初中中考数学化简求值专项训练.doc
中考化简求值练习题及答案
中考化简求值练习题及答案注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算②因式分解③二次根式的简单计算类型一:化简之后直接带值,有两种基本形式:含有根式的带值,一般这种情况前面的化简会出现平方的模式,可以为前面的化简正确与否提供一定的判断!不含根式,是最简单的形式。
1、化简,求值: m2?2m?1m?1?,其中x?.x?4x?2x2?2x?115.先化简,再求值:÷,xx2?1x=2x2?4x2?x3??x,其中x?..先化简,再求值:2x?4x?4x?127.先化简,再求值:错误!未找到引用源。
,其中x=错误!未找到引用源。
a2?4a?2?8.先化简,再求值:2,其中a??5. a?6a?92a?69.先化简,再求值:?2x?1x?1x?1类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点。
含有三角函数的计算。
需要注意三角函数特殊角所对应的值,需要识记,熟悉三角函数。
x2?2x?1100?1、先化简,再求代数式的值,其中x=tan60-tan2x?1x?12、先化简,?x2?2xx2?4x?4x2?2x3、先化简再求值:错误!未找到引用源。
,其中x=tan60°﹣14、先化简,再求值:÷错误!未找到引用源。
,其中a=sin60°.带值为一个式子,注意全面性,切记不要带一半。
x?2x?1x2?161化简:?x?2xx2?4x?4x2?4x2.先化简,再求值:2,其中a=﹣1. 1a-4a+43.先化简:再求值:?1-a-1??a-aa=2.4.先化简,再求值:.错误!未找到引用源。
,其中a=错误!未找到引用源。
x2-16x5.先化简,再求值:-2)÷,其中x=3-4. x -2x-2x6.先化简,再求值:?2x?2x?2x?41?x2x2?2x?17先化简,再求值:÷其中,x=2+1 xx2?x 带值不确定性。
中考化简求值题专项练习及答案
专项辅导(4)化简求值题及答案化简求值题在中考数学中占有十分重要的地位,纵观近几年河南省的中考数学试题,都出现了此类题目,所占分值为8分,可见此类题目的重要性!在难度上化简求值题并不难,侧重于对基础知识的考查.进行适当的练习能够对此类题目更好的掌握,在考试中不至于失分! (2008.河南)1.先化简,再求值:,112112aa a a a a ÷+---+其中21-=a .(2009.河南)2.先化简,2211112-÷⎪⎭⎫ ⎝⎛+--x x x x 然后从1,1,2-中选取一个合适的数作为x 的值代入求值.(2010.河南)3.已知,2,42,212+=-=-=x x C x B x A 将它们组合成 ()C B A ÷-或C B A ÷-的形式,请你从中任选一种进行计算,先化简,再求值,其中.3=x(2011.河南)4.先化简,14411122-+-÷⎪⎭⎫⎝⎛--x x x x 然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.(2012.河南)5.先化简,424422⎪⎭⎫⎝⎛-÷-+-x x x x x x 然后从5-<x <5的范围内选取一个合适的整数作为x 的值代入求值.以下题目选取的是九年级上册数学中的化简求值题.请认真完成!6.先化简,再求值:,221122yxy x y y x y x ++÷⎪⎪⎭⎫ ⎝⎛+--其中y x ,的值分别为.23,23-=+=y x7.先化简,再求值:,121112++÷⎪⎭⎫ ⎝⎛+-a a a a 其中.23=a8.先化简,再求值:,1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x 其中2=x .9.先化简,再求值:,244442232⎪⎪⎭⎫⎝⎛+-⋅⎪⎪⎭⎫ ⎝⎛++-x y x xyy xy x y y x 其中y x ,的值分别为.1212⎪⎩⎪⎨⎧+=-=y x10.(2009.安顺)先化简,再求值:),2(42442+⋅-+-x x x x 其中.5=x11.(2009.威海)先化简,再求值:()()(),3222a b a b a b a -+-++其中.23,32-=--=b a12.先化简,再求值:,2422⎪⎭⎫ ⎝⎛--+÷-x x x x 其中.12-=x (乐山市中考题)13.先化简,1112aa a a -÷--然后再选取一个合适的值作为a 的值代入求值.14.已知,12,12+=-=y x 求xyy x +的值.15.先化简,再求值:(a -2144a a 4-a 22-+-) ÷2aa 22-,其中a 是方程x 2+3x+1=0的根.16.(平顶山中考模拟)先化简,再求值:,211222yx y y x y x -÷⎪⎪⎭⎫ ⎝⎛+--其中,2,22010=+=y x 小明做这道题时,把22010+=x 抄成,22001+=x 计算结果仍正确,请你通过计算说明原因.17.(2005河南)已知,12+=x 求.112--+x x x18.(2003河南)已知,2231,2231+=-=y x 求4-+xyy x 的值.19.以后还有总的训练. 2012.11.15以下为补充题目:20.(2013.河南) 先化简,再求值:()()()()14121222+--+++x x x x x ,其中2-=x .21.(2014.河南)先化简,再求值:⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222,其中12-=x .22.(2015.河南)先化简,再求值:)11(22222a b b a b ab a -÷-+-,其中15+=a , 15-=b .23.(2013.许昌一模)先化简,再求值:25624322+-+-÷+-a a a a a ,然后选择一个你喜欢的数代入求值.24.(2015.郑州外国语三模)先化简,再求值:1211222+-+÷⎪⎭⎫ ⎝⎛--a a a a a a ,其中 022=-+a a .25.(2015.郑州外国语月考)先化简,再求值:x x x 1112-÷⎪⎭⎫ ⎝⎛+,其中︒︒+-=45cos 260tan 327x .26.(2015.郑州市九年级一模)先化简11129613222+++-++÷-+x x x x x x x ,再取恰当的x 的值代入求值.27.(2015.郑州市九年级二模)先化简⎪⎭⎫ ⎝⎛-+÷-111122x x x ,再从32<<-x 中选一个合适的整数代入求值.28.(2015.平顶山一模)先化简,再求代数式2222223y x y x y x y x -+--+的值,其中 2,245cos 2=+=︒y x .29.(2014.新乡二模)先化简,再求值:⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛-+-+--142244122a a a a a a a ,其中a 是一元二次方程0742=--x x 的一个根.30.(2015.洛阳一模)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷⎪⎭⎫ ⎝⎛++23221a a a a ,其中a 满足022=--a a .31.(2014.贺州)先化简,再求值:()11222+++÷+a a a ab b a ,其中13+=a ,13-=b .32.(2014.泰州)先化简,再求值:1212312+-+-÷⎪⎭⎫ ⎝⎛+-x xx x x x ,其中x 满足012=--x x .33.(2015.湖南岳阳)先化简,再求值:4421122+++÷⎪⎭⎫ ⎝⎛+-x x x x x ,其中2=x .34.(2014.苏州)先化简,再求值:⎪⎭⎫ ⎝⎛-+÷-11112x x x ,其中12-=x .35.(2015.山东德州)先化简,再求值:⎪⎪⎭⎫⎝⎛--÷-a b ab a a b a 2222,其中32,32-=+=b a .36.(2014.凉山州)先化简,再求值:⎪⎭⎫ ⎝⎛--+÷--2526332a a a a a ,其中a 满足0132=-+a a37.(2014.宁夏)先化简,再求值:b a b a b a b b a a-+÷⎪⎭⎫ ⎝⎛+--22,其中31-=a , 31+=b .38.(2013.遵义)已知实数a 满足01522=-+a a ,求代数式÷-+-+12112a a a ()()12212+-++a a a a 的值.39.(2014.泉州)先化简,再求值:()()422-++a a a ,其中3=a .40.(2013.曲靖改)先化简,再求值:1121222222+÷⎪⎪⎭⎫ ⎝⎛+----+x xx x x x x x x ,其中 21+=x .2015.10.6专项辅导(4)化简求值题参考答案●1.解:aa a a a a 112112÷+---+ ()()()()()()()2222222211111111111--=---=----+=⨯---+=a a aa a a a a a a a aa a当21-=a 时 原式()21211---=()21212-=--=●2.解:2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ()()()()()()()()()x x x x x x xx x x x x x 41121121121111=-+⨯-+=-+⨯-+--+=当2=x 时 原式2224==.注意:这里1±≠x .●3.解:()C B A ÷-()()()()2122222222242212-=+⨯-+=+⨯-+-+=+÷⎪⎭⎫ ⎝⎛---=x x x x x x xx x x x x x x x当3=x 时 原式1231=-=或解:C B A ÷-()()()()xx x x x x x x x x x x x xx x 1222221222221242212=--=---=+⨯-+--=+÷---=当3=x 时 原式31=注意:对于两种选择要注意运算顺序.●4.解:14411122-+-÷⎪⎭⎫ ⎝⎛--x x x x ()()()2211111--+⨯---=x x x x x()()()21211122-+=--+⨯--=x x x x x x x当0=x 时 原式212010-=-+=或当2-=x 时 原式412212=--+-=注意:为保证本题中所有分式都有意义,x 只能取0或2-.●5.解:⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422()()()()()()212222422222+=-+⨯--=-÷--=x x x xx x x x x x x x∵x x 且,55<<-为整数 ∴若使分式有意义,x 只能取1-和1 当1-=x 时 原式1211=+-=(或当1=x 时 原式31211=+=) ●6.解:222211y xy x yy x y x ++÷⎪⎪⎭⎫ ⎝⎛+--()()()yx y x y yx y x y y y x y x y x y x y x -+=+⨯-=+⨯-++-+=2222当23,23-=+=y x 时 原式23232323+-+-++=26232232===●7.解:121112++÷⎪⎭⎫ ⎝⎛+-a a a a ()()111111122+=+⨯+=+⨯+-+=a a a a a aa a a 当23=a 时 原式223123+=+=. ●8.解:1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ()()()()()xx x x x x x x x x x x x x 1111111111112222-⨯-=-⨯-+-+=-⨯⎪⎪⎭⎫ ⎝⎛-+-+=1-=x x 当2=x 时 原式()()()1212122122+-+=-=221222+=-+=●9.解:⎪⎪⎭⎫⎝⎛+-⋅⎪⎪⎭⎫ ⎝⎛++-x y x xyy xy x y y x 244442232 ()()()()()xyyx y x x y x y x y y x xyx xy y x y x y x y =-+⨯+-=--+⨯+-+=222222422222∵⎪⎩⎪⎨⎧+=-=1212y x ∴原式()()1212+-=1=●10.解:()242442+⋅-+-x x x x ()()()()()24222222222-=+-=+⨯--=x x x x x x当5=x 时原式()212452452=-=-=●11.解:()()()2232a b a b a b a -+-++aba b ab a b ab a =---+++=22222322当23,32-=--=b a 时原式()()3232+---=()()1343222=-=--=●12.解:⎪⎭⎫ ⎝⎛--+÷-x x x x 2422 ()()xx x x x x x x x x x x x x x x x x 1222224222242222=-⨯-=-÷-=-+-+÷-=⎪⎭⎫ ⎝⎛-++÷-=当12-=x 时 原式()()121212121+-+=-=12+=●13.解:aa a a -÷--2111 ()()()aa a a a a a aa a a =-⨯-=-÷-=-÷--=111111111122由题意可知:1>a 当4=a 时 原式24==●14.解: ∵12,12+=-=y x ∴221212=++-=+y x()()1121212=-=+-=xy∴xyy x x y y x 22+=+ ()()62811222222=-=⨯-=-+=xyxy y x ●15.解:a a a a a a 2221444222-÷⎪⎪⎭⎫ ⎝⎛--+--()()()()()()232223222122222122222a a a a a a a a a a a a a a a a a +=-⨯-+=-⨯⎪⎭⎫ ⎝⎛-+-+=-÷⎥⎦⎤⎢⎣⎡-+--+= ∵a 是方程0132=++x x 的根 ∴0132=++a a ∴132-=+a a 原式2121-=-=注意:对于此类题目,先不要急于解方程,应根据题目化简结果的特点,选择合适的处理方法,如本题可以考虑整体思想采用整体代入的方法.●16.解:222211y x y y x y x -÷⎪⎪⎭⎫ ⎝⎛+--()()()()y y y y y x y x y x y x y x y x 1212222=⨯=-+⨯-++-+=当2=y 时 原式2221==因为化简结果里面没有x ,所以本题的计算结果与x 的取值无关,从而小明在抄错x 值的情况下所得结果依然正确.●17.解:112--+x x x()()11111111222--=---=----+=x x x x x x x x x当12+=x 时 原式211121-=-+-=22-=●18.解:()()2232232232231-++=-=x22389223+=-+=2232231-=+=y∴6223223=-++=+y x ()()189223223=-=-+=xy∴xyxy y x x y y x 4422-+=-+ ()306361166622=-=⨯-=-+=xyxy y x●19.以后还有总的训练. 以下为补充题目: ●20.解:()()()()14121222+--+++x x x x x34414442222+=---+++=x x x x x x当2-=x 时 原式()532322=+=+-=●21.解: ⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222 ()()()()221112111+⨯+=++÷--+=x x x x xxx x x x x11+=x 当12-=x 时 原式22211121==+-=●22.解:)11(22222ab b a b ab a -÷-+- ()()2222ab b a abb a abb a b a b a =-⨯-=-÷--=当15+=a ,15-=b 时 原式()()21515-+=2215=-=●23.解:25624322+-+-÷+-a a a a a ()()()23252225223232+-=+-+=+--++⨯+-=a a a a a a a a a 当1=a 时 原式1213-=+-= 注意:本题,3,2-≠±≠a a .●24.解:1211222+-+÷⎪⎭⎫ ⎝⎛--a a a a a a ()()()()()()2221111111112aa a a a a a a a a a a a a a -=+-⨯-+=+-⨯-+-=∵022=-+a a ∴2,121-==a a ∵1,01≠≠-a a ∴2-=a ∴原式()432122-=---=●25.解:x x x 1112-÷⎪⎭⎫ ⎝⎛+()()11111-=-+⨯+=x x x xx x ∵︒︒+-=45cos 260tan 327x22223333=⨯+⨯-=∴原式()()121212121-++=-=12+=●26.解:11129613222+++-++÷-+x x x x x x x()()()()()()()()()()()323112313111311113111322+=+++=++++-=++++-=+++-⨯-++=x x x x x x x x x x x x x x x x x x∵01,03,01,012≠+≠+≠-≠-x x x x ∴3,1-≠±≠x x 当0=x 时原式32302=+=●27.解:⎪⎭⎫ ⎝⎛-+÷-111122x x x()()()()11111111122+=-⨯-+=-+-÷-+=x x x x x x x x x x x x∵0,01,012≠≠-≠-x x x ∴0,1≠±≠x x 且∴在32<<-x 中,x 可取的整数只有2当2=x 时 原式32122=+=●28.解:2222223y x yx y x y x -+--+()()yx y x y x y x y x y x y x -=-++=---+=122322 222222245cos 2+=+⨯=+=︒x当2,22=+=y x 时原式22212221==-+=●29.解:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a a a ()()()()()()a a a a a a a a a aa a a a a -⨯--+--=-÷⎥⎦⎤⎢⎣⎡-+---=422214222122()()2221424-=-⨯--=a aa a a a∵a 是一元二次方程0742=--x x 的一个根 ∴0742=--a a11442=+-a a()1122=-a原式111=●30.解:⎪⎭⎫ ⎝⎛++-÷⎪⎭⎫ ⎝⎛++23221a a a a ()()()1111221234212222-+=-++⨯++=++-÷+++=a a a a a a a a a a a a022=--a a解之得:1,221-==a a∵1,01-≠≠+a a∴2=a 当2=a 时 原式31212=-+=●31.解:()11222+++÷+a a a ab b a()()aba a a ab =++⨯+=2111当13+=a ,13-=b 时 原式()()1313-+=()2132=-=●32.解:1212312+-+-÷⎪⎭⎫ ⎝⎛+-x x x x x x ()()111221112232+-=+--+⨯+-=+--+⨯+-+=x xx x x x x x x x x xx x x x x1122+=+-+=x x x x x x ∵012=--x x∴12+=x x 原式111=++=x x ●33.解:4421122+++÷⎪⎭⎫ ⎝⎛+-x x x x x ()()()()xx x x x x x x x x x x 212212121222+=++⨯++=++÷+-+=当2=x 时 原式21222+=+=●34.解:⎪⎭⎫ ⎝⎛-+÷-11112x x x()()1111111112+=-⨯-+=-+-÷-=x x x x x x x x x x 当12-=x 时 原式22211121==+-=●35.解:⎪⎪⎭⎫⎝⎛--÷-a b ab a a b a 2222 ()()()ba b a b a a a b a b a ab ab a a b a -+=-⨯-+=+-÷-=222222 当32,32-=+=b a 时 原式33232432323232==+-+-++=●36.解:⎪⎭⎫ ⎝⎛--+÷--2526332a a a a a()()()()()()aa a a a a a a a a a a a a a 33133133223325423322+=+=-+-⨯--=---÷--=∵0132=-+a a ∴132=+a a 原式31131=⨯=●37.解:b a b a b a b b a a -+÷⎪⎭⎫ ⎝⎛+--22 ()()()()()()ba b a b a b a b a b a b a ba b a b a b a b b a a +=+-⨯-++=+-⨯-+--+=1222222当31-=a ,31+=b 时- 21 -原式2131311=++-=●38.解:()()1221121122+-++÷-+-+a a a a a a a ()()()()()()()()222212111111121111211+=++-+=+--+=++-⨯-++-+=a a a a a a a a a a a a a a∵01522=-+a a ∴()1612=+a原式81162==●39.解:()()422-++a a a42444222+=-+++=a a a a a当3=a 时 原式()10464322=+=+⨯=●40.解:1121222222+÷⎪⎪⎭⎫ ⎝⎛+----+x x x x x x x x x ()()()()()1111111211111122-+=+⨯-=+⨯⎪⎭⎫ ⎝⎛---=+⨯⎥⎦⎤⎢⎣⎡----++=x x x x x x x x x x x xx x x x x x x x x 当21+=x 时 原式12222121121+=+=-+++=2015.10.6 星期二 15:36。
初三数学中考化简求值专项练习题.doc
初三数学中考化简求值专项练习题考点:①分式的加减乘除运算②因式分解③二次根式的简单计算m2 2m 1 (m 1 m 11、化简,求值:m2 1 m1) , 其中 m= 3 .x2 2 x 1 12 、先化简,再求代数式x2 1 x 1的值,其中 x=tan60 0-tan45 0x 2 x 1 x2 163、化简:(x2 2 x x2 4x 4 ) x2 4x ,其中x 2 2a 1 4 a 2 2a 34、计算:a2 a a2 1 a 3.5.1 x3 6x2 9x 1 x6、先化简,再求值:x 3·x2 2x 2 x ,其中x=-6.1a2- 4a+ 47、先化简:再求值:1-a-1÷a2-a,其中a=2+ 2 .8.先化简,再求值: a - 1 a2+ 2a 1·÷ ,其中 a 为整数且- 3<a < 2.a + 2 a2- 2a + 1 a2- 1112xx yx y22x2 xy y,其中 x 1 ,y 2.9、先化简,再求值:x 22x 2x 110、先化简,再求值:x 2( x 2) x4x 2,其中2.11、先化简,再求值:(x 211 )22x x 2 4x 4 x 22x ,其中 x 22a2 1)a 2 112、a( a 21a 2a 1 .a 1? a 24 11 ,其中 a 满足 a 213、先化简再求值:a2 a 22a 1a 2 a 0 .14、先化简: (3 a 24a 4,并从 0, , 2 中选一个合适的数作为a 的值代入求值 .a 1)a11a 1(1 1 )22x 115、先化简,再求值:x ÷ xx 2 ,其中 x=2116、化简:x yx 2 y 2 2 y . x 3y x 26xy 9y 2x y17、先化简,再求值:x 2 4 x 2 x x ,其中 x3 24x 4x1 .x2x 22x 118.当x2 时,求 x 1x1的值.19.先化简,再把. x取一个你最喜欢的数代入求值:( 2 x 2 4 2 x ) xx 4x 4 x 2 x 22011aa+120.先化简,再选择一个你喜欢的数代入求值.a2-2a+1÷(a2-1+1)21、( 2011?湘潭)先化简,再求值:,其中.22、( 2011?娄底)先化简:()÷.再从1,2,3中选一个你认为合适的数作为a的值代入求值.23、( 2011?衡阳)先化简,再求值.(x+1 )2+x( x﹣ 2).其中.24、( 2011?常德)先化简,再求值,(+)÷,其中x=2.。
中考数学专题四:整式的加减化简求值
中考数学专题四:整式的加减化简求值一.解答题1.代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.2.已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.3.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.4.已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.5.先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.6.先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.7.先化简,再求值:3(2x+1)+2(3﹣x),其中x=﹣1.8.先化简,再求值:(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.9.化简:3(a+5b)﹣2(b﹣a).10.化简:3a﹣(2b﹣a)+b.11.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n 的值.12.先化简,再求值:2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1,y=.13.(1)先化简,再求值:,其中a=2,b=﹣3.(2)已知2x+y=3,求代数式3(x﹣2y)+5(x+2y﹣1)﹣2的值.14.化简与计算(1)2x2y﹣3xy+2﹣x2y+3xy;(2)a+3b+2(2a﹣b);(3)2(m2+3mn)﹣(m2﹣2mn)﹣m2,其中m=﹣1,.15.先化简,再求值:3a2b+2(ab﹣a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a,b满足(a﹣2)2+|b+|=0.16.先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2),其中a=3,b=﹣2.17.化简.(1)2(2a﹣b)﹣(2b﹣3a);(2)5xy+y2﹣2(4xy﹣y2+1);(3)(a2﹣b)+(a﹣b2)+(a2+b2).18.先化简再求值:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)],其中x=﹣3,y=﹣4.(2),其中|2+y|+(x﹣1)2=0.19.先化简,再求值:,其中x,y满足.20.先化简,再求值:(4a+3a2﹣3﹣3a3)﹣(﹣a+4a3),其中a=﹣1.21.先化简再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中|a+2|+|b﹣3|=0.22.计算与化简(1)计算:﹣3a2b﹣2(3ab﹣2a2b)+ab;(2)先化简,再求值:(﹣x2+5+4x)+(5x﹣4+2x2),其中x=﹣2.23.先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+4x2],其中x=﹣2.24.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.25.已知,求a2b﹣(3ab2﹣a2b)+2(2ab2﹣a2b)的值.26.已知:|x+1|+(y﹣5)2=0,求代数式3x2y﹣[5xy2﹣2(4xy2﹣3)+2x2y]的值.27.(1)计算:(4a2b﹣3ab)+(﹣5a2b+2ab);(2)先化简,再求值:A=x3+2x+3,B=2x3﹣xy+2,当x=﹣1,y=2时,求A﹣2B的值.28.先化简,再求值:2(m2n﹣3mn2)﹣(m2n﹣2mn2),其中m=,n=﹣1.29.先化简,再求值:(1)2(2x2﹣x+3)﹣3(x2+2x﹣4),其中x=﹣1;(2)(3x2﹣4y2)﹣2(x2+xy﹣2y2).其中x=﹣1,y=﹣2.30.已知A=8x2y﹣6xy2﹣3xy,B=7xy2﹣2xy+5x2y,若A+B﹣C=0,求C+A.31.先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=2,y=1.32.先化简,再求值:3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣3x2﹣4x),其中.33.计算:3(2a2b﹣ab2)﹣2(5a2b﹣2ab2).34.计算:(3x2﹣5x+4)﹣3(x2﹣x+1).35.化简求值:(﹣x2+3xy﹣y2)﹣(﹣3x2+5xy﹣2y2),其中x=1,y=﹣2.36.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣2,b=﹣1.37.先化简,再求值:(2x2﹣5x)﹣(3x2﹣4x+2)+x2,其中x=﹣.38.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.39.已知,求的值.。
初三中考数学先化简后求值计算题训练(含答案)
先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。
14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。
2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。
(完整版)中考数学化简求值专项练习试题(较高难度)
中考数学化简求值专项练习(较高难度)一. 已知条件不化简,所给代数式化简 例1.先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-=例2. 已知x y =+=-2222,,求()yxy y xxy x xy x y x yx y++-÷+⋅-+的值。
例3. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。
例4. 已知条件和所给代数式都要化简例4.若x x+=13,则x x x 2421++的值是( ) A. 18 B. 110 C. 12D.14例5. 已知a b +<0,且满足a ab b a b 2222++--=,求a b ab3313+-的值。
中考数学化简求值专项练习解析卷一. 已知条件不化简,所给代数式化简 例1.先化简,再求值:()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-= 解:()a a a a a a a a -+--++÷-+221444222=-+--+÷-+=-+--+÷-+[()()][()()()]a a a a a a a a a a a a a a a a 2212424212422222=-++⨯+-=+4224122a a a a a a a ()()=+122a a由已知a a 2210+-= 可得a a 221+=,把它代入原式: 所以原式=+=1212a a 例2. 已知x y =+=-2222,,求()yxy y xxy xxy x y x yx y++-÷+⋅-+的值。
解:()yxy y xxy x xy x y x yx y++-÷+⋅-+=++-⨯+⋅-+()y x yxy x x y xy x yx y=-++-⋅-=-+y xy x xy y x x yxyy x xy当x y =+=-2222,时 原式=-++-+-=-222222222()()二. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。
(完整版)初中数学中考先化简再求值
一.解答题(共30小题)先化简再求值1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006?巴中)化简求值:,其中a=.12.(2010?临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010?綦江县)先化简,再求值,,其中x=+1.16.(2009?随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x?.24.先化简代数式再求值,其中a=﹣2.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.30.化简并求值:?,其中x=22013年6月朱鹏的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.化简求值:,选择一个你喜欢且有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:首先对小括号内的运算进行运算,然后把除法转化为乘法后进行乘法运算,最后,把喜欢的有意义的数代入求值即可.解答:解:原式==x﹣1,当x=2时,原式=x﹣1=2﹣1=1.点评:本题主要考查分式的加减法运算、乘除法运算,因式分解,关键在于正确的对分式进行化简,认真的计算,注意x的取值不能是分式的分母为零.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.考点:分式的化简求值.专题:开放型.分析:先计算括号里的减法运算,再计算除法.最后选一个有意义的值代入,即分母不为0的值.解答:解:原式=(2分)=(3分)=(5分)=x+4(6分)当x=0时,原式=4.(8分)(注x可取不等1,4的任何数)点评:本题主要考查分式的化简求值,把分式化到最简是解答的关键,通分、因式分解和约分是基本环节.注意做此题时,选值时一定要使原式有意义,即分母不能为0.3.先化简再求值:选一个使原代数式有意义的数代入中求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:,=﹣,=﹣;又为使分式有意义,则a≠﹣3、﹣2、2;令a=1,原式=﹣=﹣1.点评:本题考查了分式的四则运算,在计算时,要弄清楚运算顺序,先进行分式的乘除,加减运算.再代值计算,注意化简后,代入的数不能使分母的值为0.4.先化简,再求值:,请选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:将括号里通分,除法化为乘法,约分,再代值计算,注意a的取值不能使原式的分母、除式为0.解答:解:原式=?=,当a=﹣1时,原式==.点评:本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:原式==,=,=.当a=1时,(a的取值不唯一,只要a≠±2、﹣3即可)原式=.点评:此题答案不唯一,只需使分式有意义即可.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:把括号中通分后,利用同分母分式的减法法则计算,同时将除式的分子分解因式后,再利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后得到最简结果,然后选择一个x的值代入化简后的式子中,即可求出原式的值.解答:解:(1﹣)÷=?=?=,当x=2时,原式=1.(答案不唯一,x不能取﹣2,±1)点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找出最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,化简求值题要将原式化为最简后再代值,本题中由分母不为0,得到x不能取﹣2,1及﹣1,故注意这几个数不要取.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.考点:分式的化简求值.专题:计算题.分析:原式被除数括号中两项通分并利用同分母分式的减法法则计算,除数分子利用平方差公式分解因式,分母利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=÷=﹣?=﹣,当x=1时,原式=﹣=4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.考点:分式的化简求值.专题:计算题.分析:将原式括号中两项通分并利用同分母分式的减法法则计算,整理后再利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后将a=2或a=3(a 不能为0和1)代入化简后的式子中计算,即可得到原式的值.解答:解:原式=÷=÷=?=,当a=2时,(a的取值不唯一,只要a≠0、1)原式==1;当a=3时,(a的取值不唯一,只要a≠0、1)原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.考点:分式的化简求值.分析:(1)将原式的分子、分母因式分解,约分,再给x取值,代值计算,注意:x的取值要使原式的分母有意义;(2)将(m+1)与前面的括号相乘,运用分配律计算.解答:解:(1)原式=?=,取x=2,原式==1;(2)原式=m+1﹣?(m+1)=m+1﹣1=m,当m=5时,原式=5.点评:本题考查了分式的化简求值.分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:(1)先算除法,再算同分母加法,然后将x=3代入即可求得分式的值;(2)首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,再把数代入,不能选2,±3,会使原式无意义.(3)先将括号内的部分通分,再将除法转化为乘法,然后将x=2代入即可求得分式的值;(4)先约分化简,再计算同分母加法,然后将x=﹣1代入即可求得分式的值.解答:解:(1)=?+=,把x=3代入,原式=.(2)=?=,把x=1代入,原式=.(3)=?=,把x=2代入,原式=1.(4)=+=,把x=﹣1代入,原式=﹣1.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.注意(2)化简后,代入的数不能使分母的值为0.11.(2006?巴中)化简求值:,其中a=.考点:分式的化简求值;分母有理化.专题:计算题.分析:先通过分解因式、约分找到最简公分母,再通分,得最简形式,最后把a=代入求值.解答:解:原式===﹣;当a=时,原式=﹣=1﹣.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.12.(2010?临沂)先化简,再求值:()÷,其中a=2.考点:分式的化简求值.专题:计算题.分析:先对通分,再对a2﹣1分解因式,进行化简.解答:解:原式===﹣=.∵a=2,∴原式=﹣1.点评:本题主要考查分式的化简求值.13.先化简:,再选一个恰当的x值代入求值.考点:分式的化简求值.专题:开放型.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.需注意的是x的取值需使原分式有意义.解答:解:原式==(x+2)(x﹣1)=x2+x﹣2;当x≠﹣1,x≠1时,代入解答正确即可给分.点评:注意化简后,代入的数要使原式以及化简中的每一步都有意义.14.化简求值:(﹣1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先将括号内的部分通分,再将除法转化为乘法进行计算.解答:解:原式=(﹣)÷=?=﹣=,当x=2时,原式==﹣.点评:本题考查了分式的化简求值,学会因式分解是解题的关键.15.(2010?綦江县)先化简,再求值,,其中x=+1.考点:分式的化简求值.专题:计算题.分析:本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=,把x=+1,代入得:原式=.点评:本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.尤其要注意的是含有无理数的时候最后结果要分母有理化.16.(2009?随州)先化简,再求值:,其中x=+1.考点:分式的化简求值;分母有理化.专题:计算题.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,先进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式===;当x=+1时,原式==.点评:此题要特别注意符号的处理.化简和取值的结果都要求达到最简为止.17.先化简,再求值:÷,其中x=tan45°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:首先利用分式的混合运算法则计算化简,最后代入数值计算即可求解.解答:解:÷=x﹣2,∵x=tan45°=1,∴原式=x﹣2=﹣1.点评:此题主要考查了分式的化简求值,其中化简的关键是分式的乘法法则和约分.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.解答:解:原式=(x+2)×=当x=﹣1时,原式==﹣2.点评:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.19.先化简,再求值:(1+)÷,其中x=﹣3.考点:分式的化简求值.专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法法则:分母不变,只把分子相加减,计算出结果,同时把除数中的分母利用平方差公式分解因式后,利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分即可得到最简结果,然后把x的值代入即可求出原式的值.解答:解:原式=(+)?=?=,当x=﹣3时,原式==﹣1.点评:此题考查了分式的化简求值,解答此类题要先把原式化为最简,然后再代值,用到的方法有分式的加减法及乘除法,分式的加减法的关键是通分,通分的关键是找出各分母的最简公分母,分式乘除法的关键是约分,约分的关键是找出公因式,在约分时遇到多项式,应先将多项式分解因式再约分.20.先化简,再求值:,其中a=2.考点:分式的化简求值.专题:计算题.分析:先同分母化简分式,再代入a值求得.解答:解:原式=代入a=2解得原式=.点评:本题考查了分式的化简求值,先同分母化简分式,代入a值求得.21.先化简,再求值÷(x﹣),其中x=2.考点:分式的化简求值.专题:计算题.分析:先把分式化简,再将未知数的值代入求解.解答:解:原式===;当x=2时,原式=.点评:本题考查了分式的混合运算以及多项式的因式分解.22.先化简,再求值:,其中.考点:分式的化简求值.专题:计算题.分析:先化简,再把x的值代入计算即可.解答:解:原式=×=x﹣1,∵,∴原式=x﹣1=+1﹣1=.点评:本题考查了分式的化简求值,化简此分式是解题的关键.23.先化简,再求值:(﹣1)÷,其中x?.考点:分式的化简求值.专题:计算题.分析:先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.解答:解:方法一:原式=÷(1分)=?(2分)=?(3分)=.(4分)当x?时,=.(5分)方法二:原式=÷﹣1÷=?﹣(2分)=?﹣(3分)=﹣==.(4分)当x?时,=.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.24.先化简代数式再求值,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a的值代入求解.解答:解:原式===1﹣a(4分)当a=﹣2时,原式=1﹣(﹣2)=3.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先对括号里的分式通分,计算出来后,再把除法转化为乘法,最后把x的值代入计算即可.解答:解:原式=?=x+1.当x=2时,x+1=3.点评:本题考查了分式的化简求值.解题的关键是对分式的分子、分母要进行因式分解.26.先化简,再求值:,其中x=2.考点:分式的化简求值.专题:计算题.分析:先把括号内通分得到原式=,再把除法运算转化为乘法运算,然后把分母分解因式得到原式=?,再进行约分得原式=,然后把x=2代入计算即可.解答:解:原式==?=,当x=2时,原式==.点评:本题考查了分式的化简求值:先把各分式的分子或分母分解因式,若有括号,先把括号内通分,然后约分,得到最简分式或整式,再把满足条件的字母的值代入计算得到对应的分式的值.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再利用乘法进行约分计算,最后把x的值代入计算即可.解答:解:原式==×=,当x=2时,原式=﹣=﹣1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解.28.先化简,再求值:,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先通分,然后进行四则运算,最后将x=﹣2代入.解答:解:原式=×=,∵a=﹣2,∴原式===﹣.点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.考点:分式的化简求值.分析:首先将分式的分子与分母进行因式分解,再去括号,约分最后代入求值.解答:解:原式=÷(),=×,=,x=3时,原式=.点评:此题主要考查了分式的化简求值问题,正确的因式分解再约分是解决问题的关键.30.化简并求值:?,其中x=2考点:分式的化简求值.专题:计算题.分析:先把分式?化为最简分式,然后把x=2代入求值即可.解答:解:?==,把x=2代入得:原式==.点评:本题考查了分式的化简求值,属于基础题,关键是把所求分式化为最简分式再代入求值.。
九年级数学中考复习《整式的运算及化简求值》解答专项达标测评
九年级数学中考复习《整式的运算及化简求值》解答专项达标测评(附答案)(共20小题,每小题6分,满分120分)1.化简:(1)(﹣ab)3÷(﹣);(2)(a+4)(a﹣4)﹣(a﹣1)2.2.计算:(1)﹣2y3﹣xy2﹣2(xy2﹣y3);(2)5x2﹣[3x2﹣2(﹣x2+4x)].3.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).4.先化简,再求值:,其中x=3,y=﹣2.5.已知代数式A=2x2+3xy+2y,B=x2﹣xy+y.(1)求A﹣2B;(2)当x=﹣1,y=3时,求A﹣2B的值.6.先化简,再求值(2x+3y)2﹣(2x+y)(2x﹣y),其中x=2,y=1.7.先化简,再求值:[(x+2y)(x﹣2y)﹣(2x﹣y)2﹣(x2﹣5y2)]÷(﹣2x),其中x、y 满足23x÷23y=8.8.先化简,再求值:(x+2y)2﹣(2y﹣x)2,其中x=1,y=﹣1.9.已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,(1)若(a+2)2+|b﹣3|=0,求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.10.计算:(1)a3•a+(﹣3a3)2÷a2;(2)(9x2y3﹣27x3y2)÷(3xy)2.11.已知a,b满足a2+b2﹣4a﹣6b+13=0,求(2a+b)(2a﹣b)﹣(b﹣2a)2的值.12.化简:(1)(2x﹣y)2﹣x(3x﹣4y)﹣(2y﹣x)(2y+x);(2)(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x).13.先化简再求值:(1)(x﹣2y)2﹣x(x+2y)﹣4y2,其中x=﹣4,y=.(2)已知m,n满足(m+n)2=169,(m﹣n)2=9,求m2+n2﹣mn的值.14.已知m是方程3x2﹣2x﹣5=0的一个根,求代数式(2m+1)(2m﹣1)﹣(m+1)2的值.15.计算:(1)a5•a7+a6•(﹣a3)2+2(﹣a3)4;(2)9(a﹣1)2﹣(3a+2)(3a﹣2);(3)已知a﹣b=1,a2+b2=25,求ab的值;(4)简算:20222﹣4044×2021+20212.16.计算:(1)(12m3﹣6m2+3m)÷3m;(2)(2x+y+z)(2x﹣y﹣z).17.如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形纸板,拿掉边长为n的大正方形纸板后,将剩下的三个纸板拼成一个新的长方形纸板.(1)求拼成的新的长方形纸板的周长;(用含m或n的代数式表示)(2)当m=3,n=2时,直接写出拼成的新的长方形纸板的面积为.18.如图,某物业公司将一块长为13.5米,宽为x米的大长方形地块分割为8小块,其中阴影A、B用为绿地,进行种花种草,其余6块是形状、大小完全相同的小长方形用为小型车辆的停车位,每个停车位较短的边为a米.(1)若a=2.5米,①每个停车位的面积为平方米;②请用含x的代数式表示两块绿地A、B的面积和.(2)若两块绿地A、B的周长和为40米,求x的值.19.某市为鼓励市民节约用水,特制定如下收费标准:若每月每户用水不超过12m3,则按a元/m3的水价收费,若超过12m3,则超过部分按2a元/m3的水价收费.(1)当a=2时,小李家5月份的用水量为8m3,则他家5月份的水费为元;(2)当a=2时,若小华家6月份的用水量为18m3,那么小华家6月份的水费为元;(3)若小华家某月的用水量为m(m>12)立方米,求小华家这个月的水费.(用含a,m的式子表示)20.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂家在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x(x>30)件.(1)该客户按方案①购买需付款()元(用含x的式子表示);若该客户按方案②购买,应付款()元(用含x的式子表示);(2)当x=50时,通过计算说明按哪个方案购买较为合算?(3)当x=50时,如何购买更合算?写出你的购买方案.参考答案1.解:(1)原式=(﹣a3b3)•(﹣)=.(2)原式=a2﹣16﹣(a2﹣2a+1)=a2﹣16﹣a2+2a﹣1=2a﹣17.2.解:(1)原式=﹣2y3+2y3﹣xy2﹣2xy2=﹣3xy2.(2)原式=5x2﹣(3x2+2x2﹣8x)=5x2﹣(5x2﹣8x)=5x2﹣5x2+8x=8x.3.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.4.解:=3x2y﹣(2x2y﹣2xy+3x2y+xy)﹣xy=3x2y﹣(5x2y﹣xy)﹣xy=3x2y﹣5x2y+xy﹣xy=﹣2x2y,∵x=3,y=﹣2,∴原式=﹣2×32×(﹣2)=36.5.解:(1)∵A=2x2+3xy+2y,B=x2﹣xy+y,∴A﹣2B=2x2+3xy+2y﹣2(x2﹣xy+y)=2x2+3xy+2y﹣2x2+2xy﹣2y=5xy;(2)当x=﹣1,y=3时,A﹣2B=5×(﹣1)×3=﹣15.6.解:原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=2,y=1时,原式=12×2×1+10×12=24+10=34.7.解:[(x+2y)(x﹣2y)﹣(2x﹣y)2﹣(x2﹣5y2)]÷(﹣2x)=(x2﹣4y2﹣4x2+4xy﹣y2﹣x2+5y2)÷(﹣2x)=(﹣4x2+4xy)÷(﹣2x)=2x﹣2y,∵23x÷23y=8,∴23x﹣3y=23,∴3x﹣3y=3,∴x﹣y=1,∴当x﹣y=1时,原式=2(x﹣y)=2×1=2.8.解:原式=[(x+2y)﹣(2y﹣x)][(x+2y)+(2y﹣x)]=(x+2y﹣2y+x)(x+2y+2y﹣x)=2x•2y=4xy,当x=1,y=﹣1时,原式=4×1×(﹣1)=﹣4.9.解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,∴4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B=(2a2+3ab﹣2a﹣1)+2(a2+ab﹣1)=2a2+3ab﹣2a﹣1+2a2+2ab﹣2=4a2+5ab﹣2a﹣3,∵(a+2)2+|b﹣3|=0,(a+2)2≥0,|b﹣3|≥0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3.∴原式=4×(﹣2)2+5×(﹣2)×3﹣2×(﹣2)﹣3=4×4﹣30+4﹣3=16+4﹣(30+3)=20﹣33=﹣13;(2)A﹣2B=2a2+3ab﹣2a﹣1﹣2(a2+ab﹣1)=2a2+3ab﹣2a﹣1﹣2a2﹣2ab+2=ab﹣2a+1=(b﹣2)a+1,∵当a取任何数值,A﹣2B的值是一个定值,∴b﹣2=0,∴b=2.∴b=2时,a取任何数值,A﹣2B的值是一个定值.10.解:(1)原式=a4+9a6÷a2=a4+9a4=10a4.(2)原式=(9x2y3﹣27x3y2)÷9x2y2=9x2y3÷9x2y2﹣27x3y2÷9x2y2=y﹣3x.11.解:(2a+b)(2a﹣b)﹣(b﹣2a)2=4a2﹣b2﹣(b2﹣4ab+4a2)=4a2﹣b2﹣b2+4ab﹣4a2=4ab﹣2b2,∵a2+b2﹣4a﹣6b+13=0,∴a2﹣4a+4+b2﹣6b+9=0,∴(a﹣2)2+(b﹣3)2=0,∴a=2,b=3,原式=4×2×3﹣2×32=24﹣18=6.12.解:(1)(2x﹣y)2﹣x(3x﹣4y)﹣(2y﹣x)(2y+x)=4x2﹣4xy+y2﹣3x2+4xy﹣4y2+x2=2x2﹣3y2.(2)(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x)=2x2﹣3x+4x﹣6﹣5x2+6=﹣3x2+x.13.解:(1)(x﹣2y)2﹣x(x+2y)﹣4y2=x2﹣4xy+4y2﹣x2﹣2xy﹣4y2=﹣6xy,当x=﹣4,y=时,原式=﹣6×(﹣4)×=12;(2)∵(m+n)2=169,(m﹣n)2=9,∴m2+2mn+n2=169①,m2﹣2mn+n2=9②,①+②得:2m2+2n2=178,∴m2+n2=89,①﹣②得:4mn=160,∴mn=40,∴m2+n2﹣mn=89﹣40=49,∴m2+n2﹣mn的值为49.14.解:由题意可知:3m2﹣2m﹣5=0,即3m2﹣2m=5,原式=4m2﹣1﹣(m2+2m+1)=4m2﹣1﹣m2﹣2m﹣1=3m2﹣2m﹣2,=5﹣2=3.15.解:(1)a5•a7+a6•(﹣a3)2+2(﹣a3)4=a12+a6•a6+2a12=a12+a12+2a12=4a12;(2)9(a﹣1)2﹣(3a+2)(3a﹣2)=9(a2﹣2a+1)﹣(9a2﹣4)=9a2﹣18a+9﹣9a2+4=﹣18a+13;(3)∵a﹣b=1,∴a2﹣2ab+b2=1,∵a2+b2=25,∴﹣2ab+25=1,∴﹣2ab=﹣24,∴ab=12;(4)20222﹣4044×2021+20212.=(2022﹣2021)2=1.16.解:(1)原式=12m3÷3m﹣6m2÷3m+3m÷3m =4m2﹣2m+1;(2)原式=[2x+(y+z)][2x﹣(y+z)]=(2x)2﹣(y+z)2=4x2﹣(y2+2yz+z2)=4x2﹣y2﹣2yz﹣z2.17.解:(1)拼成的新的长方形纸板的长、宽分别为:m+n,m﹣n,拼成的新长方形纸板的周长:(m+n+m﹣n)×2=4m;(2)由(1)得,拼成的新的长方形纸板的长、宽分别为:m+n,m﹣n,∵m=3,n=2,∴拼成的新的长方形纸板的长、宽分别为:m+n=3+2=5,m﹣n=3﹣2=1,∴拼成的新的长方形纸板的面积为5×1=5,故答案为:5.18.解:(1)①停车位的面积为:2.5×(13.5﹣3×2.5)=15(平方米);故答案为:15;②两块绿地A、B的面积和:13.5x﹣6×15=(13.5﹣90)平方米;(2)绿地A的周长:2(13.5﹣3a+x﹣3a)=2×(13.5﹣6a+x);绿地B的周长:2[3a+x﹣(13.5﹣3a)]=2(6a+x﹣13.5),两块绿地A、B的周长和:2×(13.5﹣6a+x)+2(6a+x﹣13.5)=4x米;∴4x=40,x=10,∴x的值为10.19.解:(1)∵8<12,∴当a=2时,8a=8×2=16(元),故答案为:16;(2)∵18>12,∴当a=2时,12a+(18﹣12)×2a=12×2+6×2×2=24+24=48(元),故答案为:48;(3)由题意得,12a+2a(m﹣12)=12a+2am﹣24a=(2am﹣12a)元,即小华家这个月的水费为(2am﹣12a)元.20.解:(1)由题意得,100×30+50(x﹣30)=3000+50x﹣1500=50x+1500,(100×30+50x)×80%=(3000+50x)×80%=3000×80%+50x×80%=40x+2400,故答案为:50x+1500,40x+2400;(2)当x=50时,50x+1500=50×50+1500=2500+1500=4000(元),当x=50时,40x+2400=4×50+2400=2000+2400=4400(元),∵4000<4400,∴当x=50时,按按方案①购买较为合算;(3)∵100×30+50×80%×(50﹣30)=3000+40×20=3000+800=3800(元),且3800<4000<4400,∴当x=50时,先按方案①购买夹克30件,再按方案②购买T恤20件合算.。
初中数学分式的化简求值专项训练题(精选历年60道中考题 附答案详解)
初中数学分式的化简求值专项训练题(精选历年60道中考题 附答案详解)1.化简求值 :22244(4)2x x x x x+--÷+,其中2x = 2.先化简、再求值:352242a a a a -⎛⎫÷-- ⎪--⎝⎭,其中a3. 3.()1化简:21111x x x ⎛⎫÷+ ⎪--⎝⎭然后选择你喜欢且符合题意的一个x 的值代入求值. ()2分解因式:22344xy x y y --4.先化简再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中x =135.先化简(2341x x +-﹣21x -)÷2221x x x +-+,再从﹣2,﹣1,0,1,2中选一个你认为合适的数作为x 的值代入求值.6.2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭7.先化简再求值:(2221244x x x x x x ---+++)÷42x x -+,其中x =(﹣1)0. 8.先化简,再求值:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭,其中3a =. 9.先化简,再求值: 2295(2)242y y y y y -÷----,其中y =. 10.先化简,再求值:(2241x x x -+-+2-x)÷2441x x x++-,其中x-2. 11.化简求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中m12.(1)计算:22214()244x x x x x x x x+---÷--+; (2)解分式方程:1121x x x -=+-. 13.(1)化简2422x x x+-- (2)先化简,再求值221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11622x x --⎧⎨+≥⎩>.14.先化简,再求值:(11x +﹣1)÷21x x -,其中x =2 15.(1)化简:2112x x x x x ⎛⎫++÷- ⎪⎝⎭; (2)化简分式:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从13x -≤≤中选一个你认为适合的整数x 代人求值.16.先化简,再求值:211()1211x x x x x x ++÷--+-,其中x=3. 17.先化简,再求值:(522a a -++a ﹣2)÷22a a a -+,其中a =2+1. 18.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么? 19.先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=. 20.先化简再求值2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x =2017的解. 21.化简求值:22a 2ab b 2a 2b-+÷-(11b a -),其中a 2=1,b 2=1. 22.(1)解方程 :21124x x x -=-- (2)先化简,再求值:22112()2a a b a b a ab b+÷+--+,其中269a a -+与|1|b -互为相反数. 23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2.24.先化简,再求值:2221111a a a a a ⎛⎫++-÷ ⎪--⎝⎭,其中a =﹣3. 25.(1)计算:23(3)3x x x x--- (2)计算:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭ (3)先化简,再求值: 已知a b =3,求222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭的值. 26.计算:(1)2111a a a a -++-; (2)2222421121a a a a a a a ---÷+--+; (3)先化简再求值:(132x -+)212x x x -÷+-,其中x 是﹣2,1,2中的一个数值. 27.先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解. 28.先化简,再求代数式214(1)33x x x -+÷--的值,其中3tan 3022cos 45x =- 29.()1解方程:28124x x x -=-- ()2先化简后求值2221412211a a a a a a --⋅÷+-+-,其中a 满足20a a -= 30.若13x x +=,求: (1)221x x+的值; (2)1x x-的值; (3)221x x -的值. 31.先化简再求值:221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =-.32.先化简,再求值:233()111a a a a a -+÷--+,其中. 33.先化简,再求值22111211a a a a -⎛⎫÷+ ⎪-+-⎝⎭,其中a =2.34.先化简再求值:22221111x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中x 是不等式组30223x x x +>⎧⎪-⎨<+⎪⎩的最大整数解.35.(1)先化简22121211x x x x x ÷---++,然后从-1,0,2中选一个合适的x 的值,代入求值. (2)解不等式组3(2)2513212x x x x +>+⎧⎪⎨+-<⎪⎩36.先化简,再取一个你喜欢的x 的值带入并求值21211()()111x x x x x x +⨯--+-+ 37.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x ≠. 38.已知,求的值.39.化简:222524(1)244x x x x x x -+-+÷+++,并求当=-123x 40.先化简,再求值:265222x x x x -⎛⎫÷-- ⎪--⎝⎭,其中x =﹣1. 41.先化简,再求值:2112111x x x x +⎛⎫-÷⎪-+-⎝⎭,其中x 满足240x -=. 42.先化简(22444a a a -+-﹣2a a +)÷12a a -+,再从a ≤2的非负整数解中选一个适合的整数代入求值.43.先化简,再求值:2222444x x x x x x x--+-÷-,其中1x =. 44.化简求值:2121(1)m m m m--+÷,从-1,0, 1,2中选一个你认为合适的m 值代入求值.45.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦; (2)先化简,再求值:524223x x x x-⎛⎫++⋅ ⎪--⎝⎭,其中5x =.46.(1)先化简,再求值:24512111a a a a a a -⎛⎫⎛⎫+-÷- ⎪ ⎪---⎝⎭⎝⎭,其中4a = (2)解分式方程:28142y y y +=-- 47.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=2.48.化简求值:244()33x x x x x ---÷--,其中-249.先化简,再求值:222a b 2ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中,a 1b 1=+=. 50.先化简,再求值:223232442x x x x x x -⎛⎫-÷ ⎪--+-⎝⎭,其中3x =. 51.先化简,再求值22214244a a a a a a a a +--⎛⎫+÷⎪--+⎝⎭并从04a ≤≤中选取合适的整数代入求值. 52.先化简,再求值:23(1)11x x x x -÷----,其中1x =- 53.化简并求值:2x+221x 111x x x --÷+--,其中x=﹣3. 54.先化简,再求值:(1)()223(2)(2)844a b a b a b ab ab +---÷其中2,1a b ==(2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭其中3x =. 55.先化简,再求值231(1)22x x x --÷++的值,其中2sin 45x ︒=︒.56.先化简,再求值:22(1)x y x y x y -÷--,其中x 2,y =11()2-. 57.先化简再求值2324()422x x x x x --÷---,其中x=3tan30°-4cos60°. 58.先化简,再求值:2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭,其中3a =. 59.化简分式222x x x x x 1x 1x 2x+1-⎛⎫-÷ ⎪---⎝⎭,并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值.60.(1)解方程:2236111x x x +=+-- (2)计算:3a(2a 2-9a+3)-4a(2a-1)(3)计算:(×(-1|+(5-2π)0(4)先化简,再求值:(xy 2+x 2y )222222x x y x xy y x y ⋅÷++-,其中,y=2.参考答案 1.2x -;2.【解析】 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,现时利用除法法则变形,约分得到最简结果,再把x 的值代入计算即可.【详解】22244(4)2x x x x x+--÷+ =244(2)(2)(2)x x x x x x x +-+-÷+ =2(2)(2)(2)(2)x x x x x x -+⨯+- =2x -; 当22x =+时,原式=2222+-=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2.1-2(3+a),【解析】【详解】解:原式=35(2)(2)2(2)22a a a a a a ⎡⎤--+⎛⎫÷- ⎪⎢⎥---⎝⎭⎣⎦322(2)(3)(3)12(3)a a a a a a --=-⋅--+=-+ 当33时,原式=3-3.(1)11x+,取x=2,得原分式的值为13(答案不唯一);(2)-y(2x-y)2.【解析】【分析】(1)先根据分式的运算法则进行化简,再选一个使原分式有意义的x的值代入求值即可;(2)先提取公因式,再利用完全平方公式进行二次分解即可.【详解】解:(1)原式=1111 (1)(1)1(1)(1)1x x x xx x x x x x x-+-÷=⨯= +--+-+,取x=2代入上式得,原式11213==+.(答案不唯一)(2)原式=y(4xy-4x2-y2)=-y(2x-y)2.【点睛】本题考查分式的化简求值以及因式分解,掌握基本运算法则和乘法公式是解题的关键.4.化简的结果是1x-;2 3 -.【解析】【分析】先计算括号里的减法,将21x-进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【详解】解:211122xx x-⎛⎫÷-⎪++⎝⎭=(1)(1)122x x xx x-++÷++=(1)(1)221x x xx x-++⋅++=1x-,当x=13时,原式=113-=23-【点睛】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.5.原式=11xx-+,当x=0时,原式=﹣1.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的除法运算,最后选择使分式的意义的x 的值代入进行计算即可得.【详解】原式=()()()()()23422211111x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎢⎥⎣⎦ =()()()212·112x x x x x -++-+ =11x x -+, ∵x≠±1且x≠﹣2,∴x 只能取0或2,当x=0时,原式=﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.6.2-【解析】【分析】先算括号内分式的减法,得()()269233x x x x -+-+-,根据完全平方公式化简得()()()23233x x x --+-,再根据分式的除法法则计算即可.【详解】 2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭ ()()232612433233x x x x x x x -+--+-=÷++- ()()23693233x x x x x x --+-=÷++-()()()2333233x x x x x ---=÷++- ()()()2233333x x x x x +--=⨯+-- 2=-.【点睛】本题考查了分式的化简运算,掌握分式的运算法则以及完全平方公式是解题的关键. 7.212x x +,13【解析】【分析】直接将括号里面通分运算,再计算除法,化简后,再代入x 的值得出答案.【详解】 解:原式=2214[](2)(2)2x x x x x x x ----÷+++ =22(2)(2)(1)4[](2)(2)2x x x x x x x x x x -+---÷+++ =222244[](2)(2)2x x x x x x x x x ----÷+++ =242(2)4x x x x x -++- =1(2)x x + =212x x+ 当x =(﹣1)0=1时,原式=2111213=+⨯ 【点睛】本题主要考查分式的化简求值,掌握分式加减乘除混合运算顺序和法则是解题的关键.8.21(2)a -,1 【解析】【分析】根据分式的混合运算法则化简,再将a 的值代入化简后的式子计算即可.【详解】 解:22214244a a a a a a a a +--⎛⎫-÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⋅⎢⎥---⎣⎦ 22(2)(2)(1)(2)(2)4a a a a a a a a a a ⎡⎤+--=-⋅⎢⎥---⎣⎦ 2224(2)4a a a a a a a --+=⋅-- 24(2)4a a a a a -=⋅-- 21(2)a =- 当3a =时,22111(2)(32)a ==--. 【点睛】 本题考查了分式的化简求值问题,解题的关键是掌握分式混合运算的法则,正确化简.9.12y 【解析】【分析】先把原式化简,化为最简后再代数求值即可.【详解】解:原式=()()3y)3y 22y y +-÷-([52y --()()222y y y +--] =()()()()3y)3y 522222y y y y y +--+-÷--(=()()()3y)3y 2223y)3y y y y +--⨯-+-(( =12y当y =时,原式=4. 【点睛】本题考查了化简求值问题,正确化简是解题的关键.10.-12x +【解析】【分析】先用乘法的分配律去括号,利用分式的加减进行化简后代入数值即可.【详解】 原式=2241x x x -+-2(1)(2)x x --+-(x -2) 2(1)(2)x x --+ =-2224(2)x x x -+++2(1)(2)(2)x x x --+ =()()2222432(2)x x x x x --++-++ =2(2)(2)x x -++ =-12x + 当x-2=-6【点睛】 本题考查的是分式的化简求值,掌握分式的运算法则和二次根式的化简是关键.11.11m --【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m 的值代入计算即可求出值.【详解】22111m m m m +-⎛⎫-÷ ⎪⎝⎭ ()()2111m m m mm m --=+- ()()111m m mm m +=-+- 11m =--当1m =时,原式===. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.12.(1)21(2)x -;(2)x =0. 【解析】【分析】 (1)原式括号中两项通分并利用同分母分式的减法法则计算,利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=[221](2)(2)4x x x x x x x +-----=2224(2)x x x x x --+-•4x x - =21(2)x -; (2)方程两边乘(x +2)(x ﹣1),得x (x ﹣1)﹣(x +2)(x ﹣1)=x +2,整理得:x 2﹣x ﹣(x 2+x ﹣2)=x +2解得,x =0,检验:当x =0时,(x +2)(x ﹣1)≠0,所以,原分式方程的解为x =0.【点睛】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键. 13.(1)x +2;(2)1x x +,当x =﹣2时,原式=2. 【解析】【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【详解】 (1)原式2422x x x =--- 242x x -=- ()()222x x x +-=- =x +2;(2)原式()()2111x x x x x =÷+-- ()()211x x x =+-•1x x-1x x =+, 解不等式组11622x x --⎧⎨+≥⎩>①②解不等式①得x <2;解不等式②得x≥-2;∴不等式组的解集是﹣2≤x <2,所以该不等式组的整数解为﹣2、﹣1、0、1,因为x ≠±1且x ≠0,所以x =﹣2, 则原式221-==-+2. 【点睛】本题主要考查分式的化简求值与解不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式组的能力.14.-1【解析】【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x ;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】 解:原式=x x+x-x+1x -(1)(1) =﹣x+1当x =2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简. 15.(1)21x -;(2)1x x +,x=3时,34【解析】【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从13x -≤≤中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式221212x x x x x=+--÷ ()()122111x x x x x x +⨯=+--=; (2)原式()()()()()()()22111111111x x x x x x x x x x x x x x x +---⨯=⨯=+--+-+, 当3x =时,原式33314==+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.3,12x x - 【解析】【分析】根据分式的乘法和减法可以化简,然后将x 的值代入即可.【详解】2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭ =()()()()22111111x x x x x x ⎛⎫+-- ⎪+⨯ ⎪--⎝⎭ =()2211x x xx -⨯- =1x x -; 当x=3时,原式=33312=-. 【点睛】考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.17.1a a-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=252422(1)a a a a a a -+-+⨯+- =2(1)22(1)a a a a a -+⨯+-=1a a -,当a +1时,=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 18.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 19.31x x -+,5. 【解析】【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x 的值,代入计算即可求出值.【详解】原式=21(3)3(1)(1)x x x x x --⨯-+-=31x x -+, 由2x+4=0,得到x=﹣2,则原式=5.20.1(1)a a -,12017. 【解析】【分析】先计算括号内的分式减法,再计算分式的除法即可化简,然后根据方程的解定义得出一个关于a 的等式,最后代入求解即可.【详解】2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭ 22(1)(1)21111a a a a a a a --+-⎡⎤=÷-⎢⎥-++⎣⎦ 222121()111a a a a a a ---=÷--++ 222211a a a a a --=÷-+ 21(1)(1)(2)a a a a a a -+=⋅+-- 1(1)a a =- 因a 是方程22017x x -=的解,则22017a a -= 将其代入得,原式211(1)20171a a a a -===-. 【点睛】本题考查了分式的化简求值、一元二次方程的解定义,熟记分式的运算法则是解题关键. 21.ab 2,12 【解析】【分析】根据分式的混合运算,先化简,再代入求值,即可得到答案.【详解】原式()2(a b)a b 2a b ab--=÷- a b 2-=•ab a b- ab 2=, 当a =1,b =1时,原式)112=212-=12=. 【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分,是解题的关键.22.(1)x=32-;(2)a b a b -+;12. 【解析】【分析】(1)把方程两边同时乘以最简公分母x 2-4,去分母得整式方程,解整式方程可求出x 的值,把x 的值代入最简公分母检验即可得答案;(2)先把括号内的分式通分,除式的分母因式分解,再根据分式除法法则化简得出最简结果,根据平方和绝对值的非负数性质可求出a 、b 的值,代入化简后的式子计算即可得答案.【详解】(1)21124x x x -=-- 方程两边同时乘以最简公分母x 2-4得:x(x+2)-(x 2-4)=1,整理得:2x=-3,解得:x=32-,检验:当x=32-时,x 2-4≠0, ∴x=32-是原分式方程的解. (2)22112()2a a b a b a ab b+÷+--+ =22()()()a b a b a a b a b a b -++÷+-- =22()()()2a a b a b a b a-⋅+- =a b a b-+, ∵269a a -+与|1|b -互为相反数,∴2(3)a - +|1|b -=0,∴a-3=0,b-1=0,解得:a=3,b=1,当a=3,b=1时,原式=a b a b -+=3131-+=12. 【点睛】本题考查分式的混合运算——化简求值及解分式方程,解分式方程的基本思想是转化思想,把分式方程转化成整式方程再解方程,注意最后要检验是否有增根;熟练掌握分式的混合运算法则及非负数的性质是解题关键23.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.11a +;12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=21(1)(1)11(1)1a a a a a a a -++-⋅=-++, 当a =﹣3时,原式=﹣12. 【点睛】本题主要考查了分式的混合运算,灵活的利用通分、约分进行分式的化简是解题的关键. 25.(1)22(3)x x -;(2)x ﹣1;(3)22a b b a+-,﹣5. 【解析】【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案;(2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案;(3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】解:(1)原式2223(3)(3)(3)x x x x x x +-==--; (2)原式2221(1)(1)(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x +++-+-=⋅=⋅=--++-++; (3)原式222(+2)3()()(+2)2(2)(2)2a b b a a b b a b a b a b a b a b a b a b b a b a b a-----+=÷=⋅=---+--∵3a b=, ∴a =3b ,所以原式=32523b b b b +=--. 【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化.26.(1)1;(2)21a +;(3)x ﹣1,x =2时,原式=1. 【解析】【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解.【详解】 (1)2111a a a a -++-, =111a a a +++, =11a a ++, =1;(2)2222421121a a a a a a a ---÷+--+, =222(2)(1)1(1)(1)2a a a a a a a ---⋅++--, =22(1)11a a a a --++, =22(1)1a a a --+, =21a +; (3)(132x -+)212x x x -÷+-, =23(1)(2)21x x x x x +--+⋅+-, =x ﹣1,∵x +2≠0,x ﹣1≠0,∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键.27.2a a 1-,910-. 【解析】【分析】先把分式化简后,再解方程确定a 的值,最后代入求值即可.【详解】解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷-- =2(1)(1)(1)1a a a a a a +-⋅-+ =2a a 1- 由2230x x +-=,得11x =,232x =-又10a -≠∴32a =-. ∴原式=23()9231012-=---. 【点睛】本题考查分式的化简求值;一元二次方程的解法,掌握计算法则正确计算是解题关键. 28.12x +,3【解析】【分析】 先去括号,再算乘法约去公约数,即可完成化简,化简3tan 3022cos 45x =-,先算三角函数值,再算乘法,再算减法,再将化简后x 的值代入原式求解即可.【详解】 原式313()33(2)(2)x x x x x x --=+•--+- 233(2)(2)x x x x x --=•-+- 12x =+当33tan 3022cos 453232x =-=⨯-=时原式3=== 【点睛】本题考查了整式的混合运算,掌握整式混合运算的法则是解题的关键.29.(1)无解;(2)22a a --,-2【解析】【分析】(1)根据解分式方程的步骤计算即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再整体代入计算可得.【详解】(1)两边都乘以(x +2)(x ﹣2),得:x (x +2)﹣(x +2)(x ﹣2)=8,解得:x =2,当x =2时,(x +2)(x ﹣2)=0,∴x =2是增根,∴原分式方程无解;(2)原式12a a -=+•()()222(1)a a a +--•(a +1)(a ﹣1) =(a ﹣2)(a +1)=a 2﹣a ﹣2.当a 2﹣a =0时,原式=﹣2.【点睛】本题考查了分式的化简求值,解答本题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.30.(1)2217x x +=;(2)1x x -=(3)221x x -=±. 【解析】【分析】(1)利用完全平方公式对已知等式变形,即可求得答案;(2)利用(1)的结论运用配方法即可求得;(3)利用(2)的结论结合已知等式,运用平方差公式即可求解.【详解】(1)∵13x x+=, ∴219x x ⎛⎫+= ⎪⎝⎭, 整理,得,22129x x ++=, ∴2217x x +=; (2)由(1)知2217x x+=, ∴22125x x +-=,即215x x ⎛⎫-= ⎪⎝⎭,∴1x x-=(3)∵1x x -=13x x +=,∴11x x x x ⎛⎫⎛⎫-⋅+=± ⎪ ⎪⎝⎭⎝⎭即221x x-=±; 【点睛】本题考查了分式的化简求值,熟练掌握并灵活运用完全平方公式、平方差公式进行变形是解本题的关键.31.3x x+;0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭ ()()()()()()()()211111111x x x x x x x x x ⎡⎤+-+-=-⋅⎢⎥+-+-⎣⎦()()()()()()2111111x x x x x x x +--+-=⋅+- 221x x x+-+= 3x x+=; 当3x =-时, 原式3303-+==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.32.【解析】【分析】根据分式的运算法则即可求出答案.【详解】当时,原式=()()333111a a a a a a++-+⨯-+ =()()4111a a a a a+⨯-+ =41a -.【点睛】本题考查分式的运算,解题的关键的是熟练运用分式的运算法则.33.1a a +;32. 【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2(1)(1)(1)a a a +--÷1a a - =2(1)(1)(1)a a a +--•1a a - =1a a+, 当a =2时,原式=32. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.13-【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+(1)(1)(2)x x x x =•+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0解不等式组,得﹣3<x≤2,则x 整数解为x =﹣2,﹣1,0,1,2,∴x =﹣2 原式=13-.【点睛】本题考查了分式方程的化简求值,不等式组的求解,中等难度,正确化简并利用分式有意义的条件求出x 的值代入是解题关键.35.(1)1x-,12-;(2)13x 【解析】【分析】(1)根据分式的各个运算法则化简,然后选择一个使原分式有意义的x 的值代入即可;(2)根据不等式的基本性质解不等式组即可.【详解】 (1)原式=21(1)2(1)(1)1x x x x x -⋅-+-+ 12(1)(1)x x x x x x -=-++ (1)(1)x x x -+=+ 1x=- 根据原分式有意义的条件:1,0x ≠±当2x =时,原式=12-(2)13212x x ⎪⎨+-<⎪⎩② 解①得,1x >解②得,3x <∴该不等式组的解集为13x【点睛】此题考查的是分式的化简求值题和解不等式组,掌握分式的各个运算法则和不等式的基本性质是解决此题的关键. 36.224421x x x ---,x=2时值为2. 【解析】【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可.【详解】 解:原式2221211=+111x x x x x x x x ++-⎛⎫⎛⎫⨯-- ⎪ ⎪--⎝⎭⎝⎭ ()()()()()()()()()()()()22222122=+1111421114211141211114421x x x x x x x x x x x x x x x x x x x x x x x x x +⎛⎫⨯- ⎪+-⎝⎭+=⨯-+-+=-++--=-+-+---=- 要使分式有意义,则x ≠0,1,-1则当=2x 时,代入得2244244422=2141x x x --⨯-⨯-=--【点睛】 本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键. 37.22x -,12- 【解析】 【分析】先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将2x =-代入化简后的式子即可解答本题. 【详解】 解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅- =22x -. ∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---. 【点睛】本题考查了分式的化简求值,解题的关键是明确分式化简求值的方法.38.,当x=+1时,原式= 【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简.试题解析:, 当时,原式.考点:1.分式的化简;2.二次根式化简.39.2x -【解析】【分析】根据分式的混合运算法则,先化简,再代入求值,即可求解.【详解】原式=22522(2)2(2)(2)x x x x x x x -++++⨯++- =22(2)(2)2(2)(2)x x x x x -+⨯++- =2x -,当=1x -2= 【点睛】本题主要考查分式的混合运算法则,掌握分式的通分与约分进行化简,是解题的关键. 40.﹣23x +,﹣1 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 解:原式=2(3)2x x --÷5(2)(2)2x x x -+-- =2(3)22(3)(3)x x x x x --⋅--+- =﹣23x +, 当x =﹣1时,原式=﹣1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.41.22x ,12. 【解析】【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【详解】 原式11(1)(1)()112x x x x x +-=-⨯-++ 1122x x x x +-=-++ 22x =+ 因为:240x -=2x =当2x =时,原式12=. 【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.42.21a --,2 【解析】【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】 解:原式=2(2)2(2)(2)21a a a a a a a ⎡⎤-+-⋅⎢⎥-++-⎣⎦, 22()221a a a a a a -+=-⋅++-, 2221a a a +=-⋅+-, 21a =--. ∵a ≤2的非负整数解有0,1,2,又∵a ≠1,2,∴当a =0时,原式=2.【点睛】此题考察分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.43.12x +;13【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】 解:原式222(2)(2)(2)x x x x x x x -=-⋅+-- 22(2)(2)(2)(2)x x x x x x +=-+-+- ()()222x x x -=+- 12x =+ 当1x =时,原式11123==+. 【点睛】 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.44.11m +,13【解析】【分析】根据分式的混合运算法则运算即可,注意m 的值只能取2.【详解】解:原式=2121()m m m m m-+-÷=1(1)(1)m m m m m -⎛⎫⋅ ⎪-+⎝⎭ =11m+ 把m=2代入得,原式=13. 【点睛】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.45.(1)13-;(2)62x --;16-【解析】【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x-⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x ⎛⎫--+⋅ ⎪---⎝⎭=()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.46.(1)22a a -,8;(2)原方程无解【解析】【分析】(1)现根据分式的运算法则化简分式,再将a 的值代入即可;(2)先变形,再把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)原式=2145211(1)a a a a a a a ⎛⎫⎡⎤----÷ ⎪⎢⎥---⎣⎦⎝⎭=244(1)12a a a a a a -+-⨯--=2(2)(1)12a a a a a --⨯--=(2)a a -=22a a -,当a =4时,原式=24248-⨯=;(2)解:解:原方程化为:81,(2)(2)2y y y y +=+-- 方程两边都乘以(y+2)(y-2)得:284(2),y y y +-=+化简得,2y=4,解得:y=2,经检验:y=2不是原方程的解.原方程无解.【点睛】本题考查了分式的化简求值以及解分式方程,分式的化简求值注意运用运算法则先化简再代入计算;解分式方程的关键能把分式方程转化成整式方程并注意要检验.47.13.试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=2时,原式=13.48.22x x -+,33- 【解析】【分析】根据分式的各个运算法则化简,然后代入求值即可.【详解】 解:244()33x x x x x ---÷-- =()()22234333x x x x x x x x +-⎛⎫---÷ ⎪---⎝⎭=()()2443322x x x x x x -+-•-+- =()()()223322x x x x x --•-+- =22x x -+将-2代入,得原式=33- 【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则是解决此题的关键.49.-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把a 、b 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()222a b a b a b a b 2ab b a a a b a a a a ba b +-+---+÷=⋅=----.当a 1b 1=+=-=2==-. 50.33x x-;0. 【解析】【分析】先把括号内的分式的分母因式分解,再根据分式除法法则,利用乘法分配律化简得出最简结果,最后把x=3代入求值即可.【详解】原式=()()2322232x x x x x ⎡⎤---⋅⎢⎥--⎢⎥⎣⎦()312=223x x x x ⎛⎫--⋅ ⎪ ⎪--⎝⎭()3212=2323x x x x x --⋅-⋅-- 11=3x - =33x x-. 当3x =时,原式=33033-=⨯. 【点睛】本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.51.21(2)a -,1. 【解析】【分析】将原式化简成()212a -,由已知条件a 为04a ≤≤中的整数,原式有意义可知0,2,4a a a ≠≠≠,从而得出1a =或3a =,将其代入()212a -中即可求出结论.【详解】 22214244a a a a a a a a +--⎛⎫+÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⨯⎢⎥---⎣⎦ 22224(2)(2)4a a a a a a a a a ⎡⎤--=-⨯⎢⎥---⎣⎦ 24(2)4a a a a a -=⨯-- 21(2)a =- ∵04a ≤≤且为整数,且0a ≠,2,4.∴取1a =,原式211(12)==-.或取3a =,原式211(32)==- 【点睛】分式的化简考查了分式的运算,主要涉及分式的加减法、分式的乘除法,分式的加减法关键是化异分母为同分母,分式的除法关键是将除法转化为乘以除式的倒数;求值部分,尤其是这类选取适当的数代入求值时,千万要注意未知数取值的限制,所有使分母等于零的数都不能取,使使除号后紧跟的分式的分子为零的数也不能取避免进入分式无意义的雷区,例如本题已知条件04a ≤≤中选取的合适的整数只有1和3.52.12x -+;1-【分析】 根据分式的化简,通过通分、约分化简得到的式子,把1x =-代入求值即得.【详解】原式223111x x x x --+=÷-- 211(2)(2)x x x x x --=⨯-+- 12x =-+, 把1x =-代入得原式1112=-=--+. 【点睛】考查分式的化简求值,化简中用到因式分解、约分,注意因式分解,约分符号问题,最后使得式子最简.53.2.【解析】试题分析:先将2x+221x 111x x x --÷+--进行化简,再将x 的值代入即可; 试题解析: 原式=﹣•(x ﹣1)==,当x=﹣3时,原式=﹣2.54.(1)242a ab -,12;(2)12x -,1 【解析】【分析】(1)原式第一项利用平方差公式化简,第二项利用多项式除以单项式法则计算,合并得到最简结果,将a 与b 的值代入计算即可求出值;(2)首先计算括号里面的进而利用分式乘除运算法则计算得出最简结果,将x 的值代入计算即可求出值.解:(1)()223(2)(2)844a b a b a b abab +---÷, = ()22242a b ab b---=242a ab -,当2,1a b ==时,原式=242221=164⨯-⨯⨯-=12; (2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭=()()()()()222242222x x x x x x x x x --+⎡⎤-÷-⎢⎥-+++⎣⎦=2222x x x x x -÷++ =()222x x x x x +⋅+- =12x -, 当x=3时,原式=132-=1. 【点睛】本题考查分式的化简求值以及整式的混合运算,正确进行分式的混合运算是解题关键.55.11x +;2【解析】【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x ,再代入即可.【详解】 原式2231()2x 22x x x x +-=-÷+++ 223122x x x x +--=÷++ 21221x x x x -+=⨯+-122(1)(1)x x x x x -+=⨯++- 11x =+.当21x ==时,原式11x ===+. 【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握.56.x +y .【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.试题解析:原式=()()x x y x y x y x y y -++-⋅- =()()y x y x y x y y+-⋅-=x +y ,当x 2,y =11()2-=2时,原式57【解析】【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可【详解】 原式32(2)2(2)(2)(2)(2)4x x x x x x x x ⎡⎤+-=-•⎢⎥+-+--⎣⎦ 3242421(2)(2)4(2)(2)42x x x x x x x x x x x x -----=•=•=+--+--+134232x =⨯-⨯=∴原式== 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键58.22a a -+,15-. 【解析】【分析】先对括号里的式子进行通分化简运算,然后进一步化简,最后代入求值即可.【详解】 原式2(2)3(1)(1)11a a a a a ---+=÷++ 22(2)411a a a a --=÷++ 2(2)11(2)(2)a a a a a -+=⋅++- 22a a-=+. ∴当3a =时,原式231235-==-+. 【点睛】本题主要考查了分式的化简求值,熟练掌握相关法则是解题关键.错因分析 容易题.失分原因是:①括号内通分时,忘记变号;②将除法变为乘法时,忘记分子分母调换位置.59.x x+1;x=2时,原式=23. 【解析】【分析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为0的数代入求值.【详解】解:原式=()()()()()()()()()()()222x x+1x x 1x 1x x x ==x+1x 1x+1x 1x+1x 1x x 1x+1x 1⎡⎤---÷⋅⎢⎥-----⎢⎥⎣⎦. ∵﹣1≤x≤3的整数有-1,0,1,2,3,当x=﹣1或x=1时,分式的分母为0,当x=0时,除式为0,∴取x 的值时,不可取x=﹣1或x=1或x=0.不妨取x=2,此时原式=22=2+13.60.(1)分式方程无解;(2)326a 35?a 13a +﹣;(3)(4 【解析】【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把. 【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式322326a 27a 9a 8a 4a 6a 35?a 13a =++=+﹣﹣﹣;(3)原式=11+=(4)原式=xy (x+y )()()()22x y x y xx y x y +-⋅⋅+=x ﹣y ,代入得当,y=2时,原式22= 【点睛】 本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.。
化简求值专题训练(改编版)
专题二 中考数学化简求值专题训练考点:①分式的加减乘除混合运算(注意去括号、添括号及通分时变号,分子相减时要将分子看做整体) ②因式分解(先提公因式,再平方差(两项)或完全平方公式(三项))③二次根式的简单计算(分母有理化,一定要化为最简根式)化简“三分”:通分、约分、分解因式注意:此类题目的要求,如果没有化简,直接代入求值一分不得!类型一 化简之后直接代值,一般有两种基本形式。
1.含根式形,代值后需要对分母进行有理化,保证最后算出的值是最简根式。
(1)先化简,再求值:111(11222+---÷-+-m m m m m m ), 其中3=m .(2)先化简,再求值:232()111x x x x x x --÷+--,其中x =2.常规形,不含根式,化简之后直接代值,相对较简单。
(3) 先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. (4)先化简,再求值:x x x x x x x x ----+-⋅-2129631223,其中x =-6. 类型二 代入的数值需要先计算,含有其它的知识点。
1.含有三角函数的计算,需要注意三角函数特殊角所对应的值。
(5)化简,再求代数式1111222---++x x x x 的值,其中x=tan600-tan450 2.代值不确定。
一般为一个方程或者不等式组,或者几个选项,一般来说只有一个值适合要求,所以要看所求的值是否能使前面原式及化简过程中的每一个式子都有意义。
另外,如果条件是一个方程,暂时不要解方程,先考虑用整体法代入试试,如果需要解方程,一般用十字相乘即可,特殊情况除外。
(6)先 化简,再求值:a -1a +2×a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2. (7) 先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足20a a -=. (8)先化简,再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭, 其中x 是一元二次方程2220x x --=的正数根. (9).先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。
初中数学分式的化简求值专项训练题6(附答案详解)
17.先化简,再求值: ,其中 - 1.
18.解答下列各题:
(1)解方程:
(2)先化简,再求值: ,其中 满足Leabharlann 19.先化简,后求值: ,其中 .
20.(1)解不等式组 .
(2)分解因式: .
(3)先化简,再求值: ,其中 .
(4)解分式方程: .
6.先化简,再求值: ÷(a﹣1﹣ ),其中a为不等式组 的正整数解.
7.先化简 ,再从-2、-1、0、1、2中选一个你认为合适的数作为 的值代入求值.
8.先化简,再求代数式(1+ ) 的值,其中m=2sin60°+1.
9.先化简,再求值: ,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
解:
解不等式组
解得
∴ ,
∴不等式组的整数解是 ,
∴当 时,原式 .
【点睛】
本题考查分式的化简,一元一次不等式组的解法;熟练掌握分式的化简技巧,准确解一元一次不等式组是解题的关键.
14.
【解析】
【分析】
根据分式的性质化简,再由 可得 的值,代入使分式有意义的x的值计算即可.
【详解】
解:
由 可得 或 ,
把 , 代入上式
= .
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
6. ,1
【解析】
【分析】
直接将括号里面通分运算,进而利用分式的混合运算法则化简,进而解不等式组计算得出答案
【详解】
解:原式 ,
∵
解①得: ,
解②得: ,
解得:1≤x≤2,
∴不等式组的正整数解为1,2,
∵ 时,分式无意义,因此, ,
数学中考备考:化简求值专题
【解析】略
41.
【解析】
解:原式
42.当a=0时,原式=1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:
= ,
=
=﹣ ,
当a=0时,原式=1.
考点:分式的混合运算
43.原式= ,
当x= ﹣2时,原式= .
解:化简得:原式=
=
= ,……3分;
当 时:原式= ………5分
考点:分式的化简求值.
点评:此题考查了分式的化简求值,解答此类题要先把原式化为最简,然后再代值,用到的方法有分式的加减法及乘除法,分式的加减法的关键是通分,通分的关键是找出各分母的最简公分母,分式乘除法的关键是约分,约分的关键是找出公因式,在约分时遇到多项式,应先将多项式分解因式再约分.
试题解析:原式= = = ,
当 时,原式= = = .
考点:分式的化简求值.
48.解:原式= ×
= × =2x,
当x= 时,原式=2× = .
【解析】先通分,计算括号里的,再把除法转化成乘法进行约分计算,最后把x的值代入计算即可.
解:原式= × = × =2x,
当x= 时,原式=2× = .
49.取 时,原式 (不唯一)
试题解析:原式= =
当x= 时,原式= = =
考点:分式的化简求值
45. ;-
【解析】
试题分析:首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,最后进行约分化简,从而将a的值代入化简后的式子进行计算得出答案.
试题解析:原式= =
当a=- 时,原式= =-
初中数学中考先化简再求值
一.解答题(共30小题)先化简再求值1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006?巴中)化简求值:,其中a=.12.(2010?临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010?綦江县)先化简,再求值,,其中x=+1.16.(2009?随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x?.24.先化简代数式再求值,其中a=﹣2.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.30.化简并求值:?,其中x=22013年6月朱鹏的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.化简求值:,选择一个你喜欢且有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:首先对小括号内的运算进行运算,然后把除法转化为乘法后进行乘法运算,最后,把喜欢的有意义的数代入求值即可.解答:解:原式==x﹣1,当x=2时,原式=x﹣1=2﹣1=1.点评:本题主要考查分式的加减法运算、乘除法运算,因式分解,关键在于正确的对分式进行化简,认真的计算,注意x的取值不能是分式的分母为零.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.考点:分式的化简求值.专题:开放型.分析:先计算括号里的减法运算,再计算除法.最后选一个有意义的值代入,即分母不为0的值.解答:解:原式=(2分)=(3分)=(5分)=x+4(6分)当x=0时,原式=4.(8分)(注x可取不等1,4的任何数)点评:本题主要考查分式的化简求值,把分式化到最简是解答的关键,通分、因式分解和约分是基本环节.注意做此题时,选值时一定要使原式有意义,即分母不能为0.3.先化简再求值:选一个使原代数式有意义的数代入中求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:,=﹣,=﹣;又为使分式有意义,则a≠﹣3、﹣2、2;令a=1,原式=﹣=﹣1.点评:本题考查了分式的四则运算,在计算时,要弄清楚运算顺序,先进行分式的乘除,加减运算.再代值计算,注意化简后,代入的数不能使分母的值为0.4.先化简,再求值:,请选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:将括号里通分,除法化为乘法,约分,再代值计算,注意a的取值不能使原式的分母、除式为0.解答:解:原式=?=,当a=﹣1时,原式==.点评:本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:原式==,=,=.当a=1时,(a的取值不唯一,只要a≠±2、﹣3即可)原式=.点评:此题答案不唯一,只需使分式有意义即可.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:把括号中通分后,利用同分母分式的减法法则计算,同时将除式的分子分解因式后,再利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后得到最简结果,然后选择一个x的值代入化简后的式子中,即可求出原式的值.解答:解:(1﹣)÷=?=?=,当x=2时,原式=1.(答案不唯一,x不能取﹣2,±1)点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找出最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,化简求值题要将原式化为最简后再代值,本题中由分母不为0,得到x不能取﹣2,1及﹣1,故注意这几个数不要取.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.考点:分式的化简求值.专题:计算题.分析:原式被除数括号中两项通分并利用同分母分式的减法法则计算,除数分子利用平方差公式分解因式,分母利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=÷=﹣?=﹣,当x=1时,原式=﹣=4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.考点:分式的化简求值.专题:计算题.分析:将原式括号中两项通分并利用同分母分式的减法法则计算,整理后再利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后将a=2或a=3(a不能为0和1)代入化简后的式子中计算,即可得到原式的值.解答:解:原式=÷=÷=?=,当a=2时,(a的取值不唯一,只要a≠0、1)原式==1;当a=3时,(a的取值不唯一,只要a≠0、1)原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.考点:分式的化简求值.分析:(1)将原式的分子、分母因式分解,约分,再给x取值,代值计算,注意:x的取值要使原式的分母有意义;(2)将(m+1)与前面的括号相乘,运用分配律计算.解答:解:(1)原式=?=,取x=2,原式==1;(2)原式=m+1﹣?(m+1)=m+1﹣1=m,当m=5时,原式=5.点评:本题考查了分式的化简求值.分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:(1)先算除法,再算同分母加法,然后将x=3代入即可求得分式的值;(2)首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,再把数代入,不能选2,±3,会使原式无意义.(3)先将括号内的部分通分,再将除法转化为乘法,然后将x=2代入即可求得分式的值;(4)先约分化简,再计算同分母加法,然后将x=﹣1代入即可求得分式的值.解答:解:(1)=?+=,把x=3代入,原式=.(2)=?=,把x=1代入,原式=.(3)=?=,把x=2代入,原式=1.(4)=+=,把x=﹣1代入,原式=﹣1.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.注意(2)化简后,代入的数不能使分母的值为0.11.(2006?巴中)化简求值:,其中a=.考点:分式的化简求值;分母有理化.专题:计算题.分析:先通过分解因式、约分找到最简公分母,再通分,得最简形式,最后把a=代入求值.解答:解:原式===﹣;当a=时,原式=﹣=1﹣.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.12.(2010?临沂)先化简,再求值:()÷,其中a=2.考点:分式的化简求值.专题:计算题.分析:先对通分,再对a2﹣1分解因式,进行化简.解答:解:原式===﹣=.∵a=2,∴原式=﹣1.点评:本题主要考查分式的化简求值.13.先化简:,再选一个恰当的x值代入求值.考点:分式的化简求值.专题:开放型.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.需注意的是x的取值需使原分式有意义.解答:解:原式==(x+2)(x﹣1)=x2+x﹣2;当x≠﹣1,x≠1时,代入解答正确即可给分.点评:注意化简后,代入的数要使原式以及化简中的每一步都有意义.14.化简求值:(﹣1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先将括号内的部分通分,再将除法转化为乘法进行计算.解答:解:原式=(﹣)÷=?=﹣=,当x=2时,原式==﹣.点评:本题考查了分式的化简求值,学会因式分解是解题的关键.15.(2010?綦江县)先化简,再求值,,其中x=+1.考点:分式的化简求值.专题:计算题.分析:本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=,把x=+1,代入得:原式=.点评:本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.尤其要注意的是含有无理数的时候最后结果要分母有理化.16.(2009?随州)先化简,再求值:,其中x=+1.考点:分式的化简求值;分母有理化.专题:计算题.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,先进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式===;当x=+1时,原式==.点评:此题要特别注意符号的处理.化简和取值的结果都要求达到最简为止.17.先化简,再求值:÷,其中x=tan45°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:首先利用分式的混合运算法则计算化简,最后代入数值计算即可求解.解答:解:÷=x﹣2,∵x=tan45°=1,∴原式=x﹣2=﹣1.点评:此题主要考查了分式的化简求值,其中化简的关键是分式的乘法法则和约分.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.解答:解:原式=(x+2)×=当x=﹣1时,原式==﹣2.点评:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.19.先化简,再求值:(1+)÷,其中x=﹣3.考点:分式的化简求值.专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法法则:分母不变,只把分子相加减,计算出结果,同时把除数中的分母利用平方差公式分解因式后,利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分即可得到最简结果,然后把x的值代入即可求出原式的值.解答:解:原式=(+)?=?=,当x=﹣3时,原式==﹣1.点评:此题考查了分式的化简求值,解答此类题要先把原式化为最简,然后再代值,用到的方法有分式的加减法及乘除法,分式的加减法的关键是通分,通分的关键是找出各分母的最简公分母,分式乘除法的关键是约分,约分的关键是找出公因式,在约分时遇到多项式,应先将多项式分解因式再约分.20.先化简,再求值:,其中a=2.考点:分式的化简求值.专题:计算题.分析:先同分母化简分式,再代入a值求得.解答:解:原式=代入a=2解得原式=.点评:本题考查了分式的化简求值,先同分母化简分式,代入a值求得.21.先化简,再求值÷(x﹣),其中x=2.考点:分式的化简求值.专题:计算题.分析:先把分式化简,再将未知数的值代入求解.解答:解:原式===;当x=2时,原式=.点评:本题考查了分式的混合运算以及多项式的因式分解.22.先化简,再求值:,其中.考点:分式的化简求值.专题:计算题.分析:先化简,再把x的值代入计算即可.解答:解:原式=×=x﹣1,∵,∴原式=x﹣1=+1﹣1=.点评:本题考查了分式的化简求值,化简此分式是解题的关键.23.先化简,再求值:(﹣1)÷,其中x?.考点:分式的化简求值.专题:计算题.分析:先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.解答:解:方法一:原式=÷(1分)=?(2分)=?(3分)=.(4分)当x?时,=.(5分)方法二:原式=÷﹣1÷=?﹣(2分)=?﹣(3分)=﹣==.(4分)当x?时,=.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.24.先化简代数式再求值,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a的值代入求解.解:原式===1﹣a(4分)当a=﹣2时,原式=1﹣(﹣2)=3.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先对括号里的分式通分,计算出来后,再把除法转化为乘法,最后把x的值代入计算即可.解答:解:原式=?=x+1.当x=2时,x+1=3.点评:本题考查了分式的化简求值.解题的关键是对分式的分子、分母要进行因式分解.26.先化简,再求值:,其中x=2.考点:分式的化简求值.专题:计算题.分析:先把括号内通分得到原式=,再把除法运算转化为乘法运算,然后把分母分解因式得到原式=?,再进行约分得原式=,然后把x=2代入计算即可.解答:解:原式==?=,当x=2时,原式==.点评:本题考查了分式的化简求值:先把各分式的分子或分母分解因式,若有括号,先把括号内通分,然后约分,得到最简分式或整式,再把满足条件的字母的值代入计算得到对应的分式的值.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再利用乘法进行约分计算,最后把x的值代入计算即可.解:原式==×=,当x=2时,原式=﹣=﹣1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解.28.先化简,再求值:,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先通分,然后进行四则运算,最后将x=﹣2代入.解答:解:原式=×=,∵a=﹣2,∴原式===﹣.点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.考点:分式的化简求值.分析:首先将分式的分子与分母进行因式分解,再去括号,约分最后代入求值.解答:解:原式=÷(),=×,=,x=3时,原式=.点评:此题主要考查了分式的化简求值问题,正确的因式分解再约分是解决问题的关键.30.化简并求值:?,其中x=2考点:分式的化简求值.专题:计算题.分析:先把分式?化为最简分式,然后把x=2代入求值即可.解答:解:?==,把x=2代入得:原式==.点评:本题考查了分式的化简求值,属于基础题,关键是把所求分式化为最简分式再代入求值.。
中考数学化简求值专项训练【范本模板】
中考数学化简求值专项训练注意:此类题目的要求,如果没有化简,直接代入求值一分不得!!考点:①分式的加减乘除运算(注意去括号,添括号时要变号,分子相减时要看做整体) ②因式分解(十字相乘法,完全平方式,平方差公式,提公因式)③二次根式的简单计算(分母有理化,一定要是最简根式)类型一:化简之后直接带值,有两种基本形式:1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式2.常规形,不含根式,化简之后直接带值1。
化简,求值:111(11222+---÷-+-m m m m m m ), 其中m =3.2. 化简,求值:13x -·32269122x x x x x x x-+----,其中x =-6.3。
化简,求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y4. 化简,求值:2222(2)42x x x x x x -÷++-+,其中12x =.5. 化简,求值:)11(x -÷11222-+-x x x ,其中x =26。
化简,求值:2224441x x x x x x x --+÷-+-,其中32x =.7。
化简,求值:62296422+-÷++-a a a a a ,其中5-=a .8. 化简,求值:232()111x x x x x x --÷+--,其中32x =类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点 1.含有三角函数的计算.需要注意三角函数特殊角所对应的值。
需要识记,熟悉三角函数 例题1. 化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4502. 先化简222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学化简求值专项训练
注意:此类题目的要求,如果没有化简,直接代入求值一分不得! !
考点:①分式的加减乘除运算(注意去括号,添括号时要变号,分子相减时要看做整体)
②因式分解(十字相乘法,完全平方式,平方差公式,提公因式) ③二次根式的简单计算(分母有理化,一定要是最简根式)
类型一:化简之后直接带值,有两种基本形式:
1. 含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式
2. 常规形,不含根式,化简之后直接带值
m 2 2m 1
m 1
1. 化简,求值:
2
1 (m 1
) , 其中 m =.
m m
1
2. 化简,求值:
1 · x 3
6x
2
9x 1 x
,其中 x =- 6. x
3
x 2
2x 2 x
3. 化简,求值:
1 1
2x ,其中 x
1 , y 2
x y
x y
x
2
2 xy y
2
4. 化简,求值:
x 2
2x 2x (x 2) ,其中 x
1 . x 2
4 x 2
2
5. 化简,求值: (1
1
) ÷ ,其中 x =2
x
6. 化简,求值:,其中.
7.化简,求值:
2 a 2
4 a 2
,其中 a5 .
a
6a 9 2a
6
8.化简,求值: (
3x
x ) x
2
,其中 x
3
x 1
x 1 x 2 1 2
类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点
1. 含有三角函数的计算。
需要注意三角函数特殊角所对应的值. 需要识记,熟悉三角函数例题
1. 化简,再求代数式x2 2x 1 1
的值,其中 x=tan60
0 0 x2 1 x 1 -tan45
2. 先化简(
1 1
)
2
,其中 x 2 (tan45°-cos30°)2 2 2
x 2 x x 4x 4 x 2x
3. (
1 1
)
2
,其中 x 2 (tan45°-cos30°)2 2
4x 4
2
x 2x x x 2x
2.带值为一个式子,注意全面性,切记不要带一半。
1.化简:( x 2 x 1 ) x2 16
, 其中x 22
x 2 2 x x 2 4x 4 x 2 4x
2 .化简,再求值:,其中a=﹣1.
1a2-4a+4
3.化简:再求值:1-a-1÷a2-a,其中a=2+ 2 .
x x2-16
4.先化简,再求值:( x-2- 2) ÷x2-2x,其中x=3 -4.
5.化简,再求值:(3x
x ) 2x ,其中 x3 4 .x 2 x 2 x2 4
6 化简,再求值 : x
2
2x 1
÷( 2x—
1
x 2 )其中, x=2+1 x2 x x
3.带值不确定性。
为一个方程或者方程组,或者几个选项,需要有扎实的解方程功底,需要注意的是:一般来说只有一个值适合要求,所以,求值后要看看所求的值是否能使前
面的式子有意义,即注意增根的出现. 若是出现一个方程,先不要解方程,考虑用整体法带入试试
a-1a2+2a 1
1.化简,求值:a+2·a2-2a+1÷a2-1,其中a为整数且-3<a<
2.
2.化简,求值:a 1
?
a 2 4 1
,其中 a 满足a 2 a 0 .a 2 a
2
2a 1 a
2
1
3.( 2011 山东烟台)先化简再计算:
x2 1
x 2 x 1 ,其中
x
是一元二次方程 2
的正数根 .
x2 x x x 2x 2 0 4 .先化简:,并从0,,2中选一个合适的数作为的值代入求值。
5.先化简 (1
1 x 2
4x 4
,然后从- 2≤ x ≤ 2
) x
2
的范围内选取一个合适的整数作为
x
1
1
x 的值代入求值 .
2
3
x 2 1 6. 化简,再求值: (
x y 4y
2 ) ( 4xy
2
x) ,其中
2 1
x 4xy 4 y x 2 y
y
x y 3 2
xy xy
化简,再求值。
7. 已知 x 、 y 满足方程组
8 y
,先将 x
3x 14
x y x y
8.化简 (
x x )
2 x x 2
3 2
,然后从不等组
的解集中, 选取一个你认为
x 5 5 x x 25 2x 12
符合题意的 x 的值代入求值.
9. 先化简下列式子,再从 2,﹣ 2, 1,0,﹣ 1 中选择一个合适的数进行计算. .。