多元线性回归实习实际例题分析
应用回归分析实验三-:多元线性回归
实验三:多元线性回归实验内容习题一(P64例3.1)(1)打开SPSS软件,输入数据如下(部分):选择“分析”中“回归--线性”,以y为应变量,以x1-x9为自变量,点击“确定”得:所以得回归方程为:y=1.465x1+2.575x2+2.005x3+0.891x5+0.67x6+0.28x7+11.405x8-160.711x9-2721.493从回国方程可以看到,x1-x9对居民的消费支出起正影响,x9对居民的消费性支出起负影响。
(2)F检验。
用SPSS软件计算出的方差分析图如下:从输出结果可知,Sig即显著性P值,由P值为0.000可知,此回归方程高度显著。
t检验。
通过定性分析,先剔除x4,用y与其他8个变量做回归分析,计算结果如下图:剔除x4之后,仍然有不显著的自变量,此时最大的P值为p8=0.827,因此进一步剔除x8,用y与其余6个变量作回归,回归系数表如下图:T检验中,依次剔除P值最大的自变量,直到最后所有的自变量在显著性水平为0.05时都显著。
习题二(P93.例4.3)(1)打开SPSS软件,输入数据如下图:(2)建立y对x的普通最小二乘回归,决定系数R2=0.912,回归标准差为247.62.方差分析表和回归系数输出表如下:(3)在原始数据中增加一列变量RES_1,即残差值,如图:然后以x(居民收入)为x轴,残差值为y轴画散点图:从残差图看出,误差项具有明显的异方差性,误差随着x的增加而呈现出增加的趋势。
(4)计算等级相关系数。
先计算出残差的绝对值,如图:然后选择分析中的“相关--双变量”,选择x和e为变量,在相关系数一栏里选择Spearman 打钩,点击确定即得到等级相关系数,如下图所示:从上图可知,相关系数为0.686,P值=2.055E-5,即残差绝对值e与自变量x显著相关,存在异方差。
(5)用加权最小二乘法来消除异方差。
选择“分析”中“回归--权重估计”,以x为自变量,y为因变量,对x进行加权估计,得:然后画出加权最小二乘残差图,如下:可编辑比较前后两幅残差图,可以得出,加权最小二乘估计的效果好于普通最小二乘估计效果。
9.9多元线性回归分析实例应用
三个自变量回归系数对应的 P 值(即Sig.)都接近于0,从而可 认为
回归模型中这三个自变量都对因变量有显著的线性影响。
一元线性回归分析应用
Yˆi 15.044 0.5016.18 2.35813.80 1.61213.78 7.81 (百万支)
表示其他公司平均销售价格。建立销售额的样本线性回归方程如 下:
Yˆi 15.044 0.501X1i 2.358X2i 1.612X3i
一元线性回归分析应用
解
多重判定系数
R2 0.894
修正的多重判定系数 R2 0.881
回归估计标准误差 Se 0.23467 表明牙膏销售量与广告费用、销售价格、其它公司平均销售价格三
思考练习
表 18个月的销售额和库存金额、广告收入、员工薪酬的数据 万元
月份 1 2 3 4 5 … 14 15 16 17 18
销售额 1090.4 1133.0 1242.1 1003.2 1283.2
… 1551.3 1601.2 2311.7 2126.7 2256.5
库存资金额 75.2 77.6 80.7 76.0 79.5 … 125.0 137.8 175.6 155.2 174.3
个自变量之间的线性相关程度很高,回归方程的拟合效果较好。
一元线性回归分析应用
解
广告费用的回归系数检验 t1 3.981 ,对应的 P 0.000491 0.05
销售价格的回归系数检验 t2 3.696 ,对应的 P 0.001028 0.05
其它公司平均销售价格的回归系数检验 t3 5.459 ,
多元线性回归分析实例
多元线性回归分析案例
多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。
在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。
本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。
案例背景。
假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。
我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。
数据分析。
首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。
我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。
通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。
多元线性回归模型。
我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。
模型验证。
我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。
结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。
同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。
决策建议。
—多元线性回归分析案例
—多元线性回归分析案例多元线性回归分析是一种广泛使用的统计分析方法,用于研究多个自变量对一个因变量的影响程度。
在实际应用中,多元线性回归可以帮助我们理解变量之间的相互关系,并预测因变量的数值。
下面我们将以一个实际案例来介绍多元线性回归分析的应用。
假设我们是一家电子产品制造商,我们想研究影响手机销量的因素,并尝试通过多元线性回归模型来预测手机的销量。
我们选择了三个自变量作为影响因素:广告投入、价格和市场份额。
我们收集了一段时间内的数据,包括这三个因素以及对应的手机销量。
现在我们将利用这些数据来进行多元线性回归分析。
首先,我们需要将数据进行预处理和清洗。
我们检查数据的完整性和准确性,并去除可能存在的异常值和缺失值。
然后,我们对数据进行描述性统计分析,以了解数据的整体情况和变量之间的关系。
接下来,我们将建立多元线性回归模型。
我们将销量作为因变量,而广告投入、价格和市场份额作为自变量。
通过引入这些自变量,我们可以预测手机销量,并分析它们对销量的影响程度。
为了进行回归分析,我们需要估计模型的系数。
这可以通过最小二乘法来实现,该方法将使得模型的预测结果与实际观测值之间的残差平方和最小化。
接下来,我们将进行统计检验,以确定自变量对因变量的显著影响。
常见的统计指标包括回归系数的显著性水平、t值和p值。
在我们的案例中,假设多元线性回归模型的方程为:销量=β0+β1×广告投入+β2×价格+β3×市场份额+ε。
其中,β0、β1、β2和β3为回归系数,ε为误差项。
完成回归分析后,我们可以进行模型的诊断和评估。
我们可以检查模型的残差是否呈正态分布,以及模型的拟合程度如何。
此外,我们还可以通过交叉验证等方法评估模型的准确性和可靠性。
最后,我们可以利用训练好的多元线性回归模型来进行预测。
通过输入新的广告投入、价格和市场份额的数值,我们可以预测手机的销量,并根据预测结果制定相应的市场策略。
综上所述,多元线性回归分析是一种强大的统计工具,可用于分析多个自变量对一个因变量的影响。
多元线性回归模型案例分析报告
多元线性回归模型案例分析报告多元线性回归模型是一种用于预测和建立因变量和多个自变量之间关系的统计方法。
它通过拟合一个线性方程,找到使得回归方程和实际观测值之间误差最小的系数。
本报告将以一个实际案例为例,对多元线性回归模型进行案例分析。
案例背景:公司是一家在线教育平台,希望通过多元线性回归模型来预测学生的学习时长,并找出对学习时长影响最大的因素。
为了进行分析,该公司收集了一些与学习时长相关的数据,包括学生的个人信息(性别、年龄、学历)、学习环境(家乡、宿舍)、学习资源(网络速度、学习材料)以及学习动力(学习目标、学习习惯)等多个自变量。
数据分析方法:通过建立多元线性回归模型,我们可以找到与学习时长最相关的因素,并预测学生的学习时长。
首先,我们将根据实际情况对数据进行预处理,包括数据清洗、过滤异常值等。
然后,我们使用逐步回归方法,通过逐步添加和删除自变量来筛选最佳模型。
最后,我们使用已选定的自变量建立多元线性回归模型,并进行系数估计和显著性检验。
案例分析结果:经过数据分析和模型建立,我们得到了如下的多元线性回归模型:学习时长=0.5*年龄+0.2*学历+0.3*学习资源+0.4*学习习惯对于系数估计,我们发现年龄、学历、学习资源和学习习惯对于学习时长均有正向影响,即随着这些变量的增加,学习时长也会增加。
其中,年龄和学习资源的影响较大,学历和学习习惯的影响较小。
在显著性检验中,我们发现该模型的拟合度较好,因为相关自变量的p值均小于0.05,表明它们对学习时长的影响具有统计学意义。
案例启示:本案例的分析结果为在线教育平台提供了重要的参考。
公司可以针对年龄较大、学历高、学习资源丰富和有良好学习习惯的学生,提供个性化的学习服务和辅导。
同时,公司也可以通过提供更好的学习资源和培养良好的学习习惯,来提升学生的学习时长和学习效果。
总结:多元线性回归模型在实际应用中具有广泛的应用价值。
通过对因变量和多个自变量之间的关系进行建模和分析,我们可以找到相关影响因素,并预测因变量的取值。
多元线性回归实例分析
SPSS返回多元线性返回模型案例剖析!(一)之阳早格格创做多元线性返回,主假如钻研一个果变量与多个自变量之间的相闭闭系,跟一元返回本理好已几,辨别正在于做用果素(自变量)更多些而已,比圆:一元线性返回圆程为:毫无疑问,多元线性返回圆程该当为:上图中的 x1, x2, xp分别代表“自变量”Xp停止,代表有P个自变量,如果有“N组样本,那么那个多元线性返回,将会组成一个矩阵,如下图所示:那么,多元线性返回圆程矩阵形式为:其中:代表随机缺面,其中随机缺面分为:可阐明的缺面战不可阐明的缺面,随机缺面必须谦脚以下四个条件,多元线性圆程才蓄意思(一元线性圆程也一般)1:服成正太分散,即指:随机缺面必须是服成正太分别的随机变量.2:无偏偏性假设,即指:憧憬值为03:共共圆好性假设,即指,所有的随机缺面变量圆好皆相等4:独力性假设,即指:所有的随机缺面变量皆相互独力,不妨用协圆好阐明.即日跟大家所有计划一下,SPSS多元线性返回的简曲支配历程,底下以教程教程数据为例,分解汽车特性与汽车出卖量之间的闭系.通太过解汽车特性跟汽车出卖量的闭系,建坐拟合多元线性返回模型.数据如下图所示:面打“分解”——返回——线性——加进如下图所示的界里:将“出卖量”动做“果变量”拖进果变量框内,将“车少,车宽,耗油率,车洁沉等10个自变量拖进自变量框内,如上图所示,正在“要收”中间,采用“逐步”,天然,您也不妨采用其余的办法,如果您采用“加进”默认的办法,正在分解停止中,将会得到如下图所示的停止:(所有的自变量,皆市强止加进)如果您采用“逐步”那个要收,将会得到如下图所示的停止:(将会根据预先设定的“F统计量的概率值举止筛选,最先加进返回圆程的“自变量”该当是跟“果变量”闭系最为稀切,孝敬最大的,如下图不妨瞅出,车的代价战车轴跟果变量闭系最为稀切,切合推断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“采用变量(E)" 框内,尔并不输进数据,如果您需要对于某个“自变量”举止条件筛选,不妨将那个自变量,移进“采用变量框”内,有一个前提便是:该变量从已正在另一个目标列表中出现!,再面打“准则”设定相映的“筛选条件”即可,如下图所示:面打“统计量”弹出如下所示的框,如下所示:正在“返回系数”底下勾选“预计,正在左侧勾选”模型拟合度“ 战”共线性诊疗“ 二个选项,再勾选“个案诊疗”再面打“离群值”普遍默认值为“3”,(设定非常十分值的依据,惟有当残好超出3倍尺度好的瞅测才会被当搞非常十分值)面打继承.提示:共线性考验,如果有二个大概二个以上的自变量之间存留线性相闭闭系,便会爆收多沉共线性局里.那时间,用最小二乘法预计的模型参数便会不宁静,返回系数的预计值很简单引起误导大概者引导过失的论断.所以,需要勾选“共线性诊疗”去搞推断通过容许度不妨预计共线性的存留与可?容许度TOL=1RI仄圆大概圆好伸展果子(VIF): VIF=1/1RI仄圆,其中RI仄圆是用其余自变量预测第I个变量的复相闭系数,隐然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其余自变量之间存留共线性的大概性越大.提供三种处理要收:1:从有共线性问题的变量里简略不要害的变量2:减少样本量大概沉新抽与样本.3:采与其余要收拟合模型,如收返回法,逐步返回法,主身分分解法.再面打“画造”选项,如下所示:上图中:DEPENDENT( 果变量) ZPRED(尺度化预测值) ZRESID(尺度化残好) DRESID(剔除残好) ADJPRED(建正后预测值) SRSID(教死化残好) SDRESID(教死化剔除残好)普遍咱们大部分以“自变量”动做 X 轴,用“残好”动做Y 轴,然而是,也不要忽略特殊情况,那里咱们以“ZPRED (尺度化预测值)动做"x" 轴,分别用“SDRESID(血死化剔除残好)”战“ZRESID(尺度化残好)动做Y轴,分别动做二组画图变量.再面打”保存“按钮,加进如下界里:如上图所示:勾选“距离”底下的“cook距离”选项(cook 距离,主假如指:把一个个案从预计返回系数的样本中剔除时所引起的残好大小,cook距离越大,标明该个案对于返回系数的做用也越大)正在“预测区间”勾选“均值”战“单值” 面打“继承”按钮,再面打“决定按钮,得到如下所示的分解停止:(此分解停止,采与的是“逐步法”得到的停止)SPSS—返回—多元线性返回停止分解(二),迩去背去很闲,公司的潮起潮降,便佳比人死的跌岩起伏,眼瞅着一步步走背衰强,却无计可施,也许要教习“步步惊心”内里“四阿哥”的座左铭:“止到火贫处”,”坐瞅云起时“.交着上一期的“多元线性返回剖析”内里的真质,上一次,不写停止分解,那次补上,停止分解如下所示:停止分解1:由于启初采用的是“逐步”法,逐步法是“背前”战“背后”的分离体,从停止不妨瞅出,最先加进“线性返回模型”的是“price in thousands"建坐了模型1,紧随其后的是“Wheelbase"建坐了模型2,所以,模型中有此要收有个概率值,当小于等于0.05时,加进“线性返回模型”(最先加进模型的,相闭性最强,闭系最为稀切)当大于等0.1时,从“线性模型中”剔除停止分解:1:从“模型汇总”中不妨瞅出,有二个模型,(模型1战模型2)从R2 拟合劣度去瞅,模型2的拟合劣度明隐比模型1要佳一些(0.422>0.300)2:从“Anova"表中,不妨瞅出“模型2”中的“返回仄圆战”为115.311,“残好仄圆战”为153.072,由于总仄圆战=返回仄圆战+残好仄圆战,由于残好仄圆战(即指随即缺面,不可阐明的缺面)由于“返回仄圆战”跟“残好仄圆战”险些交近,所有,此线性返回模型只阐明了总仄圆战的一半,3:根据后里的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引进,其隐著性概率值均近小于0.01,所以不妨隐著天中断总体返回系数为0的本假设,通过ANOVA圆好分解表不妨瞅出“出卖量”与“代价”战“轴距”之间存留着线性闭系,至于线性闭系的强强,需要进一步举止分解.停止分解:1:从“已排除的变量”表中,不妨瞅出:“模型2”中各变量的T检的概率值皆大于“0.05”所以,不克不迭够引进“线性返回模型”必须剔除.从“系数a” 表中不妨瞅出:1:多元线性返回圆程该当为:出卖量=1.8220.055*代价+0.061*轴距然而是,由于常数项的sig为(0.116>0.1) 所以常数项不具备隐著性,所以,咱们再瞅后里的“尺度系数”,正在尺度系数一列中,不妨瞅到“常数项”不数值,已经被剔除所以:尺度化的返回圆程为:出卖量=0.59*代价+0.356*轴距2:再瞅末尾一列“共线性统计量”,其中“代价”战“轴距”二个容好战“vif皆一般,而且VIF皆为1.012,且皆小于5,所以二个自变量之间不出现共线性,容忍度战伸展果子是互为倒数闭系,容忍度越小,伸展果子越大,爆收共线性的大概性也越大从“共线性诊疗”表中不妨瞅出:1:共线性诊疗采与的是“特性值”的办法,特性值主要用去描画自变量的圆好,诊疗自变量间是可存留较强多沉共线性的另一种要收是利用主身分分解法,基础思维是:如果自变量间真真存留较强的相闭闭系,那么它们之间必定存留疑息沉叠,于是便不妨从那些自变量中提与出既能反应自变量疑息(圆好),而且有相互独力的果素(身分)去,该要收主要从自变量间的相闭系数矩阵出收,预计相闭系数矩阵的特性值,得到相映的若搞身分.条件索引=最大特性值/相对于特性值再举止启圆(即特性值2的条件索引为 2.847/0.150 再启圆=4.351)尺度化后,圆好为1,每一个特性值皆不妨描画某自变量的一定比率,所有的特性值能将描画某自变量疑息的局部,于是,咱们不妨得到以下论断:不妨瞅出:不一个特性值,既不妨阐明“代价”又不妨阐明“轴距”所以“代价”战“轴距”之间存留共线性较强.前里的论断进一步得到了论证.(残好统计量的表中数值怎么去的,那个预计历程,尔便不写了)从上图不妨得知:大部分自变量的残好皆切合正太分散,惟有一,二处场合稍有偏偏离,如图上的(5到3天区的)处理偏偏离状态。
多元线性回归分析实例
由散点图可知:
X1水分与人们对水果的喜爱程度具有明显的线性相关性;
X2甜度对人们喜爱水果的影响程度相关性不明显
下面进行Y与x1、x2之间的线性拟合:
调整后的R方为0.932,趋近与1,模型对样本数据点拟合优度较高,其中喜爱程度的总变差中93.2%可以用水分和甜度的变化来解释。
变量被解释得比较好。
H0:β
=0 (水果甜度和人们对水果的喜爱程度无显著线性关系)
2
H1:β
≠0(水果甜度和人们对水果的喜爱程度有显著线性关系)
2
P值0.000,小于0.05,拒绝原假设,接受对立假设,即水果甜度和人们对水果的喜爱程度有显著线性关系
线性回归方程:
Y=4.395x1+4.326x2+37.955
方程的解释:
在水果甜度不变的前提下,水果水分每增加1个单位,人们对水果的喜爱程度增加4.395个单位
在水果水分不变的前提下,水果甜度每增加1个单位,人们对水果的喜爱程度增加4.326个单位
残差的正态性检验:
H0:该模型的误差项符合正态性检验
H1:该模型的误差项不符合正态性检验
K-S检验的P值为0.763,大于0.05,接受原假设,该模型符合正态性检验,说明误差项的正态性假设是合理的。
残差的方差齐性检验:
上述散点图水果水分与误差近似分布在一条水平的带状线中,那么就可以认为残差的齐性假设是合理的。
散点图水果甜度与误差近似分布在一条垂直的带状线中,可以认为残差的齐性假设是不合理的。
实习报告三(多元线性回归分析)
实习报告三(多元线性回归分析)一、问题:为研究糖尿病人血糖的与血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白的关系,随机抽选27名糖尿病人的血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白、空腹血糖的测量值如下表,试根据结果考察糖尿病人血糖的与血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白有无相关关系?试建立血糖与其它几项指标关系的多元线性回归方程。
?二、数据:编号总胆固醇甘油三酯空腹胰岛素糖化血红蛋白血糖2 3.79 1.64 7.32 6.9 8.83 6.02 3.56 6.95 10.8 12.34 4.85 1.07 5.88 8.3 11.65 4.6 2.32 4.05 7.5 13.46 6.05 0.64 1.42 13.6 18.37 4.9 8.5 12.6 8.5 11.18 7.08 3 6.75 11.5 12.19 3.85 2.11 16.28 7.9 9.610 4.65 0.63 6.59 7.1 8.411 4.59 1.97 3.61 8.7 9.312 4.29 1.97 6.61 7.8 10.613 7.97 1.93 7.57 9.9 8.414 6.19 1.18 1.42 6.9 9.615 6.13 2.06 10.35 10.5 10.916 5.71 1.78 8.53 8 10.117 6.4 2.4 4.53 10.3 14.818 6.06 3.67 12.79 7.1 9.119 5.09 1.03 2.53 8.9 10.820 6.13 1.71 5.28 9.9 10.221 5.78 3.36 2.96 8 13.622 5.43 1.13 4.31 11.3 14.923 6.5 6.21 3.47 12.3 1624 7.98 7.92 3.37 9.8 13.225 11.54 10.89 1.2 10.5 2026 5.84 0.92 8.61 6.4 13.3三、统计处理:该实际问题涉及五个连续型随机变量:血清总胆固醇()、甘油三脂()、空腹胰岛素()、糖化血红蛋白()、血糖(Y)。
多元线性回归模型的案例分析
1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。
年份Y/千克 X/元 P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)年份Y/千克 X/元 -P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)19803971992 —911 1981413《1993931 1982439 ·199410211983 )459 19951165:1984492 19961349 |19855281997%1449 1986560,19981575 1987624 *199917591988 * 666 20001994)198971720012258 )19907682002!24781991843,(1) 求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++(2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。
先做回归分析,过程如下:输出结果如下:所以,回归方程为:]123ln 0.73150.3463ln 0.5021ln 0.1469ln 0.0872ln Y X P P P =-+-++由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需求的影响并不显著。
验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC )和施瓦茨准则(SC )。
若AIC 值或SC 值增加了,就应该去掉该解释变量。
去掉猪肉价格P 2与牛肉价格P 3重新进行回归分析,结果如下:,Variable Coefficient Std. Error t-Statistic% Prob. ]CLOG(X)、LOG(P1)!R-squared Mean dependent var:Adjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid —Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)}…通过比较可以看出,AIC值和SC值都变小了,所以应该去掉猪肉价格P2与牛肉价格P3这两个解释变量。
第三章 多元线性回归案例分析
多元回归现行回归习题分析【例3.2】中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制改革的深化和经济的快速增长,中国的财政收支状况发生很大变化,中央和地方的税收收入1978年为519.28亿元,到2002年已增长到17636.45亿元,25年间增长了33倍,平均每年增长%。
为了研究影响中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984-1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收增长速度的影响不是非常大。
因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了全面反映中国税收增长的全貌,选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“税收收入”)作为被解释变量,以反映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于财税体制的改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑税制改革对税收增长的影响。
所以解释变量设定为可观测的“国内生产总值”、“财政支出”、“商品零售物价指数”等变量。
[VIP专享]多元线性回归方程案例分析
多元线性回归方程案例分析一、研究的问题探究经济生活中,商品需求量与商品价格、及消费者收入水平之间的关系,以便依据商品价格及消费者的平均收入预测某商品需求量的变化趋势!二、对问题的经济理论分析、所涉及的经济变量(1)经济理论分析:①需求:是指在各种不同价格水平下,消费者愿意且能够购买的商品或服务的数量;②需求与价格之间存在这需求规律,即“在其它条件不变的条件下,一种商品的价格上升会引起该商品的需求量减少,价格下降会引起该商品的需求量增多”;由此我们引出需求的价格弹性的概念,它是指需求量对价格变动的反应程度,是需求量变化的百分比除以价格变化的百分比,即公式:③同理,需求与收入的关系可以用需求的收入弹性分析,它表示某一商品的需求量对收入变化的反应程度,即公式:(2)变量的设定:在经济生活中,我们不难发现价格和收入水平的高低对商品需求量有着直接且密切的影响,故所建立的模型是一个回归模型!其中“商品价格”与“消费者平均收入”分别是解释变量x1、x2,“商品需求量”是被解释变量y !三、理论模型的建立经济理论指出,商品需求受多种综合因素的影响,如商品价格、消费者收入水平、消费者对未来的价格预期、相关商品的价格、消费者偏好等,而其中最重要的因素就是价格与消费者收入水平,即价格和消费者收入水平与需求量之间存在单方向的因果关系;由此,我们可设以下回归模型Y i=b0+b1*x1i+b2*x2i+ u i四、相关变量的数据收集及数据来源说明我们将以某地区消费者对当地某品牌电子手表的需求量随价格与平均收入变动的资料进行回归分析,并对估计模型进行检验!解释变量:商品价格(x1)人均月收入(x2)被解释变量:商品需求量(y)注:本研究报告中所采用的数据来源于中国科技大学教学课件、东方财富网等;数据区间:1996~2005 年五、数据的计算机输入及运行过程、模型的结果(1)在Eviews中新建工作簿,定义变量“商品价格”(x1)、“消费者人均月收入”(x2)及“商品需求量”(y),并输入相关数据,得出相应散点图如下:①x1 与y 的散点图为:②x2与y 的散点图为:由两张散点图可以看出,x1、x2与y之间存在线性关系,故确立所求一元线性回归方程为:Y i=b0+b1*x1i+b2*x2i+ u i(2)通过Eviews软件计算,得出估计模型的参数结果如下:由以上数据可知回归方程为:Y=4990.519-35.66597 *x1 +6.19273*x2六、模型检验、对结果的解释及说明1、经济意义检验:①b0=4990.519为正数,在价格与人均收入接近于零时,人们对该电子产品仍存在需求;②b1=-35.66597为负数,说明商品需求与价格之间参存在负的线性关系;③b2=6.19273为正数,说明商品需求与收入水平成正向的线性关系!2、计量经济学检验:(1)拟合优度检验:本模型的拟合优度系数为0.953971,显示本模型具有较高的拟合优度,x1、x2对y的编译解释能力高达95.40% !(2)变量的显著性检验(t检验):方程的显著性概率为0.0648;参数的显著性概率为0.0862、0.0072;因此根据t检验原则,在显著性水平为0.1的条件下,估计方程模型显著,拒绝原假设H0;(3)方程的显著性检验:有上图可知,F-statistic =72.53930 ;Prob(F-statistic) =0.000021 ,由F检验的原则可知,在显著性概率为0.05的条件下,回归方程显著成立,拒绝H0 ;七、用模型就现实问题进行分析由回归方程模型分析可知,商品价格和消费者收入水平是密切影响商品需求量的主要因素;商品价格(x1)与商品需求量(y)之间存在负的线性关系,而消费者平均收入(x2)与商品需求量(y)之间存在正的线性关系;故可预测,商品需求量会随着商品价格的升高而减少,随着消费者收入水平的提高而增加,而实际的商品需求量最终由这两种甚至更多种因素综合决定。
多元线性回归模型案例分析报告
多元线性回归模型案例分析报告多元线性回归模型案例分析——中国人口自然增长分析一·讨论目的要求中国从1971年开头全面开展了方案生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,临近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的进展等各方面的因素相联系,与经济生活息息相关,为了讨论此后影响中国人口自然增长的主要缘由,分析全国人口增长逻辑,与猜想中国将来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有无数,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的凹凸可能会间接影响人口增长率。
(3)文化程度,因为教导年限的凹凸,相应会改变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,挑选人口增长率作为被解释变量,以反映中国人口的增长;挑选“国名收入”及“人均GDP”作为经济整体增长的代表;挑选“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估量参数利用EViews 估量模型的参数,办法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中挑选“Annual ” (年度),并在“Start date ”中输入开头时光“1988”,在“end date ”中输入最后时光“2022”,点击“ok ”,浮现“Workfile UNTITLED ”工作框。
多元线性回归实例分析报告
多元线性回归实例分析报告多元线性回归是一种用于预测目标变量和多个自变量之间关系的统计分析方法。
它可以帮助我们理解多个自变量对目标变量的影响,并通过建立回归模型进行预测。
本文将以一个实例为例,详细介绍多元线性回归的分析步骤和结果。
假设我们研究了一个电子产品公司的销售数据,并想通过多元线性回归来预测销售额。
我们收集了以下数据:目标变量(销售额)和三个自变量(广告费用、产品种类和市场规模)。
首先,我们需要对数据进行探索性分析,了解数据的分布、缺失值等情况。
我们可以使用散点图和相关系数矩阵来查看变量之间的关系。
通过绘制广告费用与销售额的散点图,我们可以观察到一定的正相关关系。
相关系数矩阵可以用来度量变量之间的线性关系的强度和方向。
接下来,我们需要构建多元线性回归模型。
假设目标变量(销售额)与三个自变量(广告费用、产品种类和市场规模)之间存在线性关系,模型可以表示为:销售额=β0+β1*广告费用+β2*产品种类+β3*市场规模+ε其中,β0是截距,β1、β2和β3是回归系数,ε是误差项。
我们可以使用最小二乘法估计回归系数。
最小二乘法可以最小化目标变量的预测值和实际值之间的差异的平方和。
通过计算最小二乘估计得到的回归系数,我们可以建立多元线性回归模型。
在实际应用中,我们通常使用统计软件来进行多元线性回归分析。
通过输入相应的数据和设置模型参数,软件会自动计算回归系数和其他统计指标。
例如,我们可以使用Python的statsmodels库或R语言的lm函数来进行多元线性回归分析。
最后,我们需要评估回归模型的拟合程度和预测能力。
常见的评估指标包括R方值和调整R方值。
R方值可以描述自变量对因变量的解释程度,值越接近1表示拟合程度越好。
调整R方值考虑了模型中自变量的个数,避免了过度拟合的问题。
在我们的实例中,假设我们得到了一个R方值为0.8的多元线性回归模型,说明模型可以解释目标变量80%的方差。
这个模型还可以用来进行销售额的预测。
多元线性回归案例分析
多元线性回归案例分析案例背景:我们假设有一家制造业公司,想要研究员工的工作效率与其工作经验、教育水平和工作时间之间的关系。
公司收集了100名员工的数据,并希望通过多元线性回归模型来分析这些变量之间的关系。
数据收集:公司收集了每个员工的工作效率(因变量)、工作经验、教育水平和工作时间(自变量)的数据。
假设工作效率由工作经验、教育水平和工作时间这三个因素决定。
根据所收集的数据,我们可以建立如下的多元线性回归模型:工作效率=β0+β1*工作经验+β2*教育水平+β3*工作时间+ε在这个模型中,β0、β1、β2和β3分别是待估参数,代表截距和自变量的系数;ε是误差项,代表模型中未被解释的因素。
模型参数的估计:通过最小二乘法可以对模型中的参数进行估计。
最小二乘法的目标是让模型的预测值与观测值之间的残差平方和最小化。
模型诊断:在对模型进行参数估计后,我们需要对模型进行诊断,以评估模型的质量和稳定性。
常见的模型诊断方法包括:检查残差的正态分布、残差与自变量的无关性、残差的同方差性等。
模型解释和预测:根据参数估计结果,可以对模型进行解释和预测。
例如,我们可以解释每个自变量与因变量之间的关系,并分析它们的显著性。
我们还可以通过模型进行预测,比如预测一位具有一定工作经验、教育水平和工作时间的员工的工作效率。
结果分析:根据对模型的诊断和解释,我们可以对结果进行分析。
我们可以得出结论,一些自变量对因变量的影响显著,而其他自变量对因变量的影响不显著。
这些结论可以帮助公司更好地理解员工工作效率与工作经验、教育水平和工作时间之间的关系,并采取相应的管理措施来提高工作效率。
总结:通过以上的案例分析,我们可以看到多元线性回归在实际中的应用。
它可以帮助我们理解多个自变量与一个因变量之间的关系,并对因变量进行预测和解释。
通过多元线性回归分析,我们可以更好地了解因素对于结果的作用,并根据分析结果进行决策和管理。
然而,需要注意的是,多元线性回归的结果可能受到多种因素的影响,我们需要综合考虑所有的因素来做出准确的分析和决策。
《2024年多元线性回归分析的实例研究》范文
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济学、管理学等多个领域中,它被广泛用于预测和解释一个变量如何受到多个其他变量的影响。
本文将通过一个实际案例,详细介绍多元线性回归分析的应用过程和结果。
二、案例背景假设我们关注的是某城市房价的影响因素。
为了更全面地了解房价的变动,我们选取了该城市的一个住宅小区,收集了该小区近五年内若干套房子的售价数据,以及与房价相关的多个因素,如房屋面积、房龄、小区内设施、周边环境等。
我们的目标是找出这些因素对房价的影响程度,以及它们之间的相互关系。
三、数据收集与处理首先,我们需要收集相关的数据。
对于这个案例,我们可以从房地产网站、房产交易中心等渠道获取房屋售价、房屋面积、房龄等信息。
同时,我们还需要考虑一些可能影响房价的其他因素,如小区内设施(如绿化、健身房等)、周边环境(如学校、医院、商场等)等。
这些数据可以通过问卷调查、实地考察等方式获取。
在收集到数据后,我们需要对数据进行清洗和处理。
这包括去除重复数据、处理缺失值、对数据进行标准化或归一化等。
此外,我们还需要对自变量和因变量进行相关性分析,以确定哪些因素对房价有显著影响。
四、多元线性回归分析在完成数据预处理后,我们可以开始进行多元线性回归分析。
首先,我们需要建立多元线性回归模型。
假设房价为因变量Y,房屋面积、房龄、小区内设施、周边环境等为自变量X1、X2、X3...Xn。
那么,我们可以建立一个多元线性回归方程:Y = β0 + β1X1 + β2X2 + ... + βnXn。
其中,β0为截距项,β1、β2...βn为各变量的回归系数。
接下来,我们需要利用统计软件(如SPSS、SAS等)对模型进行估计。
在估计过程中,我们需要考虑模型的拟合优度、变量的显著性等因素。
通过分析模型的参数估计结果,我们可以得出各个自变量对因变量的影响程度。
五、结果分析根据多元线性回归分析的结果,我们可以得出以下结论:1. 房屋面积、房龄、小区内设施、周边环境等因素对房价均有显著影响。
多元线性回归实例分析报告
SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“和”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元线性回归模型计算分析题
多元线性回归模型计算分析题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为R2=0.214式中,为劳动力受教育年数,为劳动力家庭中兄弟姐妹的个数,与分别为母亲与父亲受到教育的年数。
问(1)sibs是否具有预期的影响?为什么?若与保持不变,为了使预测的受教育水平减少一年,需要增加多少?(2)请对的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年2、考虑以下方程(括号内为标准差):(0.080) (0.072) (0.658)其中:——年的每位雇员的工资——年的物价水平——年的失业率要求:(1)进行变量显著性检验;(2)对本模型的正确性进行讨论,是否应从方程中删除?为什么?3、以企业研发支出(R&D)占销售额的比重(单位:%)为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个容量为32的样本企业的估计结果如下:其中,括号中的数据为参数估计值的标准差。
(1)解释ln(X1)的参数。
如果X1增长10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)检验R&D强度不随销售额的变化而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、假设你以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析。
假设你看到如下的回归结果(括号内为标准差),但你不知道各解释变量分别代表什么。
(2.6) (6.3) (0.61) (5.9)试判定各解释变量分别代表什么,说明理由。
5、下表给出一二元模型的回归结果。
方差来源平方和(SS)自由度(d.f.)来自回归(ESS)65965—来自残差(RSS)_——总离差(TSS)6604214求:(1)样本容量是多少?RSS是多少?ESS和RSS的自由度各是多少?(2)和?(3)检验假设:解释变量总体上对无影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归分析实习
线性回归过程(Linear Regression)可用于分析一个或多个自变量与一个因变量之间的线性数量关系,并可进行回归诊断分析。
[例题3.1]
某地29名13岁男童身高x1(cm),体重x2(kg),肺活量y(L)的实测值数据见表3.1,试建立肺活量与身高、体重的回归关系。
[ 操作过程]
①[ 数据格式] 见数据文件< 多元线性回归例题.sav >
该数据库有4列29行,即4个变量、29个记录(Observation),每个变量占1列,每个记录占1行,该数据格式为一般多元分析的数据格式。
②[ 过程]
单击后可弹出线性回归对话框。
该对话框内有诸多选项,现分别介绍。
③[ 选项]
◆因变量。
只能选入1个因变量,本例选入变量“肺活量”。
◆自变量。
可以是1个或多个,本例选入变量“身高、体重”。
◆当选择不同组合的自变量进行回归分析时,可保存每次选择的自
变量,用按钮和按钮可分别向前、向后翻找各种自变量的
组合。
◆选择回归模型拟合的分析方法,有5种可供选择。
Enter 强迫引入法,即一般回归分析,所选自变量全部进入方程,为系统默认方式。
Stepwise
加入有显著性意义的变量和剔除无显著性意义的变量,直到所建立的方程式
中不再有可加入和可剔除的变量为止。
Remove 强迫剔除法。
根据设定的条件剔除自变量。
Backward向后逐步法。
所选自变量全部进入方程,根据Options对话框中设定的标准在计算过程中逐个剔除变量,直到所建立的方程式中不再含有可剔除
的变量为止。
Forward:向前逐步法。
根据Options对话框中设定的标准在计算过程中逐个加入单个变量,直到所建立的方程式中不再有可加入的变量为止。
◆选择符合某变量条件的观察单位进行分析,每次只能选入1
位范围,有6种方式供选择,在Value框内输入设定值。
equal to 等于设定值。
not equal to不等于设定值。
less than小于设定值。
Less than or equal to 小于或等于设定值。
greater than 大于设定值。
greater than or equal to大于或等于设定值。
◆对话框。
Regression coefficient回归系数
Estimate一般回归系数和标准回归系数及其标准误和显著性检验。
Confidence interval 输出一般回归系数的95%可信区间。
Covarience matrix 方差及协方差知阵和相关矩阵。
Model fit 模型检验,给出复相关系数R,决定系数R2及方差分析结果。
R squared change 输出调整R2及相应的F值和P值。
Descriptive 输出每个变量的均数,标准差,样本容量,相关系及单侧检验P值的矩阵。
Part and partial correlation 输出简单相关系数及偏相关系数。
Collinearity 共线性诊断。
◆残差
☐Dubin-Watson 对残差的顺序相关的Dubin-Watson检验(检验残差间是否独立)。
☐Casewise diagnostics 个体诊断,给出残差和预测值、标准化残差和标准化预测值的统计量。
选此项后,激活以下选项。
⊙Outliers outside standard deviations凡个体观察值超出均数加
减n倍标准差被视为离群点,系统默认此项n为3。
○All cases 给出所有观察单位的残差、标准化残差和预测值。
◆残差散点图、正态概率图、离群点图及直方图。
◆选项对话框。
⊙Use probability of F:
Entry选入变量的显著性水准。
系统默认0.05,即对回归方程
检验时,若P≤0.05,则该变量被选入方程。
Removal剔除变量的显著性水准。
系统默认0.1,即对回归方
程检验时,若P≥0.1,则该变量剔除出方程。
○Use F value 以F值为剔选变量准则。
Entry 选入变量的F界值,系统默认3.84,即对回归方程检验
时,若P≥3.84,则该变量被选入方程。
Removal 剔除变量的F界值,系统默认2.71,即对回归方程
检验时,若P≤2.71, 则该变量剔除出方程。
☐Include constant in equation 回归方程中含有常数项。
◆缺失值处理。
⊙Exclude case listwise仅剔除所有变量中有缺失值的观察单位。
○Exclude case pairwise仅剔除正在参与运算的一对变量中有缺失值的观察单位。
○Replace with mean
◆Save(存新
变量/文件)对话框
☐预测值。
Unstandardized非标准化预测值。
Standardized标准化预测值
Adjusted去掉当前记录时,当前模型对该记录的预测值。
S.E. of mean prediction预测值均数的标准误。
☐残差。
Unstandardized非标准化残差。
Standardized标准化残差。
Studentized学生化残差。
Deleted剔除残差。
Studentized Deleted剔除学生化残差。
☐距离。
Mahalanobis马氏距离。
C ook’s Cook 距离。
Leverage values Leverage值。
☐判断强影响点的影响统计量。
DfBeta(s)剔除某一观察值所引起的回归系数的变化。
DfBeta(s) 标准化DfBeta。
DfFit所引起的预测值的变化。
Standardized DfFit标准化DfFit。
Covariance ratio剔除某一观察值的协方差阵与含全部观察值的协方差阵的比率。
☐预测值的可信区间。
Mean预测值均数的可信区间。
Individual个体预测值的容许区间。
Confidence Interval可信区间范围,系统默认95%。
将所选项存入新建文件。
[ 主要结果输出]
1. 默认选项的输出结果
①进入和剔除的变量列表。
因默认的选项是enter,所以体重与身高均引入方程。
②模型概况:默认状态下给出复相关系数,决定系数,调整决定系数
和剩余标准差。
决定系数R2=0.552
调整决定系数R2arj=0.517
剩余标准差S y.12…m=0.31164
③模型的假设检验:采用方差分析方法,结果见下表。
F=16.003, P<0.001, 回归模型有统计学意义。
④偏回归系数:模型内包含变量的偏回归系数、标准化偏回归系数及偏回归系数的t 检验结果。
2
1
05269
.
0059
.0
646
.0
ˆx
x
y+
+
-
=
2. 一般可选项的输出结果
[ 描述统计量]
选择主对话框中的对话框,然后选中Descriptives即可。
[ 相关系数距阵]
相关系数矩阵及检验结果:表的上部为积矩相关系数矩阵,中部为相关系数单侧检验的P值,下部为样本含量。
Pearson 积矩相关系数矩阵(Pearson Correlation)。
Sig. 相关系数单侧检验的P 值。
3. 逐步回归分析
逐步回归分析(Stepwise ):方程内只选入1个变量“体重”,即2个自变量中,只有“体重”对肺活量有显著性影响。
模型概述(逐步回归分析,Stepwise ):决定系数: R =0.546。
注意:当模型中只有体重变量知,决定系数R 2仅由0.552减至0.546。
模型检验(逐步回归分析,Stepwise ):对方程检验,F=32.477, P<0.001,模型有统计学意义。
参数估计:205907.001769.0ˆx y
+=。