西城高一数学试卷试题
西城区2019-2020学年度第一学期期末高一数学试题及答案(WORD版)
北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第1页(共11页)北京市西城区2019—2020学年度第一学期期末试卷高一数学 2020.1本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|2,}A x x k k ==∈Z ,{|33}B x x =-<<,那么A B =I ( ) (A ){1,1}- (B ){2,0}- (C ){2,0,2}-(D ){2,1,0,1}--(2)方程组220,2x y x y +=⎧⎨+=⎩的解集是( )(A ){(1,1),(1,1)}-- (B ){(1,1),(1,1)}-- (C ){(2,2),(2,2)}-- (D ){(2,2),(2,2)}-- (3)函数11y x =+-的定义域是( ) (A )[0,1) (B )(1,)+∞ (C )(0,1)(1,)+∞U(D )[0,1)(1,)+∞U(4)下列四个函数中,在(0,)+∞上单调递减的是( ) (A )1y x =+(B )21y x =-(C )2x y =(D )12log y x =(5)设2log 0.4a =,20.4b =,0.42c =,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b <<(C )b a c <<(D )b c a <<(6)若0a b >>,0c d <<,则一定有( ) (A )ac bd < (B )ac bd >(C )ad bc <(D )ad bc >北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第2页(共11页)(7)设,a b ∈∈R R .则“a b >”是“||||a b >”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了 2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( ) (A )2000(10.2)mg x - (B )2000(10.2)mg x - (C )2000(10.2)mg x - (D )20000.2mg x ⋅(9)如图,向量a b -等于( )(A )123e e - (B )123e e - (C )123e e -+ (D )123e e -+(10)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为 x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:① 图(2)对应的方案是:提高票价,并提高成本; ② 图(2)对应的方案是:保持票价不变,并降低成本; ③ 图(3)对应的方案是:提高票价,并保持成本不变; ④ 图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( ) (A )①③ (B )①④(C )②③(D )②④北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第3页(共11页)第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
2021-2022学年北京市西城区高一上学期期末考试数学试题
北京市西城区2021—2022学年度第一学期期末试卷高一数学 2022.1本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|1}A x x =>,2{|4}B x x =<,那么A B =(A )(2,2)-(B )(2,1)-(C )(2,)-+∞(D )(1),+∞(2)方程组220,2x y x y +=⎧⎨+=⎩的解集是 (A ){(1,1),(1,1)}-- (B ){(1,1),(1,1)}- (C ){(1,1),(1,1)}---(D )∅(3)函数12y x =+的定义域是 (A )[1,2) (B )[1,)+∞(C )(0,1)(1,)+∞ (D )[1,2)(2,)+∞(4)为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图. 若质量指标值在[25,35)内的产品为(A )0.38 (B )0.61 (C )0.122(D )0.75(5)若a b >,0c d >>,则一定有(A )ac bd >(B )ac bd <(C )a b c d> (D )以上答案都不对(6)已知向量(1,1)a =,(2,3)b =-,那么|2|a b -=(A )5(B )(C )8 (D(7)若23a =,则4log 3(A )12a(B )a(C )2a (D )4a(8)设a ,b 为平面向量,则“存在实数λ,使得=λa b ”是“向量a ,b 共线”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(9)设()f x 为R 上的奇函数,且在(0,)+∞上单调递增,(1)=0f ,则不等式(1)0f x +<的解集是 (A )(1,0)-(B )(0,1)(C )(1,2)(D )(,2)(1,0)-∞--(10)如图,AB 为半圆的直径,点C 为AB 的中点,点M 为线段AB 上的一点(含端点,A B ),若2AB =,则||AC MB +的取值范围是(A )[1,3](B )(C )(D )第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
2022-2023学年北京市西城区高一(下)期末数学试卷【答案版】
2022-2023学年北京市西城区高一(下)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知复数z 满足z =1+i ,则在复平面内z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列函数中,最小正周期为π且是偶函数的是( ) A .y =sin(x +π4) B .y =tan x C .y =cos2xD .y =sin2x3.在△ABC 中,2a =b ,C =60°,c =√3,则a =( ) A .12B .1C .√3D .2√34.某城市—年中12个月的月平均气温y (单位℃)与月份x (x =1,2,3,…,12)的关系可近似地用三角函数y =a +Asin[π6(x −3)](A >0)来表示,已知月平均气温最高值为28℃,最低值为18℃,则A =( ) A .5B .10C .15D .205.复数z =cos α+i sin α,且z 2为纯虚数,则α可能的取值为( ) A .0B .π4C .π3D .π26.已知直线m ,直线n 和平面α,则下列四个命题中正确的是( ) A .若m ∥α,n ⊂α,则m ∥n B .若m ∥α,n ∥α,则m ∥n C .若m ⊥α,n ∥α,则m ⊥nD .若m ⊥n ,n ∥α,则m ⊥α7.在平面直角坐标系中,O 为坐标原点,P (1,﹣2),Q (3,4),则cos ∠POQ =( ) A .√53B .√55C .−√53D .−√558.已知等边△ABC 的边长为4,P 为△ABC 边上的动点,且满足AP →⋅AB →≤12,则点P 轨迹的长度是( ) A .7B .9C .10D .119.已知函数f(x)=2sin(ωx +π3)(ω>0),则“f (x )在[0,π3]上既不是增函数也不是减函数”是“ω>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知点A ,点B ,点P 都在单位圆上,且|AB|=√3,则PA →⋅PB →的取值范围是( )A .[−12,32]B .[﹣1,3]C .[﹣2,3]D .[﹣1,2]二、填空题共5小题,每小题5分,共25分.11.(5分)已知复数z 在复平面内所对应的点的坐标为(3,﹣4),则|5z |为 . 12.(5分)设向量a →=(1,2),b →=(4,x),若a →⊥b →,则x = . 13.(5分)已知圆柱的底面半径为3,体积为32π3的球与该圆柱的上、下底面相切,则球的半径为 ,圆柱的体积为 .14.(5分)写出一个同时满足下列两个条件的函数f (x )= . ①∀x ∈R ,f(x +π2)=f(x); ②∀x ∈R ,f(x)≤f(π4)恒成立.15.(5分)如图,在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是线段AC 上的动点(包含端点),点E 在线段B 1D 1上,且D 1E =14B 1D 1,给出下列四个结论: ①存在点P ,使得平面PB 1D 1∥平面C 1BD ; ②存在点P ,使得△PB 1D 1是等腰直角三角形; ③若PE ≤5,则点P 轨迹的长度为2√7; ④当AP PC=13时,则平面PB 1D 1截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形的面积为18.其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程. 16.(10分)已知π2<α<π,sinα=45.(1)求tan α的值; (2)求cos2αcos(α+π4)的值.17.(15分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是棱DD 1,C 1D 1的中点. (1)证明:A 1B ⊥平面ADC 1B 1; (2)证明:B 1F ∥平面A 1BE .18.(15分)已知在△ABC 中,a cos B +b cos A =2c cos A . (1)求A 的大小;(2)若c =4,在下列三个条件中选择一个作为已知,使△ABC 存在且唯一,求△ABC 的周长. ①△ABC 的面积为5√3; ②a =√13;③AB 边上的高线CD 长为√32. 19.(15分)已知函数f(x)=sin(2x −π6)+2cos 2x −1. (1)求f(π6)的值;(2)若函数f (x )的单调递增区间;(3)若函数f (x )在区间[0,m ]上有且只有两个零点,求m 的取值范围.20.(15分)如图,在四棱锥S ﹣ABCD 中,平面SAD ⊥平面ABCD ,SA =SD =AD =2,四边形ABCD 为正方形,E 为AD 的中点,F 为SB 上一点,M 为BC 上一点,且平面EFM ∥平面SCD . (1)求证:CD ⊥SA ;(2)求证:M 为线段BC 中点,并直接写出M 到平面SCD 的距离; (3)在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?若存在,求CN CS;若不存在,说明理由.21.(15分)对于定义在R 上的函数f (x )和正实数T ,若对任意x ∈R ,有f (x +T )﹣f (x )=T ,则f (x )为T ﹣阶梯函数.(1)分别判断下列函数是否为1﹣阶梯函数(直接写出结论): ①f (x )=x 2;②f (x )=x +1.(2)若f (x )=x +sin x 为T ﹣阶梯函数,求T 的所有可能取值;(3)已知f (x )为T ﹣阶梯函数,满足:f (x )在[T 2,T]上单调递减,且对任意x ∈R ,有f (T ﹣x )﹣f (x )=T ﹣2x .若函数F (x )=f (x )﹣ax ﹣b 有无穷多个零点,记其中正的零点从小到大依次为x 1,x 2,x 3,…直接给出一个符合题意的a 的值,并证明:存在b ∈R ,使得F (x )在[0,2023T ]上有4046个零点,且x 2﹣x 1=x 3﹣x 2=…=x 4046﹣x 4045.2022-2023学年北京市西城区高一(下)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知复数z 满足z =1+i ,则在复平面内z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限解:∵z =1+i ,∴z =1−i ,∴在复平面内z 对应的点(1,﹣1)在第四象限. 故选:D .2.下列函数中,最小正周期为π且是偶函数的是( ) A .y =sin(x +π4) B .y =tan x C .y =cos2xD .y =sin2x解:y =sin(x +π4)的周期T =2π≠π,故A 错误;y =f (x )=tan x 满足f (﹣x )=tan (﹣x )=﹣tan x =﹣f (x ),即y =tan x 为奇函数,故B 错误; y =f (x )=cos2x 满足f (﹣x )=f (x ),即y =cos2x 为偶函数,且其周期T =2π2=π,故C 正确; y =f (x )=sin2x 满足f (﹣x )=﹣f (x ),即y =sin2x 为奇函数,故D 错误. 故选:C .3.在△ABC 中,2a =b ,C =60°,c =√3,则a =( ) A .12B .1C .√3D .2√3解:在△ABC 中,2a =b ,C =60°,c =√3, 由余弦定理可得c 2=a 2+b 2﹣2ab cos C , 所以3=a 2+b 2﹣ab =a 2+4a 2﹣2a 2=3a 2, 则a =1或﹣1(舍去). 故选:B .4.某城市—年中12个月的月平均气温y (单位℃)与月份x (x =1,2,3,…,12)的关系可近似地用三角函数y =a +Asin[π6(x −3)](A >0)来表示,已知月平均气温最高值为28℃,最低值为18℃,则A =( ) A .5B .10C .15D .20解:由题意可知月平均气温最高值为28℃,最低值为18℃, 可得{a +A =28a −A =18,解得a =23,A =5.故选:A .5.复数z =cos α+i sin α,且z 2为纯虚数,则α可能的取值为( ) A .0B .π4C .π3D .π2解:z =cos α+i sin α,则z 2=(cos α+i sin α)2=cos 2α﹣sin 2α+2sin αcos α=cos2α+i sin2α, ∵z 2为纯虚数,∴{cos2α=0sin2α≠0,即α=π4+k 2π,k ∈Z ,故α可能的取值为π4.故选:B .6.已知直线m ,直线n 和平面α,则下列四个命题中正确的是( ) A .若m ∥α,n ⊂α,则m ∥n B .若m ∥α,n ∥α,则m ∥n C .若m ⊥α,n ∥α,则m ⊥nD .若m ⊥n ,n ∥α,则m ⊥α解:若m ∥α,n ⊂α,则m ∥n 或m 与n 异面,故A 错误;如果m ∥α,n ∥α,那么m ∥n 或m 与n 相交或m 与n 异面,故B 错误; 如果m ⊥α,则m 与平行于α的所有直线垂直,又n ∥α,那么m ⊥n ,故C 正确; 若m ⊥n ,n ∥α,则m ⊥α或m ∥α或m 与α相交,故D 错误. 故选:C .7.在平面直角坐标系中,O 为坐标原点,P (1,﹣2),Q (3,4),则cos ∠POQ =( ) A .√53B .√55C .−√53D .−√55解:∵在平面直角坐标系中,O 为坐标原点,P (1,﹣2),Q (3,4), ∴OP →=(1,﹣2),OQ →=(3,4), ∴cos ∠POQ =OP →⋅OQ →|OP →||OQ|=1×3−2×4√1+(−2)2⋅√3+4=−55√5√55. 故选:D .8.已知等边△ABC 的边长为4,P 为△ABC 边上的动点,且满足AP →⋅AB →≤12,则点P 轨迹的长度是( ) A .7B .9C .10D .11解:当P 在线段AB 上,则|AP →|≤12|AB →|=3,即线段AB 上有长度为3的线段满足P 点的位置,当P 在AC 上,由于AC →⋅AB →=4×4×cos π3=8<12,所以线段AC 满足P 点位置, 当P 在BC 上,则AP →=λAB →+μAC →,λ>0,μ>0,λ+μ=1, 所以AP →⋅AB →=λ|AB →|2+μAC →⋅AB →=16λ+8μ=16λ+8﹣8λ=8+8λ, 令8+8λ≤12,解得λ≤12,所以线段BC 上远离B 点的一半线段满足P 点位置, 所以P 的轨迹长度为3+4+2=9. 故选:B .9.已知函数f(x)=2sin(ωx +π3)(ω>0),则“f (x )在[0,π3]上既不是增函数也不是减函数”是“ω>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:若f (x )在[0,π3]上既不是增函数也不是减函数, 则f (x )在对称轴在(0,π3)上,由ωx +π3=k π+π2(k ∈z ), 解得x =kπω+π6,故0<kπω+π6<π3,解得:ω>12, 而(1,+∞)⫋(12,+∞),故“f (x )在[0,π3]上既不是增函数也不是减函数”是“ω>1”必要不充分条. 故选:B .10.已知点A ,点B ,点P 都在单位圆上,且|AB|=√3,则PA →⋅PB →的取值范围是( ) A .[−12,32]B .[﹣1,3]C .[﹣2,3]D .[﹣1,2]解:如图,不妨设线段AB 的垂直平分线为y 轴,在单位圆中,由|AB|=√3,可得A (−√32,12),B (√32,12),点P 都在单位圆上,故可设点P (cos α,sin α),α∈[0,2π], 则PA →=(−√32−cosα,12−sinα),PB →=(√32−cosα,12−sinα), 所以PA →⋅PB →=cos 2α−34+14−sin α+sin 2α=12−sin α∈[−12,32]. 故选:A .二、填空题共5小题,每小题5分,共25分.11.(5分)已知复数z 在复平面内所对应的点的坐标为(3,﹣4),则|5z|为 1 . 解:复数z 在复平面内所对应的点的坐标为(3,﹣4),则z =3﹣4i , 故|5z |=5|z|=5√3+(−4)2=1.故答案为:1.12.(5分)设向量a →=(1,2),b →=(4,x),若a →⊥b →,则x = ﹣2 . 解:∵a →⊥b →,∴a →⋅b →=4+2x =0,解得x =﹣2. 故答案为:﹣2.13.(5分)已知圆柱的底面半径为3,体积为32π3的球与该圆柱的上、下底面相切,则球的半径为 2 ,圆柱的体积为 36π . 解:因为球的体积为32π3,则球半径r 满足43πr 3=32π3,解得r =2,又因为球与圆柱的上、下底面相切,所以圆锥的高为2r =4, 所以圆柱的体积为V =π×32×4=36π. 故答案为:2;36π.14.(5分)写出一个同时满足下列两个条件的函数f (x )= ﹣cos4x (答案不唯一) .①∀x ∈R ,f(x +π2)=f(x); ②∀x ∈R ,f(x)≤f(π4)恒成立.解:由①∀x ∈R ,f(x +π2)=f(x),可知函数的周期为π2,由②∀x ∈R ,f(x)≤f(π4)恒成立,可知函数在x =π4上取到最大值, 则f (x )=﹣cos4x 满足题意,一方面根据余弦函数的周期公式,T =2π4=π2,满足条件①; 另一方面,f(π4)=−cosπ=1=f(x)max ,满足条件②. 故答案为:﹣cos4x (答案不唯一).15.(5分)如图,在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是线段AC 上的动点(包含端点),点E 在线段B 1D 1上,且D 1E =14B 1D 1,给出下列四个结论: ①存在点P ,使得平面PB 1D 1∥平面C 1BD ; ②存在点P ,使得△PB 1D 1是等腰直角三角形; ③若PE ≤5,则点P 轨迹的长度为2√7; ④当AP PC=13时,则平面PB 1D 1截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形的面积为18.其中所有正确结论的序号是 ①③④ .解:对于①,当点P 和点A 重合时,平面PB 1D 1∥平面C 1BD ,连接A 1C 1交B 1D 1于点O 1,连接BD 交AC 于点O ,连接C 1D ,C 1B ,C 1O ,AO 1,∵O 1C 1∥PO ,且O 1C 1=AO , ∴四边形O 1POC 1平行四边形,∴O 1P ∥C 1O ,∵O 1P ⊄平面C 1BD ,C 1O ⊂平面C 1BD ,∴O 1P ∥平面C 1BD ,∵B 1D 1∥BD ,B 1D 1⊄平面C 1BD ,BD ⊂平面C 1BD ,∴B 1D 1∥平面C 1BD ,又∵B 1D 1∩PO 1=O 1,B 1D 1,PO 1⊂平面PB 1D 1,∴平面PB 1D 1∥平面C 1BD ;故①正确; 对于②,分别以DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,由几何关系可知PD 1=PB 1,要使△PB 1D 1是等腰直角三角形,则PD 1⊥PB 1, 由已知得D 1(0,0,4),B 1(4,4,4),设点P (4﹣a ,a ,0), 则PD 1→=(a −4,−a ,4),PB 1→=(a ,4−a ,4), ∵PD 1⋅PB 1→=0,∴a 2﹣4a +8=0,此方程无解,则不存在点P ,使得△PB 1D 1是等腰直角三角形,故②不正确;对于③,因为D 1E =14B 1D 1=√2,则E (1,1,4),A (4,0,0),C (0,4,0), 即EA =EC =√26>5,则P 轨迹是在AC 上的线段,不包括端点A 、C ,如下图所示, 由已知得△EAC 为等腰三角形,则△EAC 底边上的高EH =3√2<5,随着P 向点C 运动,EP 逐渐减小,故在线段AH 上存在一点P ,使得EP =5, 同理可知靠近点C 处也存在一点P ,使得EP =5,设线段PE =5,由勾股定理可知PH =√7,所以点P 轨迹的长度为2√7,故③正确;对于④,连接BD ,过点P 作BD 的平行线交AB ,AD 于点M ,N ,连接B 1M ,D 1N , 则MND 1B 1为平面PB 1D 1截正方体ABCD ﹣A 1B 1C 1D 1所得的截面图形, 由已知得AP =14AC =√2,由△AMN ∽△ABD 可知,MN =2√2,又因为MB 1=ND 1=2√5,且MN ∥B 1D 1, 所以四边形MND 1B 1为等腰梯形,其中梯形的高ℎ=3√2,所以截面面积为12(2√2+4√2)×3√2=18,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程. 16.(10分)已知π2<α<π,sinα=45.(1)求tan α的值; (2)求cos2αcos(α+π4)的值.解:(1)因为sin 2α+cos 2α=1,sinα=45, 所以cos 2α=925, 又因为π2<α<π, 所以cosα=−35. 所以tanα=sinαcosα=−43; (2)cos2αcos(α+π4)=22√22(cosα−sinα)=√2(cosα+sinα)=√25. 17.(15分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是棱DD 1,C 1D 1的中点. (1)证明:A 1B ⊥平面ADC 1B 1; (2)证明:B 1F ∥平面A 1BE .证明:(1)由正方体ABCD ﹣A 1B 1C 1D 1的结构特征,可得B 1C 1⊥平面ABB 1A 1,∵A 1B ⊂平面ABB 1A 1,∴B 1C 1⊥A 1B , ∵A 1ABB 1为正方形,∴A 1B ⊥AB 1,又∵B 1C 1∩AB 1=B 1,∴A 1B ⊥平面ADC 1B 1. (2)设AB 1∩A 1B =O ,连接OE ,∵ABCD ﹣A 1B 1C 1D 1是正方体,∴B 1A ∥C 1D ,且B 1A =C 1D , ∴B 1O ∥C 1D ,且B 1O =12C 1D ,∵E ,F 分别DD 1,C 1D 1的中点,∴EF ∥C 1D ,且EF =12C 1D , ∴EF ∥B 1O ,且EF =B 1O ,∴四边形B 1OEF 为平行四边形,∴B 1F ∥OE , 又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE , ∴B 1F ∥平面A 1BE .18.(15分)已知在△ABC 中,a cos B +b cos A =2c cos A . (1)求A 的大小;(2)若c =4,在下列三个条件中选择一个作为已知,使△ABC 存在且唯一,求△ABC 的周长. ①△ABC 的面积为5√3; ②a =√13;③AB 边上的高线CD 长为√32. 解:(1)由正弦定理asinA=bsinB=c sinC,得sin A cos B +sin B cos A =2sin C cos A ,所以sin (A +B )=2sin C cos A ,因为A +B +C =π,所以sin (A +B )=sin C ,所以sin C =2sin C cos A , 因为C ∈(0,π),sin C ≠0,所以2cos A =1,即cosA =12, 又因为A ∈(0,π),所以A =π3;(2)选择①:因为S △ABC =5√3,即12bcsinA =5√3,即12×b ×4×√32=5√3,所以b =5, 又因为a 2=b 2+c 2﹣2bc cos A ,即a 2=25+16−2×5×4×12, 所以a =√21,所以△ABC 的周长为9+√21; 选择②: 因为a =√13,又因为a 2=b 2+c 2﹣2bc cos A ,即13=b 2+16﹣2×b ×4×12, 所以b =1或3,因为△ABC 存在且唯一,所以舍去; 选择③:因为AB 边上的高线CD 长为√32,即bsinA =√32,所以b =1, 又因为a 2=b 2+c 2﹣2bc cos A ,即a 2=1+16−2×1×4×12, 所以a =√13,所以△ABC 的周长为5+√13. 19.(15分)已知函数f(x)=sin(2x −π6)+2cos 2x −1. (1)求f(π6)的值;(2)若函数f (x )的单调递增区间;(3)若函数f (x )在区间[0,m ]上有且只有两个零点,求m 的取值范围. 解:(1)f (x )=√32sin2x −12cos2x +cos2x =√32sin2x +12cos2x =sin (2x +π6),所以f (π6)=sin (2•π6+π6)=sin π2=1;(2)由(1)可得,单调递增满足−π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 解得:−π3+k π≤x ≤π6+k π,k ∈Z ,所以函数的单调递增区间为[−π3+k π,π6+k π],k ∈Z ;(3)x ∈[0,m ],可得2x +π6∈[π6,2m +π6],由题意可得2m +π6∈[2π,3π),解得11π12≤m <17π12, 即m ∈[11π12,17π12).20.(15分)如图,在四棱锥S ﹣ABCD 中,平面SAD ⊥平面ABCD ,SA =SD =AD =2,四边形ABCD 为正方形,E 为AD 的中点,F 为SB 上一点,M 为BC 上一点,且平面EFM ∥平面SCD . (1)求证:CD ⊥SA ;(2)求证:M 为线段BC 中点,并直接写出M 到平面SCD 的距离; (3)在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?若存在,求CN CS;若不存在,说明理由.证明:(1)因为四边形ABCD 为正方形,所以CD ⊥AD ,因为平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,CD ⊂平面ABCD , 所以CD ⊥平面SAD ,又SA ⊂平面SAD ,所以CD ⊥SA ;(2)因为平面EFM ∥平面SCD ,平面EFM ∩平面ABCD =EM , 平面SCD ∩平面ABCD =CD ,所以CD ∥EM , 又因为E 为AD 的中点,所以M 为线段BC 中点; 由(1)知,CD ⊥平面SAD ,又CD ⊂平面SCD ,所以平面SCD ⊥平面SAD ,所以点E 到平面SCD 的距离等于点E 到SD 的距离, 因为SA =SD =AD =2,所以△SAD 为正三角形,又E 为AD 的中点, 所以点E 到SD 的距离为√32,因为平面EFM ∥平面SCD , 所以点M 到平面SCD 的距离为√32; 解:(3)存在,当N 为SC 中点时,平面DMN ⊥平面ABCD ,证明如下: 连接EC ,DM 交于点O ,连接SE ,因为ED∥CM,并且ED=CM,所以四边形EMCD为平行四边形,所以EO=CO,又因为N为SC中点,所以NO∥SE,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,又SE⊂平面SAD,由已知SE⊥AD,所以SE⊥平面ABCD,所以NO⊥平面ABCD,又因为NO⊂平面DMN,所以平面DMN⊥平面ABCD,所以存在点N,使得平面DMN⊥平面ABCD,CNCS=12.21.(15分)对于定义在R上的函数f(x)和正实数T,若对任意x∈R,有f(x+T)﹣f(x)=T,则f(x)为T﹣阶梯函数.(1)分别判断下列函数是否为1﹣阶梯函数(直接写出结论):①f(x)=x2;②f(x)=x+1.(2)若f(x)=x+sin x为T﹣阶梯函数,求T的所有可能取值;(3)已知f(x)为T﹣阶梯函数,满足:f(x)在[T2,T]上单调递减,且对任意x∈R,有f(T﹣x)﹣f(x)=T﹣2x.若函数F(x)=f(x)﹣ax﹣b有无穷多个零点,记其中正的零点从小到大依次为x1,x2,x3,…直接给出一个符合题意的a的值,并证明:存在b∈R,使得F(x)在[0,2023T]上有4046个零点,且x2﹣x1=x3﹣x2=…=x4046﹣x4045.解:(1)①因为f(x)=x2,所以f(x+1)﹣f(x)=(x+1)2﹣x2=2x+1≠1,所以f(x)=x2不是1﹣阶梯函数;②因为f(x)=x+1,所以f(x+1)﹣f(x)=(x+1)+1﹣(x+1)=1,所以f(x)=x+1是1﹣阶梯函数;(2)因为f(x)为T﹣阶梯函数,所以对任意x∈R有:f(x+T)﹣f(x)=[x+T+sin(x+T)]﹣(x+sin x)=sin(x+T)﹣sin x+T,所以,对任意x∈R,sin(x+T)=sin x,因为y=sin x是最小正周期为2π的周期函数,又因为T>0,所以T=2kπ,k∈N*;(3)a=1.证明:函数F(x)=f(x)﹣x﹣b,则有:F(x+T)=f(x+T)﹣(x+T)﹣b=f(x)+T﹣(x+T)﹣b=f(x)﹣x﹣b=F(x),F(T﹣x)=f(T﹣x)﹣(T﹣x)﹣b=f(x)+T﹣2x﹣(T﹣x)﹣b=f(x)﹣x﹣b=F(x).取b=f(3T4)−3T4,则有:F(3T4)=f(3T4)−3T4−b=0,F(T4)=F(T−T4)=F(3T4)=0,由于f(x)在[T2,T]上单调递减,因此F(x)=f(x)﹣x﹣b在[T2,T]上单调递减,结合F(T﹣x)=F(x),则有:F(x)在[0,T2]上有唯一零点T4,在[T2,T]上有唯一零点3T4.又由于F(x+T)=F(x),则对任意k∈Z,有:F(T4+kT)=F(T4)=0,F(3T4+kT)=F(3T4)=0,因此,对任意m∈Z,F(x)在[mT,(m+1)T]上有且仅有两个零点:mT+T4,mT+3T4.综上所述,存在b=f(3T4)−3T4,使得F(x)在[0,2023T]上有4046个零点:x1=T4,x2=3T4,x3=5T4,x4=7T4, (x4045)8089T4,x4046=8091T4,其中,x2−x1=x3−x2=⋯=x4046−x4045=T 2.。
2024届北京市西城区普通中学数学高一下期末考试试题含解析
2024届北京市西城区普通中学数学高一下期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆221:1O x y +=与圆222:30O x y +--+=的位置关系是( )A .外离B .相交C .内切D .外切2.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .2003.若角α的终边过点(1,2)-,则sin2α=( ) A .45B .2-5C .25D .45-4.已知直线l 经过点(1,2)P -,且倾斜角为45,则直线l 的方程为( ) A .30x y --= B .10x y --= C .30x y -+=D .30x y +-=5.已知正实数x y 、满足224x y +=,则的最大值为( )A .2B .52C .3D .946.在某次测量中得到A 样本数据如下:43,50,45,55,60,若B 样本数据恰好是A 样本每个数都增加5得到,则A 、B 两样本的下列数字特征对应相同的是( ) A .众数B .中位数C .方差D .平均数7.执行如图所示的程序框图,若输出的S =88,则判断框内应填入的条件是( )A .B .C .D .8.函数cos tan y x x =⋅(302x π≤<且2x π≠)的图像是下列图像中的( ) A . B .C .D .9.已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,其图象向右平移3π个单位后得到的函数为奇函数.有下列结论: ①函数()f x 的图象关于点,012π⎛⎫-⎪⎝⎭对称;②函数()f x 的图象关于直线512x π=对称;③函数()f x 在52,123ππ⎡⎤⎢⎥⎣⎦上是减函数;④函数()f x 在7,312ππ⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤⎢⎥⎣⎦.其中正确结论的个数是( ) A .1B .2C .3D .410.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为x 甲、x 乙,方差分别为2s 甲,2s 乙,则( )A .22x x s s >>甲乙甲乙,B .22x x s s ><甲乙甲乙,C .22x x s s 甲乙甲乙,D .22x x s s <<甲乙甲乙,二、填空题:本大题共6小题,每小题5分,共30分。
2024届北京市西城35中数学高一下期末统考试题含解析
2024届北京市西城35中数学高一下期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的面积为210cm ,半径为4cm ,则扇形的圆心角的弧度数为 A .54B .32C .34D .122.设,,a b c ∈R 且a b >,则下列不等式成立的是( ) A .c a c b -<-B .22ac bc >C .11a b< D .1b a< 3.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移π8个单位,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .3π4B .π4C .π3D .π64.已知(4-2),b (cos ,sin )a ,αα==且a b ⊥,则33sin cos sin cos αααα+-为( ) A .2B .95C .3D .355.如图所示,PA 垂直于以AB 为直径的圆O 所在的平面,C 为圆上异于A B ,的任一点,则下列关系中不正确的是( )A .PA BC ⊥B .BC ⊥平面PAC C .AC PB ⊥D .PC BC ⊥6.函数的图象可由函数的图象( )A .向左平移个单位长度得到B .向左平移个单位长度得到C .向右平移个单位长度得到D .向右平移个单位长度得到7.若0a b <<,则下列不等式不成立的是( ) A .11a b> B .2ab b < C .222a b ab +> D .22a b <8.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .cos 22y x π⎛⎫=+⎪⎝⎭B .sin 22y x π⎛⎫=+⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+9.函数()32cos4f x x =-的最大值为( ) A .1B .2C .3D .510.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( ) A .7B .10C .13D .4二、填空题:本大题共6小题,每小题5分,共30分。
精品解析:北京市西城区高一下学期期末数学试题(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高一第二学期期末数学试卷一、选择题1. 下列各角中,与27°角终边相同的是( )A. 63° B. 153°C. 207°D. 387°【答案】D 【解析】【分析】写出与27°终边相同角的集合,取k 值得答案.【详解】与27°角终边相同的角的集合为{}27360,k k Z a a =°+×°Î,取1k =,可得387a =°.∴与27°角终边相同的是387°.故选:D【点睛】本小题主要考查终边相同的角,属于基础题.2. 圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为( )A. 220cm p B. 210cm p C. 228cm p D. 214cm p 【答案】A 【解析】【分析】根据圆柱的侧面积公式计算即可.【详解】圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为()222520cm S p p =´´=侧.故选:A【点睛】本小题主要考查圆柱的侧面积公式,属于基础题.3. sin 2p a æö+=ç÷èø( )A. sin a B. cos aC. sin a- D. cos a-【答案】B 【解析】【分析】直接利用诱导公式得答案.【详解】依题意sin cos 2p a a æö+=ç÷èø.故选:B【点睛】本小题主要考查诱导公式,属于基础题.4. 设(),a p p Î-,且1cos 2a =-,则a =( )A. 23p -或23p B. 3p-或3pC. 3p-或23pD. 23p -或3p 【答案】A 【解析】【分析】由已知角及范围,结合特殊角的三角函数值即可求解.【详解】因为(),a p p Î-,且1cos 2a =-,则23p a =-或23p.故选:A【点睛】本小题主要考查特殊角的三角函数值,属于基础题.5. 设a r ,b r均为单位向量,且14a b ×=r r ,则2a b +=r r ( )A. 3 C. 6D. 9【答案】B 【解析】【分析】利用向量的模的运算法则,结合向量的数量积求解即可.【详解】a r ,b r均为单位向量,且14a b ×=r r ,则a +==r 故选:B【点睛】本小题主要考查向量模的运算,属于基础题.6. 下列四个函数中,以p 为最小正周期,且在区间0,2p æöç÷èø上为增函数的是( )A. sin 2y x =B. cos 2y x =C. tan y x= D. sin2x y =【答案】C 【解析】【分析】利用三角函数的单调性和周期性,逐一判断各个选项是否正确,从而得出结论.【详解】解:在区间0,2p æöç÷èø上,()20,x p Î,sin 2y x =没有单调性,故排除A .在区间0,2p æöç÷èø上,()20,x p Î,cos 2y x =单调递减,故排除B .在区间0,2p æöç÷èø上,tan y x =单调递增,且其最小正周期为p ,故C 正确;根据函数以p 为最小正周期,sin 2x y =的周期为2412pp=,可排除D .故选:C .【点睛】本题考查了三角函数的性质,掌握三角函数的基本性质是解题的关键,属于基础题.7. 已知向量a v ,b v 在正方形网格中的位置如图所示,那么向量a v ,b v的夹角为( )A. 45°B. 60°C. 90°D. 135°【答案】A 【解析】【分析】根据向量的坐标表示,求得,a b r r的坐标,再利用向量的夹角公式,即可求解.【详解】由题意,可得()3,1a =r,()1,2b =r ,设向量a r ,b r的夹角为q,则cos q =,又因为0180q °££°,所以45q =°.故选:A .【点睛】本题主要考查了向量的坐标表示,以及向量夹角公式的应用,其中解答中熟记向量的坐标表示,利用向量的夹角公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8. 设a ,()0,b p Î,且a b >,则下列不等关系中一定成立的是( )A. sin sin a b < B. sin sin a b> C. cos cos a b< D. cos cos a b>【答案】C 【解析】【分析】根据正弦函数以及余弦函数在()0,p 上的单调性求解即可.【详解】因a ,()0,b p Î,且a b >,而sin y x =在()0,p 上有增有减;故sin a 与sin b 大小关系不确定,cos y x =在()0,p 上单调递减;若a b >,则cos cos a b <成立;故选:C【点睛】本题主要考查了利用正余弦函数的单调性比较函数值的大小,属于基础题.9.将函数()sin 2f x x =的图象向右平移j (02pj <£)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则j =( )A.6p B.4p C.3pD.2p【答案】C 【解析】【分析】由图可知,17248g f p p æöæö==ç÷ç÷èøèø()()sin 2x g x j =-,于是推出为1717sin 22424g p p j æöæö=-=ç÷ç÷èøèø1722124k p p j p -=+或324k p p +,k Z Î,再结合02p j <£,解之即可得j 的值.【详解】由图可知,17sin 22488g f pp p æöæöæö==´=ç÷ç÷ç÷èøèøèø,因为()f x 的图象向右平移j 个单位,得到函数()g x 的图象,所以()()sin 2x g x j =-,所以171717sin 2sin 2242412g pp p j j æöæöæö=-=-=ç÷ç÷ç÷èøèøèø,所以1722124k p p j p -=+或17322124k p pj p -=+,k Z Î,解得712k p j p =-或3k pj p =-,k Z Î,因02p j <£,所以3pj =.故选:C【点睛】本小题主要考查三角函数图象变换,属于中档题.10.棱锥被平行于底面的平面所截,得到一个小棱锥和一个棱台.小棱锥的体积记为y ,棱台的体积记为x ,则y 与x 的函数图象为( )A. B.C. D.【答案】A 【解析】【分析】设棱锥的体积为V ,则y V x =-,即y 是关于x 的一次函数,且单调递减,故而得解.为【详解】设棱锥的体积为V ,则V 为定值,所以y V x =-,即y 是关于x 的一次函数,且单调递减,故选:A【点睛】本小题主要考查函数图象,属于基础题.二、填空题11. 已知圆的半径为2,则5p的圆心角所对的弧长为______.【答案】25p 【解析】【分析】由已知结合弧长公式即可直接求解.【详解】由弧长公式可得2255l r pp a ==´=.故答案为:25p 【点睛】本小题主要考查弧长公式,属于基础题.12. 在平面直角坐标系xOy 中,角a 和角b 均以Ox 为始边,它们的终边关于x 轴对称.若1sin 3a =,则sin b =______.【答案】13-【解析】【分析】由题意可得()sin sin b a =-,由此能求出结果.【详解】∵在平面直角坐标系xOy 中,角a 与角b 均以Ox 为始边,它们的终边关于x 轴对称,∴()1sin sin sin 3b a a =-=-=-,故答案为:13-【点睛】本小题主要考查三角函数的对称性,属于基础题.13. 向量a r ,b r满足1b =r ,1a b ×=r r .若()a b b l -^r r r ,则实数l =______.【答案】1【解析】【分析】根据平面向量数量积的运算法则,可列出关于λ的方程,解之即可.【详解】解:∵()a b b l -^r r r ,∴()20a b b a b b l l -×=×-=r r r r r r ,即10l -=,解得1l =.故答案为:1.【点睛】本题考查了向量垂直求参数,考查了向量数量积的定义,属于基础题.14.已知正方体1111ABCD A B C D -的八个顶点在同一个球面上,若正方体的棱长是2,则球的直径是______;球的表面积是______.【答案】(1). 12p 【解析】【分析】首先求出外接球的半径,进一步求出球的表面积.【详解】解:正方体1111ABCD A B C D -的八个顶点在同一个球面上,若正方体的棱长是2,设外接球的半径为r ,则()2222222212r =++=,解得r =,故球直径为.球的表面积为2412S p p =´´=.故答案为:12p .【点睛】本题考查了多面体的外接球问题以及球的表面积公式,考查了基本运算求解能力,属于基础题.15. 已知函数()cos ,0sin ,0x x f x x x p p-£<ì=í££î给出下列三个结论:①()f x 是偶函数;②()f x 有且仅有3个零点;③()f x 的值域是[]1,1-.其中,正确结论的序号是______.的【答案】②③【解析】【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.【详解】函数()cos ,0sin ,0x x f x x x p p -£<ì=í££î,①由于()()1,sin 0f fp p p -=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x p=-,0x =,x p =,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x p p-£<ì=í££î,()f x 的值域是[]1,1-,正确;正确结论的序号是:②③.故答案为:②③.【点睛】本小题主要考查函数的奇偶性、零点、值域.16.设函数()()sin 06f x x p w w æö=+>ç÷èø,若()3f x f p æö³-ç÷èø对任意的实数x 都成立,则w 的最小值为______.【答案】2【解析】【分析】由题意可得()f x 的最小值为3f p æö-ç÷èø,可得2362k p p p w p -+=-,k Z Î,解方程可得w 的最小值.【详解】解:若()3f x f p æö³-ç÷èø对任意的实数x 都成立,可得()f x 的最小值为3f p æö-ç÷èø,可得2362k pppw p -+=-,k Z Î,即有26k w =-,k Z Î,由0>w ,可得w 的最小值为2,此时0k =.故答案为:2.【点睛】本题考查了三角函数的性质,考查了基本知识的掌握情况,属于基础题.三、解答题17. 已知0,2p a æöÎç÷èø,且4cos 5a =.(1)求tan a 的值;(2)求2sinsin 22aa +的值.【答案】(1)34;(2)5350.【解析】【分析】(1)由已知利用同角三角函数基本关系式求得sin a ,再由商的关系求得tan a ;(2)直接利用二倍角的正弦公式、降次公式求解.【详解】(1)∵0,2a p æöÎç÷èø,且4cos 5a =,∴3sin 5a ==,则sin 3tan cos 4a a a ==;(2)∵3sin 5a =,4cos 5a =,∴21cos sinsin 22sin cos 22a a a a a -+=+4134535225550-=+´´=.【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式.18. 如图,正三棱锥P ABC -的底面边长为2,侧棱长为3.(1)求正三棱锥P ABC -的表面积;(2)求正三棱锥P ABC -的体积.【答案】(1);(2【解析】【分析】(1)取BC 的中点D ,连接PD ,利用勾股定理求得PD ,可得三角形PBC 的面积,进一步可得正三棱锥P ABC -的侧面积,再求出底面积,则正三棱锥P ABC -的表面积可求;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ^底面ABC .求解PO ,再由棱锥体积公式求解.【详解】(1)取BC 的中点D ,连接PD ,在Rt PBD △中,可得PD ==∴12PBC S BC PD =×=△.∵正三棱锥的三个侧面是全等的等腰三角形,∴正三棱锥P ABC -的侧面积是3PBC S =△.∵正三棱锥的底面是边长为2的正三角形,∴122sin 602ABC S =´´´°=△则正三棱锥P ABC -的表面积为;(2)连接AD ,设O 为正三角形ABC 的中心,则PO ^底面ABC .且13OD AD ==.在Rt POD V 中,PO ==.∴正三棱锥P ABC -的体积为13ABC S PO ×=△【点睛】本小题主要考查锥体的表面积和体积的求法,属于中档题.19. 在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且34C p =,sin A =.(1)求sin B 的值;(2)若5c a -=,求ABC V 的面积.【答案】(12)52.【解析】【分析】(1)先根据sin A =cos A 的值,再由4B A p =-得到sin sin 4B A p æö=-ç÷èø,根据两角和与差的公式可求得sin B 即可;(2)由34C p =可求得sin C 的值,进而根据正弦定理可求得a ,c 的关系,再由5c a -=-可求出a ,c 的值,最后利用三角形的面积公式即得结果.【详解】解:(1)因为34C p =,sin A =,所以cos A ==由已知得4B A p=-.所以sin sin sin cos cos sin 444B A A A p p p æö=-=-==ç÷èø(2)由(1)知34C p =,所以sin C =且sin B =由正弦定理得sin sin a A c C ==.又因为5c a -=-,所以5c =,a =.所以15sin 522ABC S ac B ===△.【点睛】本题考查了三角形的正弦定理和面积公式,考查了同角三角关系和两角和与差的正弦公式,属于中档题.20. 已知函数()cos2sin cos x f x x x=+.(1)求()f x 的定义域;(2)求()f x 在区间02p éùêúëû,上的最大值;(3)求()f x 的单调递减区间.【答案】(1)|,4x x k k Z p p ìü¹-Îíýîþ;(2)1;(3)()32,244k k k Z p p p p éù-+Îêúëû.【解析】【分析】(1)由分母不为零得到sin cos 0x x +¹04x p æö+¹ç÷èø求解.(2)利用二倍角公式和辅助角法,将函数转化为()4f x x p æö=+ç÷èø,再利用余弦函数的性质求解. (3)由(2)知()4f x x p æö=+ç÷èø,利用余弦函数的性质,令 224k x k p p p p £+£+求解.【详解】(1)因sin cos 0x x +¹04x p æö+¹ç÷èø,解得4x k pp +¹,所以()f x 的定义域是|,4x x k k Z p p ìü¹-Îíýîþ为(2)因为()22cos2cos sin sin cos sin cos x x x f x x x x x-==++,cos sin x x =-,4x p æö=+ç÷èø又0,2x p éùÎêúëû,所以3,444x p p p éù+Îêúëû,cos 4x p éæö+Îêç÷èøë,所以()f x 区间02p éùêúëû,上的最大值是1;(3)令 224k x k p p p p £+£+,解得 32244k x k p p p p -££+, 所以()f x 的单调递减区间.是()32,244k k k Z p p p p éù-+Îêúëû【点睛】本题主要考查函数定义域的求法,二倍角公式,辅助角法以及三角函数的性质,还考查了转化求解问题的能力,属于中档题.21. 如图,在正方体1111ABCD A B C D -中,E 为1CC 的中点.(1)在图中作出平面1AD E 和底面ABCD 的交线,并说明理由;(2)平面1AD E 将正方体分成两部分,求这两部分的体积之比.【答案】(1)答案见解析;(2)7:17.【解析】【分析】(1)在正方形11DCC D 中,直线1D E 与直线DC 相交,设1D E DC F Ç=,连接AF ,可证F Î平面ABCD 且F Î平面1AD E ,得到平面1AD E Ç平面ABCD AF =;(2)设BC AF G Ç=,连接GE ,证明1//EG AD ,则平面1AD E 将正方体分成两部分,其中一部分是三棱台1CGE DAD -.设正方体1111ABCD A B C D -的棱长为2.求出棱台1CGE DAD -的体积,由正方体体积减去棱台体积可得另一部分几何体的体积作比得答案.【详解】(1)在正方形11DCC D 中,直线1D E 与直线DC 相交,设1D E DC F Ç=,连接AF ,∵F DC Î,DC Ì平面ABCD ,则F Î平面ABCD ,∵1F D E Î,1D E Ì平面1AD E ,∴F Î平面1AD E .∴平面1AD E Ç平面ABCD AF =.(2)设BC AF G Ç=,连接GE ,由E 为1CC 的中点,得G 为BC 的中点,∴1//EG AD ,则平面1AD E 将正方体分成两部分,其中一部分是三棱台1CGE DAD -.设正方体1111ABCD A B C D -的棱长为2.1111-77178833F DAD F CGE F DAD DAD CGE DAD V V V S FD ---=-==´´=△棱台.∴另一部分几何体的体积为3717233-=.∴两部分的体积比为7:17【点睛】本小题主要考查面与面位置关系,考查几何体体积的求法.22. 如图,在扇形OAB 中,120AOB Ð=°,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ^,求PA PB ×uuu r uuu r 的值;(2)求PA PB ×uuu r uuu r 的最小值.【答案】(1)2-;(2)2-.【解析】【分析】(1)先通过倒角运算得出30POB Ð=°,120APB Ð=°,再在POB V中,由余弦定理可求得PB =uuu r cos PA PB PA PB APB ×=×Ðuuu r uuu r uuu r uuu r ,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P a a ,其中20,3p a éùÎêúëû,结合平面向量数量积的坐标运算,用含有a 的式子表示出PA PB ×uuu r uuu r,再利用三角恒等变换公式和正弦函数的图象即可得解.【详解】(1)当OA OP ^时,如图所示,的∵120AOB Ð=°,∴1209030POB Ð=°-°=°,18030752OPB °-°Ð==°,∴7545120APB Ð=°+°=°,在POB V中,由余弦定理,得222222cos 22222cos308PB OB OP OB OP POB =+-×Ð=+-´´´°=-∴PB ==uuu r ,又PA OA ==uuu r ,∴1cos 22PA PB PA PB APB æö×=×Ð=´-=-ç÷èøuuu r uuu r uuu r uuu r (2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB Ð=°,2OB =,∴(B -,设()2cos ,2sin P a a ,其中20,3p a éùÎêúëû,则()()22cos ,2sin 12cos 2sin PA PB a a a a ×=--×---uuu r uuur 2222cos 4cos 4sin a a a a=--+-+2cos 24sin 26p a a a æö=--+=-++ç÷èø.∵20,3p a éùÎêúëû,∴5,666p p p a éù+Îêúëû,1sin ,162p a æöéù+Îç÷êúèøëû,∴当62ppa +=,即3pa =时,PA PB ×uuu r uuu r取得最小值为2-.【点睛】本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.。
2023-2024学年北京西城区十五中高一(上)期中数学试题及答案
北京十五中高一数学期中考试试卷2023.11本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡和答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}1M =,{}123N =,,,那么下列结论正确的是D(A )M N =∅ (B )M N ∈(C )N M ⊆(D )M N⊆2.若方程组22ax y x by +=⎧⎨+=⎩的解集为(){}2,1,则B(A )0,0a b ==(B )1,02a b ==(C )10,2a b ==(D )11,22a b ==3.已知命题p :x R ∃∈,使得220x x +<”,则p ⌝为C (A ),x ∃∈R 使得220x x +≥(B ),x ∃∈R 使得220x x +>(C ),x ∀∈R 都有220x x +≥(D ),x ∀∈R 都有220x x +<4.下列命题为真命题的是B(A )若,则(B )若,则(C )若,则(D )若,则5.函数3()25f x x x =+-的零点所在的一个区间是D (A)(2,1)--(B)(1,0)-(C)(0,1)(D)(1,2)6.设,则“”是“”的A(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件7.已知偶函数()f x 的定义域为R ,当[)0,+x ∈∞时,()f x 是增函数,()2f -,()f π,()3f -的大小关系是B(A )()()()32f f f π->>(B )()()()32f f f π>->-(C )()()()32f ff π->>-(D )()()()23ff f π>->-8.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为D(A )(10)(1)-+∞ ,,(B )(1)(01)-∞- ,,(C )(1)(1)-∞-+∞ ,,(D )(10)(01)- ,,9.设函数266,0()34,0x x x f x x x ⎧-+=⎨+<⎩≥,若互不相等的实数1x ,2x ,3x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是A(A )11,63⎛⎫⎪⎝⎭(B )11,63⎛⎤ ⎥⎝⎦(C )2026,33⎛⎫ ⎪⎝⎭(D )2026,33⎛⎤ ⎥⎝⎦10.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是C (A )①③(B )①④(C )②③(D )②④第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数12y x =+-的定义域是________.【答案】{|02x x x ≥≠且}12.若1x >,则函数2()2f x xx =+的最小值为________【答案】2213.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(2)(2)f g +=_______.【答案】-314.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在(),-∞+∞上满足若12,x x ≠则()()21210f x f x x x ->-求实数a 的取值范围_______.【答案】[]3,2--15.已知函数()11f x x =--,给出下列四个结论:(1)()f x 的定义域为[)(]1,00,1- (2)()f x 的值域为()1,1-(3)()f x 在定义域内是增函数(4)()f x 的图象关于原点对称其中所有正确结论的序号是【答案】(1)(2)(4)三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(14分)已知全集U =R ,集合{|(2)0}P x x x =-≥,{|3}=<<+M x a x a .(Ⅰ)化简集合P ,并求集合U P ð;(Ⅱ)若1=a ,求集合 P M ;(Ⅲ)若U P M ⊆ð,求实数a 的取值范围.(Ⅰ)解:因为全集U =R ,集合{|(2)0}P x x x =-≥,{|20}P x x x =≥≤或所以{|(2)0}U P x x x =-<ð,即集合{|02}U P x x =<<ð.(Ⅱ)1,{|14}a M x x ==<<P M = [2,4)(Ⅲ)解:因为U P M ⊆ð,所以0,32,≤⎧⎨+≥⎩a a 解得0,1.≤⎧⎨≥-⎩a a 所以[1,0]∈-a .17.(13分)解下列关于x 的不等式.(I )2112x x +>-;(II )22650x ax a -+≤(a R ∈).解:(Ⅰ)()(),32,-∞-+∞ (Ⅱ)22650x ax a -+≤即()(5)0x a x a --≤,则12,5x a x a ==当0a >时,不等式的解集为:[],5a a ;当0a =时,不等式的解集为:{}0;当0a <时,不等式的解集为:[]5,a a .18.(15分)已知函数2()1x f x x =-.(Ⅰ)求(2)f ;(Ⅱ)判断函数()f x 在区间(1,1)-上的单调性,并用函数单调性的定义证明;(Ⅲ)证明()f x 是奇函数.解:(Ⅰ)2(2)3f =…………………(Ⅱ)证明:函数()f x 的定义域为{|1}D x x =≠±.关于原点对称。
2022北京西城区高一下学期期末数学试题和答案
2022北京西城高一(下)期末数 学一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)在复平面内,复数2z i i =+对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(4分)设向量(3,1)a =,(1,2)b =−,则(2)(a b b −⋅= ) A .11−B .9−C .7−D .5−3.(4分)设m ,n 为两条直线,α,β为两个平面.若//αβ,//m n ,m α⊥,则( ) A .//n β B .n β⊥C .//m βD .以上答案都不对4.(4分)若3cos 5α=,则3sin()(2πα−= )A .35B .35−C .45 D .45−5.(4分)函数()sin(2)6f x x π=+,[0x ∈,]2π的最大值和最小值分别为( )A .1,1−B .11,22−C .1,12 D .1,12−6.(4分)在ABC ∆中,若222a b c kab +−=,则实数k 的取值范围是( ) A .(2,2)−B .(1,1)−C .1(2−,1)2D .(0,1)7.(4分)已知向量a ,b 满足||4a =,||2b =,()a b b +⊥,那么向量a ,b 的夹角为( ) A .6πB .3π C .23π D .56π 8.(4分)函数1cos 2()sin xf x x−=的图像( )A .关于原点对称B .关于y 轴对称C .关于直线x π=对称D .关于点(2π,0)对称9.(4分)设(,)αππ∈−,则“(4πα∈−,3)4π”是“sin cos 0αα+>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.(4分)如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是( )A .[1−,2]B .[0,2]C .[0,4]D .[1−,4]二、填空题共5小题,每小题5分,共25分。
高一数学试题及答案西城
高一数学试题及答案西城一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. \( y = x^2 \)B. \( y = \sin x \)C. \( y = \ln x \)D. \( y = e^x \)答案:B2. 已知集合A={1,2,3},B={2,3,4},则A∩B=()A. {1,2,3}B. {2,3}C. {1,3}D. {2,4}答案:B3. 若\( a > 0 \),\( b < 0 \),则下列不等式中正确的是()A. \( a + b > 0 \)B. \( ab > 0 \)C. \( a - b > 0 \)D. \( \frac{a}{b} < 0 \)答案:C4. 函数\( y = \frac{1}{x} \)的图象在第一象限内是()A. 递增函数B. 递减函数C. 常数函数D. 先递增后递减函数答案:B5. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为()A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:B6. 直线\( y = 2x + 3 \)与x轴的交点坐标为()A. (0,3)B. (-3/2, 0)C. (3,0)D. (0,-3)答案:B7. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S5的值为()A. 15B. 25C. 35D. 45答案:A8. 函数\( y = \sqrt{x - 1} \)的定义域为()A. \( x \geq 1 \)B. \( x > 1 \)C. \( x \leq 1 \)D. \( x < 1 \)答案:A9. 已知\( \tan \alpha = \frac{1}{2} \),\( \alpha \)为锐角,则\( \sin \alpha \)的值为()A. \( \frac{1}{\sqrt{5}} \)B. \( \frac{2}{\sqrt{5}} \)C. \( \frac{1}{\sqrt{6}} \)D. \( \frac{2}{\sqrt{6}} \)答案:B10. 已知\( \log_2 3 = a \),\( \log_2 5 = b \),则\( \log_215 \)的值为()A. \( a + b \)B. \( a + 2b \)C. \( 2a + b \)D. \( a + b + 1 \)答案:C二、填空题(每题4分,共20分)11. 已知\( \cos \theta = \frac{3}{5} \),\( \theta \)为锐角,则\( \sin \theta \)的值为\( \frac{4}{5} \)。
北京市西城区2021-2022高一数学上学期期末考试试题(含解析).doc
北京市西城区2021-2022高一数学上学期期末考试试题(含解析)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},那么A∩B=()A.{﹣1,1} B.{﹣2,0} C.{﹣2,0,2} D.{﹣2,﹣1,0,1} 2.(5分)方程组的解集是()A.{(1,﹣1),(﹣1,1)} B.{(1,1),(﹣1,﹣1)}C.{(2,﹣2),(﹣2,2)} D.{(2,2),(﹣2,﹣2)}3.(5分)函数y=的定义域是()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)4.(5分)下列四个函数中,在(0,+∞)上单调递减的是()A.y=x+1 B.y=x2﹣1 C.y=2x D.5.(5分)设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.b<a<c D.b<c<a6.(5分)若a>b>0,c<d<0,则一定有()A.ac>bd B.ac<bd C.ad<bc D.ad>bc7.(5分)设a∈R,b∈R.则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了2000mg该药物,那么x小时后病人血液中这种药物的含量为()A.2000(1﹣0.2x)mg B.2000(1﹣0.2)x mgC.2000(1﹣0.2x)mg D.2000•0.2x mg9.(5分)如图,向量﹣等于()A.3﹣B.﹣3C.﹣3+D.﹣+310.(5分)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是()A.①③B.①④C.②③D.②④二、填空题共6小题,每小题4分,共24分.11.(4分)已知方程x2﹣4x+1=0的两根为x1和x2,则x12+x22=.12.(4分)已知向量=(1,﹣2),=(﹣3,m),其中m∈R.若,共线,则||=.13.(4分)已知函数f(x)=log3x.若正数a,b满足,则f(a)﹣f(b)=.14.(4分)函数的零点个数是;满足f(x0)>1的x0的取值范围是.15.(4分)已知集合A={x|x2﹣x﹣6≥0},B={x|x>c},其中c∈R.①集合∁R A=;②若∀x∈R,都有x∈A或x∈B,则c的取值范围是.16.(4分)给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是.三、解答题共6小题,共76分.解答应写出文字说明,演算步骤或证明过程.17.(12分)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.18.(12分)在直角坐标系xOy中,记函数的图象为曲线C1,函数的图象为曲线C2.(Ⅰ)比较f(2)和1的大小,并说明理由;(Ⅱ)当曲线C1在直线y=1的下方时,求x的取值范围;(Ⅲ)证明:曲线C1和C2没有交点.19.(13分)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求图中a的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)20.(13分)已知函数.(Ⅰ)证明:f(x)为偶函数;(Ⅱ)用定义证明:f(x)是(1,+∞)上的减函数;(Ⅲ)当x∈[﹣4,﹣2]时,求f(x)的值域.21.(13分)设某商品的利润只由生产成本和销售收入决定.生产成本C(单位:万元)与生产量x(单位:千件)间的函数关系是C=3+x;销售收入S(单位:万元)与生产量x 间的函数关系是(Ⅰ)把商品的利润表示为生产量x的函数;(Ⅱ)为使商品的利润最大化,应如何确定生产量?22.(13分)设函数其中P,M是非空数集.记f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.2021-2022北京市西城区高一(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},那么A∩B=()A.{﹣1,1} B.{﹣2,0} C.{﹣2,0,2} D.{﹣2,﹣1,0,1} 【分析】利用交集直接求解.【解答】解:∵集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},A∩B={﹣2,0,2}.故选:C.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.(5分)方程组的解集是()A.{(1,﹣1),(﹣1,1)} B.{(1,1),(﹣1,﹣1)}C.{(2,﹣2),(﹣2,2)} D.{(2,2),(﹣2,﹣2)}【分析】运用代入消元法解方程组即可.【解答】解:记,由①得:x=﹣y③,将③代入②得2y2=2,解得y=±1,当y=1时,x=﹣1,当y=﹣1时,x=1,故原方程组的解集为{(1,﹣1),(﹣1,1)},故选:A.【点评】本题考查解方程组,运用代入法进行消元是关键,属于基础题.3.(5分)函数y=的定义域是()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)【分析】由偶次根式的被开方数大于等于0,分式的分母不为0,可得到不等式组,解出即可求得定义域.【解答】解:依题意,,解得x≥0且x≠1,即函数的定义域为[0,1)∪(1,+∞),故选:D.【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.4.(5分)下列四个函数中,在(0,+∞)上单调递减的是()A.y=x+1 B.y=x2﹣1 C.y=2x D.【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=x+1,为一次函数,在(0,+∞)上单调递增,不符合题意;对于B,y=x2﹣1,为二次函数,在(0,+∞)上单调递增,不符合题意;对于C,y=2x,为指数函数,在(0,+∞)上单调递增,不符合题意;对于D,y=,为对数函数,在(0,+∞)上单调递减,符合题意;故选:D.【点评】本题考查函数的单调性的判断,关键是掌握常见函数的单调性,属于基础题.5.(5分)设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【分析】利用对数函数和指数函数的性质求解.【解答】解:∵log20.4<log21=0,∴a<0,∵0.42=0.16,∴b=0.16,∵20.4>20=1,∴c>1,∴a<b<c,故选:A.【点评】本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.6.(5分)若a>b>0,c<d<0,则一定有()A.ac>bd B.ac<bd C.ad<bc D.ad>bc【分析】根据不等式的基本性质,逐一分析各个答案中不等式的正误,可得答案.【解答】解:若a>b>0,c<d<0,则:ac<bc<bd,故ac<bd,故A错误,B正确;ad与bc的大小无法确定,故C,D错误;故选:B.【点评】本题以命题的真假判断与应用为载体考查了不等式与不等关系,难度不大,属于基础题.7.(5分)设a∈R,b∈R.则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以带入特殊值讨论充要性.【解答】解:若a>b,取a=1,b=﹣2,则|a|<|b|,则“a>b”是“|a|>|b|”不充分条件;若|a|>|b|,取a=﹣2,b=1,则a<b,则“|a|>|b|”是‘a>b”不必要条件;则a∈R,b∈R.“a>b”是“|a|>|b|”的既不充分也不必要条件,故选:D.【点评】本题考查充要性,以及解不等式,属于基础题.8.(5分)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了2000mg该药物,那么x小时后病人血液中这种药物的含量为()A.2000(1﹣0.2x)mg B.2000(1﹣0.2)x mgC.2000(1﹣0.2x)mg D.2000•0.2x mg【分析】利用指数函数模型求得函数y与x的关系式;【解答】解:由题意知,该种药物在血液中以每小时20%的比例递减,给某病人注射了该药物2500mg,经过x个小时后,药物在病人血液中的量为y=2000×(1﹣20%)x=2000×0.8x(mg),即y与x的关系式为y=2000×0.8x.故选:B.【点评】本题考查了指数函数模型的应用问题,是基础题.9.(5分)如图,向量﹣等于()A.3﹣B.﹣3C.﹣3+D.﹣+3【分析】可设向量的终点为A,向量的终点为B,从而可得出,这样根据图形即可用表示出,从而得出正确选项.【解答】解:如图,设=,∴.故选:B.【点评】本题考查了向量减法、加法和数乘的几何意义,考查了计算能力,属于基础题.10.(5分)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是()A.①③B.①④C.②③D.②④【分析】解题的关键是理解图象表示的实际意义,进而得解.【解答】解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:C.【点评】本题考查读图识图能力,考查分析能力,属于基础题.二、填空题共6小题,每小题4分,共24分.11.(4分)已知方程x2﹣4x+1=0的两根为x1和x2,则x12+x22=14 .【分析】利用韦达定理代入即可.【解答】解:方程x2﹣4x+1=0的两根为x1和x2,x1+x2=4,x1x2=1,x12+x22=(x1+x2)2﹣2x1x2=16﹣2=14,故答案为:14.【点评】考查韦达定理的应用,基础题.12.(4分)已知向量=(1,﹣2),=(﹣3,m),其中m∈R.若,共线,则||=.【分析】根据共线即可得出m=6,从而可得出向量的坐标,进而可得出的值.【解答】解:∵共线,∴m﹣6=0,∴m=6,,∴.故答案为:.【点评】本题考查了向量共线的定义,以及共线向量的坐标关系,根据向量的坐标求向量长度的方法,考查了计算能力,属于基础题.13.(4分)已知函数f(x)=log3x.若正数a,b满足,则f(a)﹣f(b)=﹣2 .【分析】结合已知函数解析式及对数的运算性质即可求解.【解答】解:∵正数a,b满足,f(x)=log3x,则f(a)﹣f(b)=log3=log3x==﹣2.故答案为:2.【点评】本题主要考查了利用对数的运算性质求解函数值,属于基础试题.14.(4分)函数的零点个数是 2 ;满足f(x0)>1的x0的取值范围是(﹣1,0)∪(2,+∞).【分析】利用分段函数求解函数的零点,列出不等式去即可.【解答】解:函数可得x<0时,x+2=0,解得x=﹣2;x>0时,x2﹣3=0,解得x=,函数的零点有2个.满足f(x0)>1,可得,解得x0∈(﹣1,0).,解得x0∈(2,+∞).故答案为:2;(﹣1,0)∪(2,+∞).【点评】本题考查分段函数的应用,函数的零点的求法,考查转化思想以及计算能力,是中档题.15.(4分)已知集合A={x|x2﹣x﹣6≥0},B={x|x>c},其中c∈R.①集合∁R A={x|﹣2<x<3} ;②若∀x∈R,都有x∈A或x∈B,则c的取值范围是(﹣∞,﹣2] .【分析】①先求出集合A,再利用补集的定义求出∁R A;②由对∀x∈R,都有x∈A或x∈B,所以A∪B=R,从而求出c的取值范围.【解答】解:①∵集合A={x|x2﹣x﹣6≥0}={x|x≤﹣2或x≥3},∴∁R A={x|﹣2<x<3};②∵对∀x∈R,都有x∈A或x∈B,∴A∪B=R,∵集合A={x|x≤﹣2或x≥3},B={x|x>c},∴c≤﹣2,∴c的取值范围是:(﹣∞,﹣2],故答案为:{x|﹣2<x<3},(﹣∞,﹣2].【点评】本题考查的知识点是集合的交集,并集,补集运算,集合的包含关系判断及应用,难度不大,属于基础题.16.(4分)给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是①③.【分析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【解答】解:对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③.【点评】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题共6小题,共76分.解答应写出文字说明,演算步骤或证明过程.17.(12分)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.【分析】(Ⅰ)利用分层抽样能求出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B1,B2,B3,2名女生为G1,G2,利用列举法能求出抽取的2人中恰有1名女生的概率.【解答】解:(Ⅰ)这5人中男生人数为,女生人数为.(Ⅱ)记这5人中的3名男生为B1,B2,B3,2名女生为G1,G2,则样本空间为:Ω={(B1,B2),(B1,B3),(B1,G1),(B1,G2),(B2,B3),(B2,G1),(B2,G2),(B3,G1),(B3,G2),(G1,G2)},样本空间中,共包含10个样本点.设事件A为“抽取的2人中恰有1名女生”,则A={(B1,G1),(B1,G2),(B2,G1),(B2,G2),(B3,G1),(B3,G2)},事件A共包含6个样本点.从而.所以抽取的2人中恰有1名女生的概率为.【点评】本题考查抽取的5人中男生人数和女生人数的求法,考查概率的求法,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.18.(12分)在直角坐标系xOy中,记函数的图象为曲线C1,函数的图象为曲线C2.(Ⅰ)比较f(2)和1的大小,并说明理由;(Ⅱ)当曲线C1在直线y=1的下方时,求x的取值范围;(Ⅲ)证明:曲线C1和C2没有交点.【分析】(Ⅰ)因为,求出f(2)的值,结合函数的单调性判断f(2)和1的大小.(Ⅱ)因为“曲线C在直线y=1的下方”等价于“f(x)<1”,推出.求解即可.(Ⅲ)求出两个函数的定义域,然后判断曲线C1和C2没有交点.【解答】解:(Ⅰ)因为,又函数y=log3x是(0,+∞)上的增函数,所以f(2)=log34>log33=1.(Ⅱ)因为“曲线C在直线y=1的下方”等价于“f(x)<1”,所以.因为函数y=log3x是(0,+∞)上的增函数,所以 0<8﹣2x<3,即 5<2x<8,所以x的取值范围是(log25,3).(Ⅲ)因为f(x)有意义当且仅当8﹣2x>0,解得x<3.所以f(x)的定义域为D1=(﹣∞,3).g(x)有意义当且仅当x﹣3≥0,解得x≥3.所以g(x)的定义域为D2=[3,+∞).因为D1∩D2=∅,所以曲线C1和C2没有交点.【点评】本题考查函数与方程的应用,考查转化思想以及计算能力,是中档题.19.(13分)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求图中a的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)【分析】(Ⅰ)根据所有频率和为1建立等式,可求出a的值;(Ⅱ)甲队员进行一次射击,欲求命中环数大于7环的概率只需将大于7环的频率进行求和即可;(Ⅲ)在甲、乙两名队员中,通过频率分布情况看队员的射击成绩哪个相对集中,那就更稳定.【解答】解:(Ⅰ)由图可得 0.01+a+0.19+0.29+0.45=1,所以a=0.06.(Ⅱ)设事件A为“队员甲进行1次射击,中靶环数大于7”.则事件A包含三个两两互斥的事件:中靶环数为8,9,10,所以P(A)=0.45+0.29+0.01=0.75.设事件A i为“队员甲第i次射击,中靶环数大于7”,其中i=1,2,则P(A1)=P(A2)=0.75.设事件B为“队员甲进行2次射击,恰有1次中靶环数大于7”.则,A1,A2独立.所以==.所以,甲恰有1次中靶环数大于7的概率为.(Ⅲ)队员甲的射击成绩更稳定.【点评】本题主要考查了频率分布情况,以及概率的运算,同时考查了分析问题的能力,属于基础题.20.(13分)已知函数.(Ⅰ)证明:f(x)为偶函数;(Ⅱ)用定义证明:f(x)是(1,+∞)上的减函数;(Ⅲ)当x∈[﹣4,﹣2]时,求f(x)的值域.【分析】(Ⅰ)根据题意,先分析函数的定义域,进而分析f(﹣x)与f(x)的关系,结合函数奇偶性的定义即可得答案;(Ⅱ)根据题意,任取x1,x2∈(1,+∞),且x1<x2,由作差法分析可得结论;(Ⅲ)根据题意,分析可得f(x)在[﹣4,﹣2]上单调递增,结合函数的解析式分析可得答案.【解答】解:(Ⅰ)证明:根据题意,,则f(x)的定义域为D={x|x∈R,且x≠±1};对于任意x∈D,因为,所以f(x)为偶函数.(Ⅱ)当x∈(1,+∞)时,,任取x1,x2∈(1,+∞),且x1<x2,那么=;因为1<x1<x2,所以x2﹣x1>0,(x1﹣1)(x2﹣1)>0,从而f(x1)﹣f(x2)>0,即f(x1)>f(x2).所以f(x)是(1,+∞)上的减函数;(Ⅲ)由(Ⅰ)、(Ⅱ)得,f(x)在[﹣4,﹣2]上单调递增,又由f(﹣4)=,f(﹣2)=1,则有≤f(x)≤1;所以当x∈[﹣4,﹣2]时,f(x)的值域是.【点评】本题考查函数的奇偶性与单调性的判断以及应用,涉及函数值域的计算,属于基础题.21.(13分)设某商品的利润只由生产成本和销售收入决定.生产成本C(单位:万元)与生产量x(单位:千件)间的函数关系是C=3+x;销售收入S(单位:万元)与生产量x 间的函数关系是(Ⅰ)把商品的利润表示为生产量x的函数;(Ⅱ)为使商品的利润最大化,应如何确定生产量?【分析】(Ⅰ)设商品的利润为Y(万元),利用已知条件列出函数的解析式即可.(Ⅱ)利用分段函数结合基本不等式求解函数的最值,求解即可.【解答】解:(Ⅰ)设商品的利润为Y(万元),依题意得.(Ⅱ)当0<x<6时,.所以==6.当且仅当,即x=5时取等号,所以,当0<x<6时,Y有最大值6(万元).当x≥6时,Y=11﹣x≤5.综上,当x=5时,Y取得最大值6(万元).因此,当生产量确定为5千件时,商品的利润取得最大值6万元.【点评】本题考查函数模型的运用,考查学生的计算能力,基本不等式的应用,是基本知识的考查.22.(13分)设函数其中P,M是非空数集.记f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【分析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【解答】解:(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点评】本题考查并集的求法,考查集合的求法,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.。
【数学】北京市西城区2022-2023学年高一下学期期末考试试卷 (解析版)
北京市西城区2020-2021学年高一下学期期末考试数学试题一,选择题(共10小题,每小题4分,共40分).在每小题列出地四个选项中,选出符合题目要求地一项.1.设向量()3,2a=,()1,4b=-r,则a b⋅=()A.11B.9C.7D.5 2.sin330°=( )A. 12 B. –12C.3.在复平面内,复数z对应地点Z如图所示,则复数z=( )A.2+i B.2﹣i C.1+2i D.1﹣2i4.某圆锥地母线长为5cm,底面半径长为3cm,则该圆锥地体积为( )A.12πcm3B.15πcm3C.36πcm3D.45πcm35.函数f(x)=cos22x﹣sin22x地最小正周期是( )A.π2B.πC.2πD.4π6.若sinα=0.4,3π3π,22α⎛⎫∈- ⎪⎝⎭,则符合款件地角α有( )A.1个B.2个C.3个D.4个7.函数f(x)=A sin(ωx+φ)(其中A>0,ω>0,0<φ<π)地图像地一部分如图所示,则此函数地思路式是( )A. ()3sin 42ππf x x ⎛⎫=+⎪⎝⎭ B. 3()3s 4πin π4f x x ⎛⎫=+⎪⎝⎭C ()3sin 84ππf x x ⎛⎫=+⎪⎝⎭ D. 3()3s 4πin π8f x x ⎛⎫=+⎪⎝⎭8.向量cos500)n 5(,si a ︒︒= 与()cos10,sin10b ︒︒= 地夹角为( )A .30°B .40°C .60°D .90°9.在△ABC 中,内角A 和B 所对地边分别为a 和b ,则a >b 是sin A >sin B 地( )A .充分不必要款件B .必要不充分款件C .充要款件D .既不充分也不必要款件10.已知单位向量1e ,2e 满足1212e e ⋅=- ,若非零向量12a xe ye =+ ,其中x ,y ∈R ,则x a地最大值为()A. 43 B. 23C.D. 二,填空题(每题3分,满分25分,将结果填在答题纸上)11.设复数12i3i z +=-,则|z |= .12.已知半径为r 地球地表面积为36πcm 2,那么半径为2r 地球地表面积为 cm 2.13.在锐角△ABC 中,角A ,B ,C 所对地边分别为a ,b ,c .若1sin 2a B b=,则A = .14.已知向量a ,b 满足5a = ,4b = ,()a b b +⊥ ,那么a b -= .15.设函数f (x )=sinπx ,g (x )=x 2﹣x +1,有以下四个结论.①函数y =f (x )+g (x )是周期函数。
北京市西城区2022-2023学年高一上学期期末考试数学试卷(word版,含答案)
北京市西城区2022-2023学年高一上学期期末考试数学试卷数 学2023.1本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|51}A x x =-<≤,2{|9}B x x =≤,则A B =(A )[5,3]- (B )(3,1]-(C )[3,1)-(D )[3,3]-(2)已知命题:p 1x ∃<,21x ≤,则p ⌝为(A )1x ∀≥,21x > (B )1x ∃<,21x > (C )1x ∀<,21x >(D )1x ∃≥,21x >(3)如图,在平行四边形ABCD 中,AC AB -=(A )CB (B )AD (C )BD(D )CD(4)若a b >,则下列不等式一定成立的是(A )11a b< (B )22a b > (C )e e a b --< (D )ln ln a b >(5)不等式2112x x +-≤的解集为 (A )[3,2]- (B )(,3]-∞- (C )[3,2)-(D )(,3](2,)-∞-+∞(6)正方形ABCD 的边长为1,则|2|AB AD +=(A )1(B )3(C(D(7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心. 已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离s (单位:km )之间满足的关系为80022000C s s=++,则当C 最小时,s 的值为(A )20(B ) (C )40(D )400(8)设2log 3a =,则122a +=(A )8 (B )11(C )12(D )18(9)已知a 为单位向量,则“||||1+-=a b b ”是“存在0λ>,使得λb =a ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失. 在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素. 在特定条件下,疏散的影响程度k 与能见度x 满足函数关系: 0.20.1,1.4,0.110,110,b x k ax x x ⎧<⎪⎪=+⎨⎪⎪>⎩≤≤,,(,a b 是常数). 如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是 (参考数据:lg30.48≈) (A )0.24- (B )0.48-(C )0.24(D )0.48第二部分(非选择题共110 分)二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京西城区八中高一(上)期中数学试题及答案
2023北京八中高一(上)期中数 学年级:高一 科目:数学考试时间120分钟.满分150分一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知U =R ,A ={x |x 2-4x +3≤0},B ={x ||x -3|>1},则A ∪U B =( ) A. {x |1≤x ≤4}B. {x |2≤x ≤3}C. {x |1≤x <2}D. {x |2<x ≤3}2. 设()f x 是定义域为R 的函数,且“0x ∀>,()0f x >”为假命题,则下列命题为真的是( )A. 0x ∀>,()0f x ≤B. 0x ∃≤,()0f x >C. 0x ∃>,()0f x ≤D. 0x ∀≤,()0f x ≤ 3. 若函数()f x 满足1(21)f x x −=,则(3)f =( ) A. 12− B. 12 C. 1− D. 1 4. 已知,a b 都是实数,那么“0a b <<”是“11a b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 5. “453x −<”是“211x x <−”的( ) A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 6. 已知函数()f x 是奇函数,当0x <时,2()2f x x x =−+,则(2)f =A. 6−B. 6C. 10−D. 107. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A. 80元B. 120元C.160元D. 240元8. 已知函数223y x x =−−+在区间[],2a 上的最大值为154,则a 等于( )A. 32B. 12 C. 12− D. 12或32− 9. 函数241x y x =+的图象大致为( ) A. B.C. D.10. 我们把定义域为[)0,∞+且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,∞+上为增函数;(3)函数()0,1,x Q g x x Q∈⎧=⎨∉⎩在[)0,∞+上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,∞+上是“Ω函数”;其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题,共5小题,每小题5分,共25分.11. 函数()12f x x =−的定义域为______. 12. 函数12(1)1y x x x =+>−的最小值等于____________. 13. 已知函数()()y f x x =∈R 是偶函数,当0x ≥时,()22f x x x =−,若函数()f x 在区间[],2a a +上具有单调性,则实数a 的取值范围是______.14. 已知函数2,1()23,1ax a x f x ax ax a x +≥⎧=⎨−+−+<⎩,若函数()f x 的值域为R ,则实数a 的取值范围是_______________.15. 定义在区间[1,)+∞上的函数()f x 的图象是一条连续不断的曲线,()f x 在区间[21,2]k k −上单调递增,在区间[2,21]k k +上单调递减,1,2,.k =给出下列四个结论:①若{(2)}f k 为递增数列,则()f x 存在最大值;②若{(2+1)}f k 为递增数列,则()f x 存在最小值;③若(2)(21)0f k f k +>,且(2)(21)f k f k ++存在最小值,则()f x 存在最小值;④若(2)(21)0f k f k +<,且(2)(21)f k f k −+存在最大值,则()f x 存在最大值.其中所有错误结论的序号有_______.三、解答题,共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知集合{|32}A x a x a =−≤≤+,2{|870}B x x x =−+≥,全集U =R .(1)当3a =时,求()U A B ∩; (2)若A B =R ,求实数a 的取值范围.17. 自2020新冠疫情爆发以来,直播电商迅猛发展,以信息流为代表的各大社交平台也相继入场,平台用短视频和直播的形式,激发起用户情感与场景的共鸣,让用户在大脑中不知不觉间自我说服,然后引起消费行动.某厂家往年不与直播平台合作时,每年都举行多次大型线下促销活动,经测算,只进行线下促销活动时总促销费用为24万元.为响应当地政府防疫政策,决定采用线上(直播促销)线下同时进行的促销模式,与某直播平台达成一个为期4年的合作协议,直播费用(单位:万元)只与4年的总直播时长x (单位:小时)成正比,比例系数为0.12.已知与直播平台合作后该厂家每年所需的线下促销费C (单位:万元)与总直播时长x (单位:小时)之间的关系为50k C x =+(0x ,k 为常数).记该厂家线上促销费用与4年线下促销费用之和为y (单位:万元).(1)写出y 关于x 的函数关系式;(2)该厂家直播时长x 为多少时,可使y 最小?并求出y 的最小值.18. 已知函数()()222f x mx m x m =−−+−. (1)若不等式()1f x <的解集为R ,求m 的取值范围;(2)解关于x 的不等式()f x mx ≥;19. 已知函数()21ax b f x x +=+是定义在()1,1−上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1−上是增函数;(3)解不等式:()()10t f t f −+<.20. 已知函数f (x )=x 2-2ax +5.(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若a ≤1,求函数y =|f (x )|在[0,1]上的最大值.21. 设函数(),,x x P f x x x M ∈⎧=⎨−∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 【答案】A【分析】先化简集合A ,B ,再利用集合的补集和并集运算求解. 【详解】解:因为{}13A x x =≤≤,{4B x x =或}2x <, 所以{}24U B x x =≤≤,(){}14U A B x x ⋃=≤≤,故选:A .2. 【答案】C【分析】根据含有一个量词的命题的真假关系即可求解.【详解】因为命题“0,()0x f x ∀>>”为假命题,所以命题“0,()0x f x ∃>≤”为真命题,故选:C .3. 【答案】B【分析】利用换元法可得函数2(),11f x x x =≠−+,代入即可得解. 【详解】令()21,0t x x =−≠,则1t ≠−,12t x +=, 所以2(),11f t t t =≠−+,即2(),11f x x x =≠−+, 所以21(3)312f ==+. 故选:B. 【点睛】本题考查了换元法求函数解析式的应用,考查了函数值的求解,属于基础题.4. 【答案】A【分析】根据不等式的基本性质,结合充分条件、必要条件的判定方法,即可求解.【详解】由11b a a b ab−−=,因为0a b <<,可得0,0b a ab −>>,所以110−>a b , 所以11a b >成立,即充分性成立; 反之:例如:当2,3a b ==时,满足11a b >,此时0b a >>,即必要性不成立, 所以0a b <<是11a b>的充分不必要条件.故选:A.5. 【答案】D【分析】根据绝对值的定义和分式不等式的解法,求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式453x −<,可得3453x −<−<,解得122x <<, 又由211x x <−,可得211011x x x x +−=<−−,解得11x −<<, 两个不等式的解集没有包含关系, 所以453x −<是211x x <−的既不充分也不必要条件. 故选:D.6. 【答案】D【分析】先求()2f −,再利用奇函数的性质,()()22f f =−−求值.【详解】()()()2222210f −=−⋅−+−=− ()f x 是奇函数,满足()()f x f x −=−,即()()2210f f =−−=.故选:D【点睛】本题考查利用奇偶性求函数值,重点考查函数性质的应用,属于简单题型.7. 【答案】C【详解】设长方体底面边长分别为,x y ,则4y x=, 所以容器总造价为42()102020()80z x y xy x x =+⨯+=++, 由基本不等式得,420()80160z x x=++≥,当且仅当底面为边长为2的正方形时,总造价最低,选C.考点:函数的应用,基本不等式的应用.8. 【答案】C【分析】求得函数()f x 的对称轴,对a 分类讨论,结合二次函数的性质,即可求解.【详解】由函数()2223(1)4f x x x x =−−+=−++,对称轴的方程为=1x −, 当1a ≤−时,则=1x −时,函数()f x 取得最大值4,不满足题意;当12a −<≤时,可函数()f x 在区间[],2a 上单调递减,所以当x a =时,函数()f x 取得最大值,最大值为()215234f a a a =−−+=, 解得12a =−或32a =−(舍去). 故选:C. 9. 【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241x f x f x x −−==−+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10. 【答案】B【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.【详解】解:对(1),由①得()00f ≥,在②中令0x y ==,即()()020f f =,解得:()00f ≤, ()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,∞+不是增函数,故(2)错误;对(3),当x ,y 都为正无理数时,不满足②,故(3)错误;对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥,即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +−−=+++−−−−=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B.【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.二、填空题,共5小题,每小题5分,共25分.11. 【答案】[)()1,22,⋃+∞【分析】根据函数的解析式,列不等式求函数的定义域.【详解】函数的定义域需满足1020x x −≥⎧⎨−≠⎩,解得:1x ≥且2x ≠, 所以函数的定义域是[)()1,22,⋃+∞.故答案为:[)()1,22,⋃+∞12. 【答案】2+【分析】利用基本不等式求解.【详解】因为1x >,所以()1122122211y x x x x =+=−++≥+=−−,当且仅当()1211x x −=−,即12x =+时,等号成立,所以函数12(1)1y x x x =+>−的最小值是2+.故答案为:2+13. 【答案】(][),31,−∞−⋃+∞【分析】先根据奇偶性求函数解析式,进而结合图象即可求解.【详解】)设0x <,则0x −>,则()22f x x x −=+,因为()f x 为偶函数, 所以()()22f x f x x x =−=+,所以()222,02,0x x x f x x x x ⎧+<=⎨−≥⎩,作出()f x 的图象如图:因为函数()f x 在区间[],2a a +上具有单调性,由图可得21a +≤−或1a ≥,解得3a ≤−或1a ≥,所以实数a 的取值范围是(][),31,−∞−⋃+∞.故答案为:(][),31,−∞−⋃+∞.14. 【答案】30,2⎛⎤ ⎥⎝⎦【分析】分0a =,a<0和0a >三种情况,再根据一次函数和二次函数的性质分析值域即可【详解】根据题意,函数2,1()23,1ax a x f x ax ax a x +≥⎧=⎨−+−+<⎩,分三种情况讨论:①若0a =,0,1()3,1x f x x ≥⎧=⎨<⎩,其值域为{}0,3,不符合题意; ②若a<0,当1x ≥时,()f x ax a =+,有最大值2a ;当1x <时,()()2223133f x ax ax a a x =−+−+=−−+>,若函数()f x 的值域为R ,则必有23a ≥,即32a ≥,不符合题意; ③若0a >,当1x ≥时,()f x ax a =+,有最小值2a ;当1x <时,()()2223133f x ax ax a a x =−+−+=−−+<,若函数()f x 的值域为R ,则必有23a ≤,即32a ≤,故有302<≤a ,即a 的范围为30,2⎛⎤ ⎥⎝⎦故答案为:30,2⎛⎤ ⎥⎝⎦【点睛】对于题中包含参数的一二次函数,求解关于值域的问题,需要分类讨论,根据一次函数的单调性、二次函数的二次项系数进行讨论,属于中档题15. 【答案】①③④【分析】结合函数的单调性判断最值,即可判断①②,利用取反例,判断③④.【详解】①由条件可知,函数()f x 在区间[21,2]k k −上单调递增,在区间[2,21]k k +上单调递减,1,2,.k =那么在区间[]21,21k k −+,函数的最大值是()2f k ,若数列{(2)}f k 为递增数列,则函数()f x 不存在最大值,故①错误;②由条件可知,函数()f x 在区间[21,2]k k −上单调递增,在区间[2,21]k k +上单调递减,若{(2+1)}f k 为递增数列,那么在区间[]21,21k k −+的最小值是()21f k −,且{(2+1)}f k 为递增数列,所以函数()f x 在区间[)1,+∞的最小值是()1f ,故②正确;③若(2)(21)0f k f k +>,取()()122121f k k k f k k ⎧=−⎪⎪⎨⎪+=⎪⎩,*N k ∈, 则()()2212f k f k k ++=,存在最小值,但此时()f x 的最小值是()121f k k+=的最小值, 函数单调递减,无最小值,故③错误; ④若(2)(21)0f k f k +<,取()()12221212k k f k f k ⎧=−⎪⎪⎨⎪+=−⎪⎩,则()()2212f k f k −+=恒成立,则()()221f k f k −+有最大值,但()f x 的最大值是()1222k f k =−的最大值,函数单调递增,无最大值,故④错误.故答案为:①③④ 三、解答题,共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16. 【答案】(1)(1,5];(2)5a ≥.【分析】(1)先解不等式得B ,再利用补集、交集的定义求解作答.(2)利用给定条件可得()U B A ⊆,再利用集合的包含关系求出实数a 的取值范围. 【小问1详解】依题意,2{|870}(,1][7,)B x x x =−+≥=−∞+∞,则(1,7)U B =,当3a =时,[0,5]A =, 所以()[0,5](1,7)(1,5]U A B ==【小问2详解】因A B =R ,则有()U B A ⊆,由(1)知(1,7)U B =,3127a a −≤⎧⎨+≥⎩,解得5a ≥, 所以实数a 的取值范围是5a ≥.17. 【答案】(1)48003(0)5025x y x x =++ (2)线上直播x=150小时可使y 最小为42万元【分析】(1)通过0x =求出系数k ,即可得结果;(2)直接根据基本不等式即可得结果【小问1详解】由题得,当0x =时,2450k C ==,则1200k =, 故该厂家4年促销费用与线上直播费用之和为12004800340.12(0)505025x y x x x x =⨯+=+++ 【小问2详解】由(1)知48003(50)66425025y x x =++−≥=+, 当且仅当48003(50)5025x x =++,即150x =时等号成立, 即线上直播150小时可使y 最小为42万元.18. 【答案】(1)4,3∞⎛⎫−− ⎪ ⎪⎝⎭(2)答案详见解析【分析】(1)对m 进行分类讨论,根据一元二次不等式恒成立列不等式来求得m 的取值范围.(2)化简()f x mx ≥,对m 进行分类讨论,根据一元二次不等式的知识求得正确答案.【小问1详解】 ()1f x <的解集为R ,即()2230mx m x m −−+−<在R 上恒成立, 当0m =时,230x −<不恒成立,当0m ≠时,需满足0m <且一元二次方程()2230mx m x m −−+−=无实根, 则有()()20Δ2430m m m m <⎧⎪⎨=−−−<⎪⎩, 即203840m m m <⎧⎨−−>⎩,解得43m −<. 综上,m的取值范围为4,3∞⎛⎫−− ⎪ ⎪⎝⎭. 【小问2详解】()f x mx ≥,即()22220mx m x m −−+−≥,即()()210mx m x −−−≥⎡⎤⎣⎦,①当0m =时,解集为{}1xx ≥∣; ②当0m >时,()210m x x m −⎛⎫−−≥ ⎪⎝⎭,2211m m m−=−<, ∴解集为2|1m x m x m −⎧⎫≥≤⎨⎬⎩⎭或; ③当0m <时,()210m x x m −⎛⎫−−≤ ⎪⎝⎭, 2211m m m−=−>, ∴解集为21m x x m −⎧⎫≤≤⎨⎬⎩⎭. 19. 【答案】(1)()21x f x x =+ (2)证明见解析 (3)102t t ⎧⎫<<⎨⎬⎩⎭【分析】(1)由(0)01225f f =⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩解出,a b ,可确定函数()f x 的解析式;(2)用定义证明函数的单调性; (3)利用奇偶性和单调性解不等式.【小问1详解】由题意,得(0)012212514f b a b f ==⎧⎪⎪+⎨⎛⎫== ⎪⎪⎝⎭+⎪⎩, ∴10a b =⎧⎨=⎩(经检验符合题意),故()21x f x x =+. 【小问2详解】证明 任取()12,1,1x x ∈−,且12x x <,则()()()()()()121212122222121211111x x x x x x f x f x x x x x −−−=−=++++. ∵1211x x −<<<,∴120x x −<,2110x +>,2210x +>.又1211x x −<<,∴1210x x −>.∴()()()()121222121011x x x x x x −−<++,即()()12f x f x <,∴()f x 在()1,1−上是增函数.【小问3详解】由(2)知()f x 在()1,1−上是增函数,又()f x 在()1,1−上为奇函数,()()10t f t f −+<,∴()()()1f f f t t t −<−=−,∴111111t t t t −<−<⎧⎪−<−<⎨⎪−<−⎩, 解得102t <<.∴不等式的解集为102t t ⎧⎫<<⎨⎬⎩⎭. 20. 【答案】(1) a =2.(2) y max =16221512a a a ⎧−⎪⎪⎨⎪≤≤⎪⎩,<,. 【分析】(1)利用二次函数的图象,求出二次函数的最值,列出不等式组,即可解出a 的值. (2)对对称轴的位置分类讨论,结合二次函数的图象,求出函数的最大值.【详解】(1)函数f (x )=x 2-2ax +5=(x -a )2+5-a 2,且a >1,∴f (x )在[1,a ]上是减函数,又定义域和值域均是[1,a ],∴()()11f a f a ⎧=⎪⎨=⎪⎩,即22125251a a a a −+=⎧⎨−+=⎩,解得a =2. (2)①当a ≤0时,函数y =|f (x )|在[0,1]上单调递增,故y max =f (1)=6-2a ,②当0<a ≤1时,此时△=4a 2-5<0,且f (x )图象开口向上,对称轴在(0,1)内,故y max =max{f (0),f (1)}=max{5,6-2a }=162021512a a a ⎧−⎪⎪⎨⎪≤≤⎪⎩,<<,, 综上所求:y max =16221512a a a ⎧−⎪⎪⎨⎪≤≤⎪⎩,<,. 【点睛】本题考查了二次函数的图象和性质,考查了利用二次函数图象求最值的方法,考查分类讨论思想,是中档题.21. 【答案】(Ⅰ)[0,+∞);(Ⅱ)P =(﹣∞,0)∪(0,+∞),M ={0};(Ⅲ)真命题,证明见解析【分析】(Ⅰ)求出f (P )=[0,3],f (M )= (1,+∞),由此能过求出f (P )∪f (M ).(Ⅱ)由f (x )是定义在R 上的增函数,且f (0)=0,得到当x <0时,f (x )<0, (﹣∞,0)⊆P . 同理可证 (0,+∞)⊆P . 由此能求出P ,M .(Ⅲ)假设存在非空数集P ,M ,且P ∪M ≠R ,但f (P )∪f (M )=R .证明0∈P ∪M .推导出f (﹣x 0)=﹣x 0,且f (﹣x0)=﹣ (﹣x0)=x0,由此能证明命题“若P∪M≠R,则f (P)∪f (M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f (M)=[0,+∞).(Ⅱ)因为f (x)是定义在R上的增函数,且f (0)=0,所以当x<0时,f (x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f (P)∪f (M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f (P),且0∉f (M),即0∉f (P)∪f (M),这与f (P)∪f (M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f (P),且﹣x0∉f (M).因为f (P)∪f (M)=R,所以﹣x0∈f (P),且x0∈f (M).所以﹣x0∈P,且﹣x0∈M.所以f (-x0)=﹣x0,且f (-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.。
西城区期末高一数学试卷
一、选择题(每题5分,共50分)1. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^3 - 3x2. 已知等差数列{an}的首项为2,公差为3,则第10项an等于()A. 27B. 29C. 31D. 333. 下列各式中,等式成立的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^34. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(-1) = 0,f(1) = 2,则函数的对称轴为()A. x = -1B. x = 1C. x = 0D. x = 25. 下列命题中,正确的是()A. 函数y = 2^x在定义域内单调递减B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 二项式定理中,展开式中第r+1项的系数为C_n^rD. 等比数列{an}的通项公式为an = a1 q^(n - 1)6. 已知数列{an}的前n项和为Sn,若an = 3^n - 2^n,则Sn等于()A. 3^n - 2^nB. 3^n - 1C. 3^n + 1D. 3^n - 2^n + 17. 下列各式中,正确的是()A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) = cosαcosβ - sinαsinβC. tan(α + β) = (tanα +tanβ) / (1 - tanαtanβ)D. cot(α + β) = (cotα + cotβ) / (1 - cotαcotβ)8. 已知函数f(x) = x^3 - 3x,则f'(x)等于()A. 3x^2 - 3B. 3x^2 - 1C. 3x^2 + 3D. 3x^2 + 19. 下列数列中,不是等比数列的是()A. 2, 4, 8, 16, ...B. 1, 2, 4, 8, ...C. 1, 3, 9, 27, ...D. 1, 2, 4, 7, ...10. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像在()处与x轴相交A. (1, 0)B. (2, 0)C. (3, 0)D. (4, 0)二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值。
2023-2024学年北京市西城区高一(下)期末数学试卷+答案解析
2023-2024学年北京市西城区高一(下)期末数学试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.已知向量,,若向量,则()A.2B.C.8D.3.在中,,,,则()A. B. C. D.4.平面向量,在正方形网格中的位置如图所示,若网格中每个小正方形的边长均为l,则()A.B.0C.1D.25.已知,是不重合的平面,m,n是不重合的直线,下列命题中不正确的是()A.若,,则B.若,,则C.若,,则D.若,,则6.在平面直角坐标系xOy中,已知,,,则的取那值范围是()A. B. C. D.7.如图,已知正六棱锥的侧棱长为6,底面边长为3,Q是底面上一个动点,,则点Q所形成区域的面积为()A.B.C.D.8.已知函数和,的图象以每秒个单位的速度向左平移,的图象以每秒个单位的速度向右平移,若平移后的两个函数图象重合,则需要的时间至少为()A.1秒B.2秒C.3秒D.4秒9.已知函数,“存在,函数的图象既关于直线对称,又关于点对称”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.方波是一种非正弦曲线的波形,广泛应用于数字电路、定时器、逻辑控制、开关电源等领域.理想方波的解析式为,而在实际应用中多采用近似方波发射信号.如就是一种近似情况,则()A.函数是最小正周期为的奇函数B.函数的对称轴为C.函数在区间上单调递增D.函数的最大值不大于2二、填空题:本题共5小题,每小题5分,共25分。
11.复数,则______.12.已知函数若非零实数a,b,使得对都成立,则满足条件的一组值可以是______,______只需写出一组13.有一个木制工艺品,其形状是一个圆柱被挖去一个与其共底面的圆锥.已知圆柱的底面半径为3,高为5,圆锥的高为4,则这个木质工艺品的体积为______,表面积为______.14.在中,,,,则______,______.15.如图,在棱长为2的正方体中,点M为AD的中点,点N是侧面上包括边界的动点,点P是线段上的动点,给出下列四个结论:①任意点P,都有;②存在点P,使得平面MPC;③存在无数组点N和点P,使得;④点P到直线的距离最小值是,其中所有正确结论的序号是______.三、解答题:本题共6小题,共85分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2015 — 2016学年度第一学期期末试卷
高一数学 2016.1
试卷满分:150分 考试时间:120分钟
A 卷 [必修 模块4] 本卷满分:100分
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有
一项是符合要求的.
(2,1)2 2
)最小正周期为π的偶函数
为了得到函数sin(2)4
y x π
=-的图象,可以将函数
二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin
4
5π
= _____. 12. 如图所示,D 为ABC △中BC 边的中点,设AB =a ,AC =b , 则BD =_____.(用a ,b 表示)
13. 角α终边上一点的坐标为(1,2),则tan 2α=_____. 14. 设向量(0,2),(3,1)a
b ,则,a b 的夹角等于_____.
15. 已知(0,)α∈π,且cos sin
8
απ
=-,则α=_____. 16. 已知函数()sin f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3
π
上单调递增,
则ω的值为_______.
三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤.
A
B
C
17.(本小题满分12分)
已知2απ∈π(,),且3
sin 5α=. (Ⅰ)求tan()4
απ
-的值;
(Ⅱ)求sin2cos 1cos 2αα
α
-+的值.
18.(本小题满分12分)
如图所示,C B ,两点是函数()sin(2)3
f x A x π
=+(0>A )图象上相邻的两个最高点,D 点为函数)(x f 图象与x 轴的一个交点. (Ⅰ)若2=A ,求)(x f 在区间[0,]2
π上的值域;
(Ⅱ)若CD BD ⊥,求A 的值.
19.(本小题满分12分)
如图,在ABC △中,1AB AC ==,120BAC ∠=. (Ⅰ)求AB BC ⋅的值;
(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC =+,其中,x y ∈R . 求xy 的最大值.
B 卷 [学期综合] 本卷满分:50分
A
B
C
P
一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.设U =R ,{|0}A x x =>,{|1}B x x =>,则U
A B =_____.
2
.2
log =_____,31log 23+=_____.
3.已知函数()f x =1
,2, 1.
x x x x ⎧-⎪⎨⎪<⎩≥1,
且()(2)0f a f +=,则实数a = _____.
4.已知函数)(x f 是定义在R 上的减函数,如果()(1)f a f x >+在[1,2]x ∈上恒成立,那么实数a 的取值范围是_____.
5. 通过实验数据可知,某液体的蒸发速度y (单位:升/小时)与液体所处环境的温度x (单位:℃)近似地满足函数关系e kx b y +=(e 为自然对数的底数,,k b 为常数). 若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为_____升/小时.
二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)
已知函数26()1
x
f x x =
+. (Ⅰ)判断函数)(x f 的奇偶性,并证明你的结论; (Ⅱ)求满足不等式(2)2x x f >的实数x 的取值范围. 7.(本小题满分10分)
设a 为实数,函数2()2f x x ax =-.
(Ⅰ)当1a =时,求()f x 在区间[0,2]上的值域;
(Ⅱ)设函数()()g x f x =,()t a 为()g x 在区间[0,2]上的最大值,求()t a 的最小值. 8.(本小题满分10分)
设函数()f x 定义域为[0,1],若()f x 在*[0,]x 上单调递增,在*[,1]x 上单调递减,则称*x 为函数()f x 的峰点,()f x 为含峰函数.
(特别地,若()f x 在[0,1]上单调递增或递减,
则峰点为1或0)
对于不易直接求出峰点*x 的含峰函数,可通过做试验的方法给出*x 的近似值. 试验原理为:“对任意的1x ,2(0,1)x ∈,12x x <,若)()(21x f x f ≥,则),0(2x 为含峰区间,此时称
1x 为近似峰点;若12()()f x f x <,则)1,(1x 为含峰区间,此时称2x 为近似峰点”.
我们把近似峰点与*x 之间可能出现....的最大距离称为试验的“预计误差”,记为d ,其值为=d }}1,m ax {},,m ax {m ax {212121x x x x x x ---(其中},max{y x 表示y x ,中较大的数). (Ⅰ)若411=
x ,2
1
2=x .求此试验的预计误差d . (Ⅱ)如何选取1x 、2x ,才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明1x 的取值即可).
(Ⅲ)选取1x ,2(0,1)x ∈,12x x <,可以确定含峰区间为2(0,)x 或1(,1)x . 在所得的含峰区间内选取3x ,由3x 与1x 或3x 与2x 类似地可以进一步得到一个新的预计误差d '.分别求出当4
1
1=x 和125x =时预计误差d '的最小值.(本问只写结果,不必证明)。