因式分解的常用方法(方法最全最详细)
因式分解的常用方法
因式分解的常用方法
因式分解是将一个多项式表示为两个或多个因子的乘积的过程。
以下是常见的因式分解方法:
1. 公因式法:找出多项式中的公因式,并将其提取出来。
例如,对于多项式6x + 9y,可以提取公因式3,得到3(2x + 3y)。
2. 二次方程法:对于二次多项式,可以使用二次方程法进行因式分解。
例如,对于多项式x^2 - 4x + 4,可以通过找到它的
平方根来进行因式分解,即(x - 2)^2。
3. 差平方法:对于一些特殊形式的多项式,可以使用差平方法进行因式分解。
例如,对于多项式x^2 - y^2,可以通过差平
公式(x-y)(x+y)进行因式分解。
4. 分组法:对于四项或更多项的多项式,可以使用分组法进行因式分解。
该方法将多项式分为两组,将每一组的相同项提取出来,并进行因式分解。
例如,对于多项式2xy + 3x + 2y + 3,可以将其分为两组并进行因式分解为(2xy + 3x) + (2y + 3) =
x(2y + 3) + (2y + 3) = (x + 1)(2y + 3)。
5. 换元法:对于一些特殊形式的多项式,可以使用换元法进行因式分解。
该方法通过引入新的变量,将多项式转化为较简单的形式,并进行因式分解。
例如,对于多项式a^3 + b^3 + c^3 - 3abc,可以进行换元a + b + c = p,然后进行较简单的因式分解。
注意,这里的方法只是介绍了因式分解的常见方法,并不涵盖所有情况。
在实际问题中,有时需要根据具体情况使用不同的方法进行因式分解。
因式分解的十二种方法
因式分解的十二种方法因式分解是一种将一个多项式分解成两个或更多个乘积的过程。
在数学中,因式分解是非常重要的概念,它能够帮助我们简化复杂的多项式表达式,从而更容易理解和计算。
在本文中,我将介绍并解释十二种常见的因式分解方法,每种方法都将详细讨论。
1.因式分解公式:因式分解公式是因式分解的基础,它是一些常见多项式的因式分解形式。
例如,平方差公式:$a^2 - b^2 = (a+b)(a-b)$,立方差公式:$a^3 - b^3 = (a-b)(a^2+ab+b^2)$,以及完全平方差公式:$a^2 - 2ab + b^2 = (a-b)^2$。
2.分组因式分解法:分组因式分解法适用于四项多项式,其中第一项和第四项以及第二项和第三项具有共同的因子。
我们将共同因子提取出来,然后重新组合表达式以实现因式分解。
例如,对于多项式$x^3-3x^2+4x-12$,我们可以将它分解为$(x^3-3x^2)+(4x-12)$,然后分别因式分解这两个分组。
3.提公因式法:提公因式法是一种常见的因式分解方法,它适用于多项式中存在公共因子的情况。
我们将公共因子提取出来,并将之前的每一项除以这个因子。
例如,对于多项式$2x^2+4x$,我们可以提取公共因子2,然后因式分解为$2(x^2+2x)$。
4.求和差式的因式分解法:求和差式的因式分解法适用于多项式中存在两个项的和或差的形式的情况。
我们根据求和差式的公式将多项式分解为两个因式的乘积。
例如,对于多项式$x^2+5x+6$,我们可以因式分解为$(x+2)(x+3)$,其中$(x+2)$和$(x+3)$是求和差式的因式。
5.平方差式的因式分解法:平方差式的因式分解法适用于多项式中存在两个项的平方差的形式的情况。
我们根据平方差式的公式将多项式分解为两个因式的乘积。
例如,对于多项式$x^2-4$,我们可以因式分解为$(x+2)(x-2)$,其中$(x+2)$和$(x-2)$是平方差式的因式。
因式分解的常用方法
因式分解的常用方法因式分解是数学中常用的一种方法,它是将一个复杂的表达式或多项式分解成更简单的因子的过程。
因式分解在代数、方程、不等式等数学问题的解题中经常出现。
下面将介绍因式分解的常用方法。
一、公因式提取法公因式提取法是指在多项式中提取出公共的因式,然后将剩余的部分进行因式分解。
例如:1.3x+6y可以提取出公因子3,得到3(x+2y)。
2.4x^2+8x可以提取出公因子4x,得到4x(x+2)。
二、配方法配方法也被称为乘法公式法,它适用于二次型的因式分解。
当二次型为(ax+b)^2形式时,常采用配方法进行分解。
配方法的步骤如下:1. 将二次型展开为(ax+b)^2的形式,即去掉开头的系数和常数项;2. 将二次型写成(a^2x^2+2abx+b^2)的形式;3.因式分解成(a*x+b)^2的形式,即加法的平方。
例如:1.x^2+6x+9可以写成(x+3)^2的形式。
2.4x^2+12x+9可以写成(2x+3)^2的形式。
三、辗转相除法辗转相除法也是因式分解中常用的方法,它适用于多项式的因式分解和整除。
辗转相除法的步骤如下:1.对多项式进行约去常因子;2.将多项式按照次数从高到低进行排列;3.用低次多项式除以高次多项式,得到商和余数;4.如果余数为0,则表示能整除,否则继续用余数进行除法;5.将多项式的因式写成约去的常因子与商的乘积的形式;例如:1.x^2+2x+1可以通过辗转相除法整除(x+1),得到商为x+12.3x^3-2x^2+3x+4可以通过辗转相除法整除(3x-2),得到商为x^2+x+2四、根式分解法根式分解法适用于含有平方根或立方根的表达式因式分解。
根式分解法的步骤如下:1.提取出平方根或立方根;2.将根式进行化简;3.根据提取出的根式与原表达式进行乘法、加法运算;4.将原表达式分解成根式与其他因子的乘积的形式;例如:1.x^2+8x+16可以分解为(x+4)^22. x^3+y^3 可以分解为(x+y)(x^2-xy+y^2)。
分解因式的常用方法
分解因式的常用方法
1. 公因式法:将多项式的每一项分解成公共的因式和剩余的部分。
将公共因式提取出来,把剩余的部分合并成一个新的多项式。
2. 提公因式法:将多项式看作两个因式的乘积,其中一个因式是公共的,另一个因式是剩余项的乘积。
将公共因式提取出来,剩余项用一组新的括号括起来。
3. 分组前后项有关系:将多项式按照一定的顺序排列,然后将相邻的项分别用一组新的括号括起来分解因式。
4. 根据完全平方公式或差平方公式进行因式分解。
5. 利用因式分解公式:当多项式的形式符合因式分解公式时,可以直接使用公式进行因式分解。
6. 辗转相除法:将多项式进行化简、约分,得到最后的因式分解式。
因式分解法的四种方法
因式分解法的四种方法因式分解是指将一个多项式或一个整式拆分成若干个较简单的乘积,且不能再分解的过程。
它是求解多项式的根、计算多项式的值、化简复杂的代数式等问题的基础方法之一、下面将介绍因式分解的四种常见方法。
一、提公因式法提公因式法是因式分解的最基本方法,它的基本思想是找出多项式中的一个最大公因式,然后将每一项都除以这个公因式进行整理。
具体步骤如下:1.提取多项式中的一个最大公因式,将多项式中的每一项都除以这个公因式;2.将多项式中的每一项同除以公因子后的结果组成新的多项式;3.用这个公因式乘以上一步得到的新多项式,验证是否等于原多项式。
二、配方法配方法适用于多项式中含有双线性因式(即形如(a+b)的项)的情况。
它的基本思路是将多项式进行配对后,再进行因式分解。
具体步骤如下:1.将多项式中的二次项一项一项进行配对,寻找出适合相加之后可以得到完全平方的两个项;2.将进行配对后的结果进行因式分解;3.合并配对后的项,得到最终结果。
三、试除法试除法适用于多项式可以分解成多个一次因式相乘的情况。
它的基本思路是采用试除法逐个验证可能的因式,并不断地进行试除。
具体步骤如下:1.根据首项和末项的系数,得出可能的因式;2.将可能的因式作为试除因子,进行试除;3.如果试除后得到余式为0,则该因式是原多项式的一个因式;4.将得到的因式与余式进一步分解,直到不能再分解为止。
四、因式分解公式因式分解公式是一些特定形式的多项式的因式分解方法。
根据多项式的形式,可以通过查找相应的因式分解公式进行分解。
常见的因式分解公式包括:1.二次差分公式:(a^2-b^2)=(a+b)(a-b);2.平方差分公式:a^2-b^2=(a+b)(a-b);3.三项和差立方公式:a^3+b^3=(a+b)(a^2-ab+b^2);4.三角恒等式公式:sin^2x+cos^2x=1以上就是因式分解的四种常见方法。
这些方法在因式分解问题中有着广泛的应用,可以帮助我们解决各种与因式分解有关的数学问题。
因式分解十二种方法公式
因式分解十二种方法公式因式分解是数学中的一个重要概念,它可以将一个多项式分解为若干个因子的乘积。
在因式分解中,有许多不同的方法和公式可以使用。
下面将介绍十二种因式分解的方法和公式。
一、公式法公式法是一种较为常用和简便的因式分解方法。
它利用一些已知的公式,将多项式分解为更简单的形式。
例如,我们可以利用平方差公式将一个二次多项式分解为两个一次多项式的乘积。
又如,利用差平方公式可以将一个二次多项式分解为两个一次多项式的乘积。
二、提公因式法提公因式法是一种常见的因式分解方法。
它利用多项式中的公因式,将多项式分解为公因式和余项的乘积。
通过提取公因式,可以简化多项式的形式,便于后续的计算和分解。
三、配方法配方法是一种常用的因式分解方法,它适用于多项式中存在二次项的情况。
配方法通过将多项式中的一部分进行配方,从而将多项式分解为两个简化的多项式的乘积。
这种方法常用于分解二次多项式,可以将其分解为两个一次多项式的乘积。
四、分组分解法分组分解法是一种适用于四项多项式的因式分解方法。
它通过将多项式中的项进行分组,从而将多项式分解为多个简化的多项式的乘积。
这种方法常用于分解四项多项式,可以将其分解为两个二次多项式的乘积。
五、和差化积法和差化积法是一种常用的因式分解方法,它适用于多项式中存在和差项的情况。
和差化积法通过将多项式中的和差项进行化简,从而将多项式分解为简化的多项式的乘积。
这种方法常用于分解多项式中的高次项。
六、平方差公式平方差公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
平方差公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
七、差平方公式差平方公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
差平方公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
八、立方差公式立方差公式是一种常用的因式分解公式,它用于将一个立方多项式分解为两个一次多项式的乘积。
因式分解常用的六种方法详解
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
因式分解常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2 -----------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ---------a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 --------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
完整版因式分解的常用方法方法最全最详细
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式, 主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有 无公因式可提,其次看能否直接利用乘法公式; 如前两个步骤都不能实施, 可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法 继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数 法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
、提公因式法.:ma+mb+mc=m (a+b+c ) 、运用公式法•2 2 2在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因 式分解中常用的公式,例如:2 2(1) (a+b)(a-b) = a -b -2 2 2(2) (a ±b) = a ±2ab+b ------------- a 22 33(3) (a+b)(a -ab+b ) =a +b -------------- 2233(4) (a-b)(a +ab+b ) = a -b -------------- 下面再补充两个常用的公式:22 2(5) a +b +c +2ab+2bc+2ca=(a+b+c) 33 322 (6) a +b3 3+c -3abc=(a+b+c)(a 例.已知a ,2 2-b =(a+b)(a-b);2 2 2±2ab+b =(a ±b);3322+b =(a+b)(a -ab+b );3 3 2-b =(a-b)(a +ab+b 2 )•2;— 2+b +c -ab-bc-ca)b, c 是ABC 的三边,且a 2 b 2 c 2 ab bc ca ,ABC 的形状是()A.直角三角形B 等腰三角形C 等边三角形D 等腰直角三角形2 2 2解:a b c ab bc ca2 2 22a 2b 2c 2ab 2bc 2ca(a b) (b c) (c a) 0三、分组分解法•(一)分组后能直接提公因式例1、分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的十二种方法及多项式因式分解的一般步骤
因式分解的十二种方法及多项式因式分解的一般步骤因式分解是代数学中的重要概念,它在数学中有广泛的应用。
根据不同的多项式,我们可以采用不同的因式分解方法,下面将介绍因式分解的十二种常用方法,并概述多项式因式分解的一般步骤。
1.公因式提取法(提取公因式):如果一个多项式中的每一项都可以被一个公因式整除,那么可以将这个公因式提取出来。
2.提取平方差公式法:利用平方差公式将多项式转化成两个平方差的形式,然后再进行因式分解。
3.提取完全平方公式法:利用完全平方公式将多项式转化成两个完全平方的形式,然后再进行因式分解。
4.因式分解公式法:在代数中,有很多已知的因式分解公式,如两个数的和的平方,两个数之差的平方等等。
5.分组法:将多项式根据其中一种规律进行分组,然后再进行因式分解。
6.十字相乘法:将多项式用十字形进行展示,然后利用观察十字上的乘积与和的关系进行因式分解。
7.平方差型多项式的配方:将平方差型多项式转化成配方的形式,然后再进行因式分解。
8.其他初等代数的性质:如差平方、和立方等等,利用这些性质进行因式分解。
9.部分分式法:对于分式形式的多项式,可以通过部分分式法将其分解成简单的分式,然后再进行因式分解。
10.变换法:将多项式进行恰当的变换,使之能够被其他的因式分解方法处理,然后再进行因式分解。
11.其他特殊的因式分解方法:如柯西公式、勾股定理等等。
12.已知因数的整除法:对于已知因数的情况,可以通过整除法进行因式分解。
综合上述的因式分解方法,我们可以得到一般的多项式因式分解的步骤:1.首先,检查多项式是否有公因式。
如果有,则提取公因式。
2.如果多项式是一个平方差型,则使用提取平方差公式法进行因式分解。
3.如果多项式是一个完全平方型,则使用提取完全平方公式法进行因式分解。
4.如果多项式是其他已知的因式分解公式形式,则使用相应的公式进行因式分解。
5.如果以上方法都不适用,则可以尝试使用分组法、十字相乘法、平方差型多项式的配方等方法进行因式分解。
因式分解的16种方法
因式分解的16种方法
因式分解是将一个多项式或整数表达式分解为不可再分的乘积的过程。
在因式分解的方法中,常见的有以下16种方法:
1.公因式法:根据多项式的各项之间的最大公因式进行因式分解。
2.差平方公式:利用两个完全平方数的差可以分解成两个因数的平方差。
3.完全平方公式:利用两个因数的平方和可以分解成两个完全平方数
的和。
4.配方法:将多项式按照公式进行配方分解,然后进行因式分解。
5.一元两次方程法:对于一元二次方程,可以通过二次方程的解,将
方程进行因式分解。
6.和差化积:将多项式中的和差进行化积,然后进行因式分解。
7.分组法:将多项式中的项进行分组,然后进行因式分解。
8.提公因式法:将多项式的各项提取公因式,然后进行因式分解。
9.代入法:将因式分解的结果代入方程,通过求方程的解,验证因式
分解的正确性。
10.根式法:将多项式转化为根式表达式,然后进行因式分解。
11.差因式公式:利用一个完全平方数与一个差的因式的乘积可以表
示为两个因数的差的平方。
12.和因式公式:利用一个完全平方数与一个和的因式的乘积可以表
示为两个因数的和的平方。
13.二次齐次因式分解:对于二次齐次方程,可以通过齐次方程的解,将方程进行因式分解。
14.辗转相除法:对于整数表达式,可以利用辗转相除法,将整数进
行因式分解。
15.因数分解法:将整数进行因数分解,找出所有的因数,然后进行
因式分解。
16.文氏因式分解法:将多项式的各项按照文氏图进行排列,然后进
行因式分解。
(完整版)因式分解16种方法
因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“—”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶. 例如:-am+bm+cm=—m (a-b —c);a(x-y)+b(y-x )=a(x-y )—b (x-y)=(x —y )(a-b)。
因式分解的常用方法(方法最全最详细)
因式分解的常用方法(方法最全最详细)因式分解的常用方法方法介绍因式分解是将一个多项式化成几个整式的积的形式。
常用的因式分解方法有提公因式法、公式法、十字相乘法、分组分解法和换元法等。
一般的因式分解步骤是先提公因式,再利用乘法公式,若不能实施则采用分组分解法或其他方法。
将一个多项式进行因式分解应分解到不能再分解为止。
提公因式法提公因式法是将多项式中的公因式提取出来,例如ma+mb+mc=m(a+b+c)。
公式法公式法是将整式的乘、除中的乘法公式反向使用,例如(a+b)(a-b) = a^2-b^2,(a±b)^2= a^2±2ab+b^2等。
分组分解法分组分解法是将多项式分为若干组,使得每组都含有公因式,然后再进行因式分解。
换元法换元法是将多项式中的一部分用一个新的变量代替,然后再进行因式分解。
注意:因式分解应分解到不能再分解为止。
例题已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形解:a+b+c=ab+bc+ca,移项得2a+2b+2c=2ab+2bc+2ca,化简得(a+b+c)^2=4(ab+bc+ca),即(a-b)^2+(b-c)^2+(c-a)^2=0.因为三角形ABC的三边不全为零,所以(a-b)^2≥0,(b-c)^2≥0,(c-a)^2≥0.所以(a-b)^2=(b-c)^2=(c-a)^2=0,即a=b=c,所以三角形ABC是等边三角形。
以上是因式分解的常用方法,希望对大家有所帮助。
凡是能十字相乘的二次三项式ax^2+bx+c,都要求Δ=b^2-4ac>0且是一个完全平方数。
因此,Δ=9-8a为完全平方数,故a=1.对于分解因式x+5x+6,我们可以将6分解成两个数相乘,且这两个数的和要等于 5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),我们可以发现只有2×3的分解适合,即2+3=5.因此,x+5x+6=(x+2)(x+3)。
因式分解的13种方法
因式分解的13种方法因式分解可以说是代数学中的基础知识,它是解方程、简化分数、展开多项式、求出多项式的根等等问题的基础。
在因式分解的过程中,我们将一个复杂的代数式表示成两个或者多个简单的代数式的乘积形式。
下面我们来介绍13种常见的因式分解方法。
一、提取公因式法对于一个代数式,如果其中的每一项都含有一些因子a,那么我们就可以将这个公因子a提取出来,然后将剩下的部分进行因式分解。
例如:2x^2 + 4xy可以进行提取公因式为2x(x + 2y)。
二、配方法对于一些二次三项式或者四项式,我们可以采用配方法将其因式分解。
例如:x^2+5x+6可以进行配方法为(x+2)(x+3)。
三、平方差公式对于一些二次多项式的和或差,我们可以利用平方差公式进行因式分解。
例如:x^2-4可以进行因式分解为(x+2)(x-2)。
四、平方和公式对于一些二次多项式的和,我们可以利用平方和公式进行因式分解。
例如:x^2+4可以进行因式分解为(x+2i)(x-2i)。
五、差平方公式对于一些二次多项式的差,我们可以利用差平方公式进行因式分解。
例如:x^2-4可以进行因式分解为(x+2)(x-2)。
六、分组分解法对于一些多项式,我们可以将其表达式分为两组,然后分别提取公因式进行因式分解。
例如:5xy + 10x + 3y + 6可以进行分组分解为(5xy + 10x) + (3y + 6),再进行因式分解为5x(y + 2) + 3(y + 2),再提取公因子得到(5x + 3)(y + 2)。
七、立方和差公式对于一些立方多项式的和或差,我们可以利用立方和差公式进行因式分解。
例如:x^3+8可以进行因式分解为(x+2)(x^2-2x+4)。
八、平方根公式对于一些二次多项式或四次多项式,我们可以利用平方根公式进行因式分解。
例如:x^4-y^4可以进行因式分解为(x^2+y^2)(x^2-y^2),再进一步因式分解为(x^2+y^2)(x+y)(x-y)。
(完整版)因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(完整版)因式分解常用方法(目前最牛最全教案)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被宽泛地应用于初等数学之中,是我们解决很多半学识题的有力工具.因式分解方法灵巧,技巧性强,学习这些方法与技巧,不单是掌握因式分解内容所必要的,并且对于培育学生的解题技术,发展学生的思想能力,都有着十分独到的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.: ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,比如:( 1) (a+b)(a- b) = a 2222-b) ;-b ---------a-b =(a+b)(a(2) (a± b) 2 = a2± 2ab+b2——— a 2±2ab+b2=(a ± b) 2;(3) (a+b)(a 22333322;-ab+b ) =a+b ------ a+b =(a+b)(a-ab+b )(4) (a-b)(a 2+ab+b2 ) = a3-b3 ------a3-b3=(a -b)(a2+ab+b2) .下边再增补两个常用的公式:2222(5)a +b +c +2ab+2bc+2ca=(a+b+c);(6)a 3+b3+c 3-3abc=(a+b+c)(a2 +b2+c2-ab-bc-ca) ;例 .已知a,b,c是ABC 的三边,且a2b2c2ab bc ca ,则ABC 的形状是()A. 直角三角形 B 等腰三角形C等边三角形 D 等腰直角三角形解: a2b2c2ab bc ca2a22b22c22ab2bc 2ca ( a b)2(b c) 2(c a)20 a b c三、分组分解法 .(一)分组后能直接提公因式例1、分解因式:am an bm bn剖析:从“整体”看,这个多项式的各项既没有公因式可提,也不可以运用公式分解,但从“局部”看,这个多项式前两项都含有 a,后两项都含有b,所以能够考虑将前两项分为一组,后两项分为一组先分解,而后再考虑两组之间的联系。
因式分解的12种方法的详细解析
因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。
在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。
以下是因式分解的12种常见方法的详细解析。
1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
这种方法常用于求解关系式和化简分式等问题。
2.公式法:利用一些常用的公式进行因式分解。
例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。
这种方法常用于解决关于二次方程、三角函数等问题。
3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。
例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。
这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。
4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。
例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。
5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。
例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。
6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。
例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。
7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。
例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。
8.根的关系法:利用多项式的根的关系进行因式分解。
例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a . 解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式 例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)=-3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x -- (3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a (5)222265x y x y x -- (6)2634422++-+-n m n mn m (7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++ (9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法。
(1)、换单项式例1 分解因式x 6 + 14x 3 y + 49y 2.分析:注意到x 6=(x 3)2,若把单项式x 3换元,设x 3 = m ,则x 6= m 2,原式变形为m 2 + 14m y + 49y 2= (m + 7y)2 = ( x 3 + 7y)2. (2)、换多项式例2 分解因式(x 2+4x+6) + (x 2+6x+6) +x 2.分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x 2 +6= m ,则x 2+4x+6= m+4x ,x 2+6x+6= m+6x ,原式变形为(m+4x)(m+6x)+x 2= m 2 +10mx+24x 2+x 2= m 2 +10mx+25x2 = (m+5x)2= ( x 2 +6+5x)2 = [(x+2)(x+3)]2= (x+2) 2 (x+3)2.以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”.当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”. 比如,设x 2+4x+6=m ,则x 2+6x+6=m+2x ,原式变形为m(m+2x)+ x 2 = m 2+2mx+x 2= (m+x)2= ( x 2+4x+6+x)2= ( x 2+5x+6)2 = [(x+2)(x+3)]2= (x+2) 2 (x+3)2. 另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算. 对于本例,设m= 12[(x 2+4x+6) + (x 2+6x+6)]= x 2+5x+6,则x 2+4x+6=m-x ,x 2+6x+6=m+x ,(m+x)(m-x)+x 2= m 2-x 2+x 2 = m 2= (x 2+5x+6)2= [(x+2)(x+3)]2 = (x+2) 2 (x+3)2.例3 分解因式(x-1)(x+2)(x-3)(x+4)+24.分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积. 无论如何分组,最高项都是x 2,常数项不相等,所以只能设法使一次项相同. 因此,把 (x-1)(x+2)(x-3)(x+4)分组为[(x-1) (x+2)][(x-3)(x+4)] = (x 2+x-2) (x 2+x-12),从而转化成例2形式加以解决.我们采用“均值换元法”,设m= 12[ (x 2+x-2)+ (x 2+x-12)]=x 2+x-7,则x 2+x-2=m+5,x 2+x-2= m-5,原式变形为(m+5)(m-5)+24=m 2-25+24=m 2-1=(m+1)(m-1)=( x 2+x-7+1)( x 2+x-7-1)= ( x 2+x-6)( x 2+x-8)= (x-2)(x+3)( x 2+x-8). (3)、换常数例1 分解因式x 2(x+1)-2003×2004x.分析:此题若按照一般思路解答,很难奏效. 注意到2003、2004两个数字之间的关系,把其中一个常数换元. 比如,设m=2003,则2004=m+1.于是,原式变形为x 2(x+1) – m(m+1)x= x[x(x+1)-m(m+1)] = x(x 2+x-m 2-m)= x[(x 2 -m 2) +(x-m)]= x[(x+m) (x-m)+(x-m)]= x(x-m)(x+m+1)= x(x-2003)(x+2003+1)= x(x-2003)(x+2004).例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。