个一个的能级
在能级公式,h是一个常数,称为Planck常数
h 6.6261034 J s
Page 18
2019年11月7日星期四 扬州大学化学化工学院
U
i
ni
i
N ni
i
(n0 , n1, n2 ,, ni , )I I) (n0 , n1, n2 ,, ni , )II
(n0 , n1, n2 ,, ni , )III
粒子在能级上可以有不同
的分布方式I、II、III、 、
Page 19
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
能级 基态 第一激发态
第二激发态 第三激发态
能级对应的量子状态
nx、ny、nz
(1 , 1 , 1)
(2 , 1 , 1) (1 , 2 , 1) (1 , 1 , 2) (2 , 2 , 1) (2 , 1 , 2) (1 , 2 , 2)
Page 10
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的不同运动形式
微观粒子的运动不同于宏观物质的运动,可以用量 子力学来描述微观粒子的运动状态。微观粒子的有 多种不同的运动形式。
例如,分子具有5种不同的运动形式,分别是: 分子整体在空间中的平动(t) 分子绕其质心的转动(r) 分子内原子在平衡位置附近的振动(v) 原子内部电子的运动(e) 原子核运动(n)
物质微粒的微观结构
2019年11月7日星期四 扬州大学化学化工学院
WH Introduction
统计热力学研究的目的
寻求物质的微观结构、微观运动规律与由大量微粒构 成的宏观物质体系之间的联系,沟通物质体系的宏观 与微观,使我们对物质宏观体系的性质及变化规律, 不仅“知其然”,而且“知其所以然”
统计热力学研究的方法
想,把体系中每个粒子分别编号而不会 混淆 例如晶体体系
离域子体系 体系中每个粒子是无法彼此分辨 例如粒子作无序运动的气体体系
Page 6
2019年11月7日星期四 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
r
J
J
1
h2
8 2
I
(J 0, 1, 2, )
转动能级的简并度为: gr 2J 1
Page 22
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
简谐振子的振动能级
粒子的振动可以用简谐振子的振动进行描述,一个 双原子分子,沿着化学键方向的振动可以看作是一 维简谐振子
F
速度和动能可以连续变化
但是,微观的物质微粒的运动则需要用量子力学规 律来描述!!!
Page 9
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的运动状态和能量都量子化的
量子化学的研究表明: 微观粒子的运动状态只能特 定的量子状态,而不能是任 意的运动状态 微观粒子所具有的能量也是 量子化的,只能是某一个能 级的能量值,而不能是任意 值
Page 24
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
总结: 对于一个微观粒子,各种运动形式的能量都是量子 化的,所以粒子具有的总能量也必定是量子化的。
如果一个粒子具有能量值
, i 我们就说这个粒子 分布在能级 i上
Page 25
2019年11月7日星期四 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
ny2 b2
nz2 c2
微观粒子的每一个量子状态都有一个特定的能量值, 但是,不同的量子状态的能量值可能是相等的,也就 是说,一个能级可以对应的不同的量子状态,某一个 能级所对应的量子状态数,称为这个能级的简并度
在统计热力学中,把构成宏观物质体系的各种不同