《高等数学1(一)》课程考试试卷A及答案
《高等数学》A试卷A答案
《⾼等数学》A试卷A答案⼀、填空题(每⼩题4分,共20分): 1.设ln(y x =,则1d 2x y dx ==. 2.曲线sin ,1cos x t t y t =-??=-? 在 2t π= 处的切线斜率为1.3.若1lim ()x f x →存在,且111()2lim ()x x f x xf x -→=+,则1()2x f x x e -=-.4.若01()f x '=,则000(2)()lim arctan u f x u f x u u→+--=3.5.若2lim 8xx x a x a →∞+??= ?-??,则a =ln 2.⼆、选择题(每⼩题4分,共20分):1.设()232x x f x =+-,则当0x →时( D ). (A )()f x 与x 是等价⽆穷⼩量(B )()f x 是⽐x 较低阶的⽆穷⼩量(C )()f x 是⽐x 较⾼阶的⽆穷⼩量(D )()f x 与x 是同阶但⾮等价⽆穷⼩量2.若函数()f x 在0x 点存在左、右导数,则()f x 在点0x ( A ).(A )连续(B )可导(C )不可导(D )不连续3.当1x →时,12111x x e x ---的极限( C ). (A )等于2 (B )等于0 (C )不存在但不为∞ (D )为∞4.设函数21()1lim nn xf x x →∞+=+,讨论()f x 的间断点,其结论为( A ).(A )存在间断点1x = (B )存在间断点1x =-(C )存在间断点0x = (D )不存在间断点5.设对任意的x ,总有()()()x f x x ?ψ≤≤,且[]lim ()()0x x x ψ?→∞-=,则lim ()x f x →∞( C ).(A )存在且等于0 (B )存在但不⼀定等于0(C )不⼀定存在(D )⼀定不存在三、计算题(本题共4题,共计24分): 1.(5分)设tan y x y =+,求d y ;解:(tan )()d y d x y =+ 22s c 1e 1sec d ydy dx y d d xyy ==-+2.(6分)求极限:)lim x xx →-∞;解:)lim x xx →-∞limlim 05x x ==-=3.(6分)求极限:lim x +→;解:01lim lim 1()2x x x x ++→→=?22lim lim 212x x x x ++→→===4.(7分)设2(cos )y f x =,且f ⼆阶可导,求22d d yx.解:22(cos )2cos (sin )sin 2(cos )dyf x x x xf x dx''=?-=- (2cos 2)2sin )((cos 2sin )(cos 2cos 2'2''2'2 2xf x x xf x xf dx yd -=---=四、解答题(本题共3⼩题,共计24分): 1.(6分)设1x =1n x +=列{}n x 的极限存在,并求其极限.证明:单调性:当1n =时,1x =,21x x =>,假设当n k =时有1k k x x +>,则当1n k =+时仍然有,21k k x x ++=即,数列}{n x 是单调增加数列。
高等数学一考试题及答案
高等数学一考试题及答案一、单项选择题(每题2分,共10题)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,存在正数δ,使得当x≠a时,|f(x)-L|<εD. 对于任意的正数ε,存在正数δ,使得当x>a时,|f(x)-L|<ε答案:B2. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 积分∫(0 to 1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 微分方程dy/dx = 2x的通解是:A. y = x^2 + CB. y = 2x^2 + CC. y = x + CD. y = 2x + C答案:A5. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ... 答案:D6. 函数f(x) = e^x的导数是:A. e^xB. e^(-x)C. -e^xD. -e^(-x)答案:A7. 以下哪个函数在x=0处有极值?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B8. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B9. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = e^xC. f(x) = sin(x)D. f(x) = ln(x)答案:C10. 以下哪个函数是单调递增的?A. f(x) = -x^2B. f(x) = x^3C. f(x) = e^(-x)D. f(x) = ln(x)答案:B二、填空题(每题3分,共5题)1. 函数f(x) = x^3在x=1处的导数是______。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
大一第一学期高数1试题A及答案
2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。
《高等数学(一)》(课程代码00020)
1、函数f(x)= 与g(x)=x表示同一函数,则它们的定义域是()• A.• B.• C.• D.参考答案:B2、设函数f(x)在[-a, a](a>0)上是偶函数,则f(-x)在[-a, a]上是()• A.奇函数• B.偶函数• C.非奇非偶函数• D.可能是奇函数,也可能是偶函数参考答案:B3、• A.1• B.0• C.∞• D.2参考答案:A4、设则m=()• A.• B.2• C.-2• D.参考答案:C5、设f(x)= ,则()• A.2• B.∞• C.1• D.4参考答案:D6、设是无穷大量,则x的变化过程是()• A.x→0+• B.x→0-• C.x→+∞• D.x→-∞参考答案:B7、函数在一点附近有界是函数在该点有极限的()• A.必要条件• B.充分条件• C.充分必要条件• D.无关条件参考答案:A8、定义域为[-1,1],值域为(-∞,+∞)的连续函数()• A.存在• B.不存在• C.存在但不唯一• D.在一定条件下存在参考答案:B9、下列函数中在x=0处不连续的是()• A.f(x)=• B.f(x)=• C.f(x)=• D.f(x)=参考答案:A10、设函数f(x)=,则() ,• A.-1• B.-∞• C.+∞• D.1参考答案:C11、设总收益函数R(Q)=40Q-Q2,则当Q=15时的边际收益是()• A.0• B.10• C.25• D.375参考答案:B12、设函数f(x)=x(x-1)(x-3),则f'(0)=()• A.0• B.1• C.3• D.3!参考答案:C13、• A.• B.• C.• D.参考答案:D14、f'(x)<0,x∈(a, b) ,是函数f(x)在(a, b)内单调减少的()• A.充分条件• B.必要条件• C.充分必要条件• D.无关条件参考答案:A15、函数y=|x-1|+2的极小值点是()• A.0• B.1• C.2• D.3参考答案:B16、函数y=2ln的水平渐近线方程为()• A.y=2• B.y=1• C.y=-3• D.y=0参考答案:C17、设f(x)在[a, b](a<b)上连续且单调减少,则f(x)在[a, b]上的最大值是( )• A.f(a)• B.f(b)• C.• D.参考答案:A18、• A.• B.• C.• D.参考答案:D19、设f(x)在(-∞,+∞)上有连续的导数,则下面等式成立的是(),• A.• B.• C.• D.参考答案:B20、• A.tgxlnsinx-x+C• B.tgxlnsinx+x+C• C.tgxlnsinx-• D.tgxlnsinx+参考答案:A21、• A.-1-3ln2• B.-1+3ln2• C.1-3ln2• D.1+3ln2参考答案:B22、• A.• B.• C.• D.参考答案:C23、经过变换,( )• A.• B.• C.• D.参考答案:D24、• A.• B.-• C.2e• D.-2e 参考答案:A25、• A.2• B.1• C.∞• D.参考答案:A26、级数的和等于 ( )• A.• B.-• C.5• D.-5参考答案:B27、下列级数中,条件收敛的是( )• A.• B.• C.• D.参考答案:C28、幂级数的收敛区间是()• A.• B.• C.• D.参考答案:A29、点(-1,-1,1)在下面哪一张曲面上 ( )• A.• B.• C.• D.参考答案:D30、设 f(u,v)=(u+v)2,则 =( )• A.• B.• C.• D.参考答案:B31、设,则( )• A.• B.1• C.2• D.0参考答案:A32、设,则 ( )• A.6• B.3• C.-2• D.2参考答案:B33、下列函数中为微分方程的解的是( )• A.• B.-• C.• D.参考答案:C34、下列微分方程中可分离变量的是( )• A.• B.• C.• D.参考答案:B35、设D:0≤x≤1,0≤y≤2,则 =( )• A.ln2• B.2+ln2• C.2• D.2ln2参考答案:D36、函数f(x)=arcsin(2x-1)的定义域是()• A.(-1,1)• B.[-1,1]• C.[-1,0]• D.[0,1]参考答案:D37、设f(x)= , 则() ,• A.0• B.1• C.-1• D.不存在参考答案:B38、设函数f(x)满足=0, 不存在, 则() ,• A.x=x0及x=x1都是极值点• B.只有x=x0是极值点• C.只有x=x1是极值点• D.x=x0与x=x1都有可能不是极值点参考答案:D39、设f(x)在[-a,a](a>0)上连续, 则()• A.0• B.• C.• D.参考答案:C40、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B41、设 ,则x=0是f(x)的()• A.可去间断点• B.跳跃间断点• C.无穷间断点• D.连续点参考答案:A42、设函数y=f(x)在点x0的邻域V(x0)内可导,如果∀x∈V(x0)有f(x)≥f(x0),则有()• A.• B.• C.• D.参考答案:C43、已知某商品的成本函数为,则当产量Q=100时的边际成本为() , ,• A.5• B.3• C.3.5• D.1.5参考答案:C44、在区间(-1,0)内,下列函数中单调增加的是()• A.• B.• C.• D.参考答案:B45、无穷限积分()• A.1• B.0• C.-• D.参考答案:D46、下列区间中,函数f (x)= ln (5x+1)为有界的区间是() ,• A.(-1, )• B.(- ,5)• C.(0, )• D.( ,+参考答案:C47、设函数g (x)在x = a连续而f (x) = (x-a)g(x),则(a) =()• A.0• B. (a)• C.f (a)• D.g (a)参考答案:D48、设函数f (x)定义在开区间I上, I,且点(x0, f (x0) )是曲线y= f (x)的拐点,则必有()• A.在点(x0,f (x0))两侧,曲线y=f (x)均为凹弧或均为凸弧.• B.当xx0时,曲线y=f (x)是凸弧(或凹弧).• C.xx0时,f(x)>f(x0).• D.xf(x0) 而x>x0时,f(x)<f(x0).< li=""></f(x0).<>参考答案:B49、设某商品的需求函数为D(P)=475-10P-P2,则当P = 5时的需求价格弹性为()• A.0.25• B.-0.25• C.100• D.-100参考答案:A50、,• A.-1• B.1• C.-• D.参考答案:B51、设,则f (x)=()• A.• B.• C.• D.参考答案:B52、下列极限存在的是()• A.• B.• C.• D.参考答案:D53、曲线上拐点的个数是()• A.0• B.1• C.2• D.3参考答案:C54、• A.• B.0• C.• D.参考答案:B55、• A.• B.-• C.1• D.-1参考答案:A56、数列的极限是()• A.0• B.• C.1• D.不存在参考答案:C57、广义积分()• A.• B.• C.• D.0参考答案:B58、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为()• A.[0,2]• B.[0,16]• C.[-16,16]• D.[-2,2]参考答案:C59、=()• A.0• B.1• C.-1• D.不存在参考答案:A60、设f(x)为可微函数,且n为自然数,则 =()• A.0• B.• C.-• D.不存在参考答案:B61、设f(x)是连续函数,且f(0)=1,则()• A.0• B.• C.1• D.2参考答案:C62、已知某商品的产量为x时,边际成本为,则使成本最小的产量是()• A.23• B.24• C.25• D.26参考答案:B63、设f(x)=ln4,则()• A.4• B.• C.0• D.参考答案:C64、• A.16!• B.15!• C.14!• D.0参考答案:D65、• A.• B.• C.• D.参考答案:B66、已知生产某商品x个的边际收益为30-2x,则总收益函数为()• A.• B.• C.• D.参考答案:D67、函数y=1-cosx的值域是()• A.[-1,1]• B.[0,1]• C.[0,2]• D.(-∞,+∞)参考答案:C68、• A.0• B.1• C.不存在• D.参考答案:D69、下列各式中,正确的是()• A.• B.• C.• D.参考答案:D70、下列广义积分中,发散的是()• A.• B.• C.• D.参考答案:A71、() ,• A.• B.• C.• D.参考答案:B72、()• A.|x|≤1• B.|x|<1• C.0<|x|≤1• D.0<|x|<1参考答案:C73、()• A.• B.△y=0• C.dy=0• D.△y=dy参考答案:A74、()• A.0• B.1• C.-1• D.不存在参考答案:A75、()• A.• B.• C.• D.参考答案:D76、()• A.• B.• C.• D.参考答案:C77、()• A.[a,3a]• B.[a,2a]• C.[-a,4a]• D.[0,2a]参考答案:B78、()• A.1• B.• C.不存在• D.0参考答案:D79、设D=D(p)是市场对某一商品的需求函数,其中p是商品价格,D是市场需求量,则需求价格弹性是()• A.• B.• C.• D.参考答案:B80、()• A.0• B.1• C.-1• D.参考答案:C81、()• A.π• B.4• C.2π• D.2参考答案:C82、()• A.• B.• C.• D.参考答案:D83、()• A.• B.5• C.2• D.参考答案:A84、• A.0• B.1• C.-0.5• D.-4参考答案:C85、下列无穷限积分中,发散的是()• A.• B.• C.• D.参考答案:B86、• A.• B.• C.• D.参考答案:D87、( )• A.• B.• C.(0,1]• D.(0,1)参考答案:D88、• A.无定义• B.无极限• C.不连续• D.连续参考答案:D89、• A.必要条件• B.充分条件• C.充分必要条件• D.既非充分条件又非必要条件参考答案:A90、• A.• B.• C.• D.参考答案:B91、下列广义积分中,收敛的是()• A.• B.• C.• D.参考答案:C92、下列集合中为空集的是()• A.• B.• C.• D.参考答案:D 93、• A.0• B.1• C.• D.-参考答案:C 94、• A.△x• B.• C.• D.0 参考答案:D 95、• A.• B.• C.• D.参考答案:C96、• A.• B.• C.• D.参考答案:D97、• A.• B.• C.• D.参考答案:D98、• A.x(x-1)• B.x(x+1)• C.• D.(x+1)(x-2)参考答案:B99、• A.• B.• C.• D.参考答案:C100、• A.5• B.3• C.3.5• D.1.5参考答案:C101、在区间(-1,0)内,下列函数中单调增加的是()• A.y=-4x+1• B.y=5x-3• C.• D.y=|x|+2参考答案:B102、• A.1• B.0• C.• D.参考答案:D103、• A.0• B.1• C.-1• D.不存在参考答案:B104、• A.• B.• C.• D.参考答案:D105、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B106、设函数y=f (x)的定义域为(1,2),则f (ax)(a<0)的定义域是( )• A.• B.• C.(a,2a)• D.参考答案:B107、设f (x)=x|x|,则f ′(0)=( )• A.1• B.-1• C.0• D.不存在参考答案:C108、设f (x)是连续函数,且,则f (x)=( )• A.cos x—xsin x• B.cos x + xsin x• C.sin x—xcos x• D.sin x + xcos x参考答案:A109、函数f(x)=lnx— ln(x—1)的定义域是()• A.(-1,+∞)• B.(0,+∞)• C.(1,+∞)• D.(0,1)参考答案:C110、极限()• A.0• B.• C.• D.3参考答案:B111、x=0是函数f(x)= 的()• A.零点• B.驻点• C.极值点• D.非极值点参考答案:D112、初值问题的隐式特解为()• A.• B.• C.• D.参考答案:A113、函数f(x)=是()• A.奇函数• B.偶函数• C.有界函数• D.周期函数参考答案:C114、函数f(x)= —x的极大值点为()• A.x= —3• B.x= —1• C.x= 1• D.x= 3参考答案:B115、正弦曲线的一段与x 轴所围平面图形的面积为()• A.1• B.2• C.3• D.4参考答案:B116、函数f(x)= 的定义域为()• A.[-1,1]• B.[-1,3]• C.(-1,1)• D.(-1,3)参考答案:B117、设函数f(x)= 在x=0点连续,则k=()• A.0• B.1• C.2• D.3参考答案:C118、曲线y=的渐近线的条数为()• A.1• B.2• C.3• D.4参考答案:B119、设sin x 是f(x)的一个原函数,则()• A.sin x+C• B.cos x+C• C.—cos x+C• D.—sin x+C参考答案:A120、下列反常积分收敛的是()• A.• B.• C.• D.参考答案:D 121、• A.• B.• C.• D.参考答案:D。
高等数学(一)试题及答案
高等数学(一)试题及答案卷面总分:100分答题时间:60分钟试卷题量:36题一、单选题(共4题,共8分)1.下列等式成立的是【】∙ A.∙ B.∙ C.∙ D.正确答案:B2.下列函数为偶函数的是【】∙ A.y=x sin x∙ B.y=x cos x∙ C.y=sin x+cos x∙ D.y=x(sinx+cos x)正确答案:A3.极限=【】∙ A.0∙ B.2/3∙ C.3/2∙ D.9/2正确答案:C4.函数f(x)=的所有间断点是【】∙ A.x=0∙ B.x=1∙ C.X=0,x=-1∙ D.x=0,x=1正确答案:D二、判断题(共24题,共48分)5.收敛的数列必有界正确答案:正确6.无穷大量与有界量之积是无穷大量正确答案:错误7.闭区间上的间断函数必无界正确答案:错误8.单调函数的导函数也是单调函数正确答案:错误9.若f(x)在x0点可导,则f(x)也在x0点可导正确答案:错误10.若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.正确答案:错误11.若f(x)在[a,b]上可积,则f(x)在[a,b]上连续正确答案:错误12.若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微正确答案:错误13.微分方程的含有任意常数的解是该微分方程的通解正确答案:正确14.设偶函数f(x)在区间(-1,1)内具有二阶导数,且,则f(0)为f(x)的一个极小值.正确答案:正确15.f(x)在点x0处有定义是f(x)在点x0处连续的必要条件正确答案:正确16.若y=f(x)在点x0不可导,则曲线y=f(x)在处一定没有切线.正确答案:错误17.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上必不可积正确答案:正确18.方程xyz=0和x²+y²+z²=0在空间直角坐标系中分别表示三个坐标轴和一个点正确答案:错误19.设y*是一阶线性非齐次微分方程的一个特解,y是其所对应的齐次方程的通解,则y=y+y²为一阶线性微分方程的通解正确答案:正确20.两个无穷大量之和必定是无穷大量正确答案:错误21.初等函数在其定义域内必定为连续函数正确答案:错误22.y=fx在点x0连续,则y=fx在点x0必定可导正确答案:错误23.若x0点为y=f(x)的极值点,则必有f(x0).正确答案:错误24.初等函数在其定义域区间内必定存在原函数正确答案:正确25.方程x²+y²=1表示一个圆正确答案:错误26.若z=f(x,y)在点M0(x0,y0)可微,则z=f(x,y)在点M0(x0,y0)连续正确答案:正确27.(y)²=-2-xe²是二阶微分方程正确答案:错误28.若y=f(x)为连续函数,则必定可导正确答案:正确三、填空题(共3题,共6分)29.由曲线r=2cos所围成的图形的面积是正确答案:π30.设由方程xy²=2所确定的隐函数为y=y(x),则dy=正确答案:31.函数y=sin²x的带佩亚诺余项的四阶麦克劳林公式为正确答案:四、计算题(共3题,共6分)32.求y=(x+1)(x+2)²(x+3)³....(x+10)10在(0,+∞)内的导数正确答案:33.求不定积分正确答案:34.求函数f(x,y)=x³-4x²+2xy-y²的极值正确答案:35.设平面区域D是由围成,计算正确答案:36.计算由曲线围成的平面图形在第一象限的面积正确答案:。
高等数学考试题库(含答案解析)
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
10-11 高等数学1试题(A卷)及解答
广州大学2010-2011学年第一学期考试卷课 程:高等数学Ⅰ1(90学时) 考 试 形 式:闭卷考试学院:__________专业班级:__________ 学号:__________ 姓名:_________一.填空题(每小题3分,本大题满分15分)1.设函数1,||1()0,||1x f x x ≤⎧=⎨>⎩,则 )]([x f f = .2.设函数sin 2,0()2,0xx f x x x a x ⎧<⎪=⎨⎪+≥⎩,当常数=a ______时,)(x f 在0x =处连续.3.曲线xe y 2=上点(0,1)处的切线方程为______ __.4.曲线53523++-=x x x y 的凹区间为_______ _____. 5.若xe -是)(xf 的原函数,则dx x f x )(ln 2⎰= .二.选择题(每小题3分,本大题满分15分)1. 当1x →时,无穷小量x -1是x -1的( ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小. 2.若∞=→)(lim x f ax ,∞=→)(lim x g ax 则必有( ).A. ∞=+→)]()([lim x g x f ax ; B. ∞=-→)]()([lim x g x f ax ;C. 0)()(1lim=+→x g x f ax ; D. ∞=→)(lim x kf a x ,(0≠k 为常数).3.函数xx x x f πsin )(3-=的可去间断点个数为( ).A .1; B. 2; C. 3; D. 无穷多个.4.设函数)(x f y =在点0x 处可导, 则 xdyy x ∆-∆→∆0lim等于( ).A. 0;B. -1;C. 1;D. ∞ .5. 设)(x f 连续,且240()x f t dt x =⎰,则)4(f = ( ).A. 2;B. 4;C. 8;D. 16 .三.解答下列各题(每小题6分,本大题满分18分)1.)3ln(tan 2x x y ⋅=,求dy .2.求由方程0)cos(=-+xy e yx 所确定的隐函数()y f x =在0x =处的导数.3.设⎩⎨⎧=+=ty t x cos 12,求dx dy 和22dx y d .四.解答下列各题(每小题6分,本大题满分12分)1.计算极限13)1232(lim +∞→++x x x x .2.设21cos ,02(),0x x f x xx x ⎧<<⎪=⎨⎪≤⎩,讨论)(x f 在0=x 处的连续性与可导性.五.计算下列积分(每小题6分,本大题满分18分) 1.xdx x 2sin ⎰.2.12dx x. 3.221(1)dx x -⎰.六.(本题满分5分)证明方程015=-+x x 只有一个正根.七.(本题满分5分)设)(x f 在),(+∞-∞内连续,且0()(2)()x F x x t f t dt =-⎰,试证:若)(x f 为偶函数,则)(x F 亦为偶函数.八.(本大题满分12分)设抛物线c bx ax y ++=2通过点(0,0),且当]1,0[∈x 时,0≥y .求c b a ,,的值,使得抛物线c bx ax y ++=2与直线0,1==y x 所围图形的面积为94,且使该图形绕x 轴旋转而成的旋转体的体积最小.广州大学2010-2011学年第一学期考试卷高等数学Ⅰ1(90学时A 卷)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.设函数⎩⎨⎧>≤=1||01||1)(x x x f ,则 )]([x f f = 1 ),(+∞-∞∈x 。
大学数学1试题(A)参考答案
大学数学1试题(A)参考答案一、选择题1. 答案:C解析:题目中要求求出f(x)=3x2-7x+5的导数。
根据求导法则,导数的求法为f'(x)=[3*(2x)^(2-1)-7*(1x)^(1-1)],即f'(x)=6x-7。
根据选项,可知C选项是正确答案。
2. 答案:B解析:题目中要求求出f(x)=2sin(x)+cos(x)的导数。
根据求导法则,导数的求法为f'(x)=2*cos(x)-sin(x)。
根据选项,可知B选项是正确答案。
3. 答案:A解析:题目中要求求出下列等差数列的前n项和。
根据等差数列的前n项和公式Sn=n*(a1+an)/2,其中a1为首项,an为末项,n为项数。
根据选项,可知A选项是正确答案。
4. 答案:D解析:题目中要求求出平面上一点到x轴的距离。
根据平面几何知识,点P(x,y)到x轴的距离为|y|,即D选项是正确答案。
5. 答案:C据求导法则,在极值点处的导数为零。
对函数f(x)求导得到f'(x)=3x2-3=0,解得x=±1。
根据选项,可知C选项是正确答案。
二、填空题1. 答案:-√3解析:题目中要求求出方程x2+3x+3=0的解。
根据二次方程求根公式,解出x=(-b±√(b2-4ac))/(2a),代入a=1,b=3,c=3,可得到x=(-3±√(3^2-4*1*3))/(2*1),计算得x=-√3。
2. 答案:15解析:题目中要求求出3,5,7...97的等差数列的前n项和,根据等差数列的前n项和公式Sn=n*(a1+an)/2,其中a1为首项,an为末项,n 为项数。
根据选项,可得n=16,代入公式计算得Sn=16*(3+97)/2=15*100/2=1500/2=750。
3. 答案:-1解析:题目中要求求出方程sin(x)=cos(x)的解。
根据三角函数的定义,sin(x)=cos(π/2-x),即sin(x)=sin(π/2-x),因此x=π/2-x+2kπ,化简得到x=-1/2+2kπ,其中k为整数。
高等数学A1_试_题(A)附答案
2006-2007学年第一学期 高等数学(A1)试题(A 卷)一、填空(本题共5小题,每小题3分,满分15分) 1.已知=++=⎪⎭⎫ ⎝⎛+)(,31122x f xx x x f 则 ____________. 2.设)(0x f '存在,则()()=--+→hh x f h x f h 000lim ____________.3.设)(x f 的原函数为xx ln ,则()='⎰dx x f ____________.4.向量{}4,3,4-=a在向量{}1,2,2=b上的投影是____________. 5. )1(1)(+=x xx f 按的幂展开到n 阶的泰勒公式是_________ .二、选择题(本题共5小题,每小题3分,满分15分) 1.设()x f 可导且()210='x f ,当0→∆x 时,()x f 在0x 处的微分dy与x ∆比较是( )无穷小.(A ) 等价 (B ) 同阶 (C ) 低阶 (D ) 高阶2.已知c bx ax x y +++=3323,在1-=x 处取得极大值,点(0,3)是拐点, 则( ).3,0,1)(3,1,0)(==-==-==c b a B c b a A 均错以上)( 0,1,3)(D c b a C =-==3.设)(x f 在[-5,5]上连续,则下列积分正确的是( ).[][]0)()()(0)()()(5555=--=-+⎰⎰--dx x f x f B dx x f x f A[][]0)()()(0)()()(550=--=-+⎰⎰dx x f x f D dx x f x f C4. 设直线L 为12241z y x =-+=-,平面0224:=-+-z y x π 则( ).上;在;平行于ππL L A )B ()(.(D);)(斜交与垂直于ππL L C5. 若0532<-b a ,则方程043235=++-c bx ax x ( ) (A ) 无实根; (B ) 有五个不同的实根. (C ) 有三个不同的实根; (D ) 有惟一实根;三、计算下列各题(本题共4小题,每小题7分,共28分) 1. .,1ln2sec 22dxdy ee y xxx求+-=2.设)(x y y =是由方程)ln()(2y x y x x y --=-确定的隐函数,求d y .3.求32)21ln(limxdtt x x ⎰+→.4. 求由参数方程()⎩⎨⎧=+=ty t x arctan 1ln 2所确定的函数的二阶导数.22dx yd四、求下列积分(本题共3小题,每小题7分,满分21分) 1.dx xx ⎰-21ln .2.⎰-dxxx42.3.().ln 11 12dx x x e ⎰-五、(7分)设,ln 1)(,1x xx f b a +=<<求证:)(41)()(0a b a f b f -≤-<.六、(7分)已知直线L 在平面01:=-++z y x π上,并且与直线⎪⎩⎪⎨⎧=+-=+=t z t y t x L 11:1垂直相交,求L 的方程.七、(7分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D .(1) 求D 的面积A .(2) 求D 绕直线x=e 旋转一周所成的旋转体的体积V .2006-2007学年第一学期 高等数学(A1)试题(A 卷)答案一、填空(本题共5小题,每小题3分,满分15分) 1.1)(2+=x x f ; 2. )(20x f '; 3.C xx +-2ln 1; 4. 2;5.[]之间与介于1,)1()1()1()1()1(111212-+-++++++++-=+++x x x x x xn n n nξξ二、选择题(本题共5小题,每小题3分,满分15分) 1. B 2. A 3. B 4. C 5. D三、计算下列各题(本题共4小题,每小题7分,共28分) 1. 解:()'⎪⎪⎭⎫ ⎝⎛+-'='1ln 2sec 22x xxe e y 2分⎪⎪⎭⎫ ⎝⎛+--=122212tan 2sec 2ln 222x xxxx e e6分112tan 2sec 2ln 22+-=xxx x e7分2. 解:[]1)ln()(2+--=-y x dy dx dx dy 5分 ()()dxy x y x dy -+-+=ln 3ln 2 7分3. 解:220323)21l n (l i m )21l n (l i mxx xdtt x x x +=+→→⎰4分 ⎪⎪⎪⎪⎭⎫⎝⎛+==→→xx x x x x x 6214l i m32l i m 2022032= 7分4. 解:ttt t dxdy21121122=++= 4分3222224112121tt tt tdxy d +-=+⋅-= 7分四、求下列积分(本题共3小题,每小题7分,满分21分) 1. 解:⎪⎭⎫⎝⎛--=-⎰⎰x d x dx x x 1112)ln (ln 2分⎰+--=dxxxx 211ln 4分C xx C xxx +-=+---=ln 11ln 7分2. 解:⎰⎰=∈=-tdtdxxx tx t 2220224tansec ),(π3分C t t dt t +-=-=⎰2tan 2)1(sec 22 6分Cxx+--=2242arccos7分3. 解:()()x d x dx x x e e ln ln 11lim ln 11 1212⎰⎰-→-=-+εε 4分()[]2ln arcsin lim 1πεε==-→+e x 7分五、(7分)设,ln 1)(,1x xx f b a +=<<求证:)(41)()(0a b a f b f -≤-<.证明:由拉格朗日中值定理()01)()(2>--=-a b a f b f ξξ 3分记)1(1)(2>-=x xx x g 4分⎪⎩⎪⎨⎧><==<<>-='20,2 ,021 ,02)(3x x x x x x g 5分 因此2=x 是)(x g 在),1(+∞内的最大值点,且41)2()(=≤g x g ,于是)(41)()(0a b a f b f -≤-< 7分六、(7分)已知直线L 在平面01:=-++z y x π上,并且与直线⎪⎩⎪⎨⎧=+-=+=t z t y t x L 11:1垂直相交,求L 的方程.解:直线L 的方向向量为k i kj is22111111-=-= 3分 将L 1代入平面方程得:1-=t ,π与1L 的交点坐标为(0,2,-1) 5分 直线L 的方程为:11021-+=-=z y x 或⎩⎨⎧==++201y z x 7分七、(7分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D .(1) 求D 的面积A .(2) 求D 绕直线x=e 旋转一周所成的旋转体的体积V .解:设切点坐标为:()00x x ln ,切线方程为:)(ln 0001x x x x y -=- 1分由于切线过原点,得切点坐标为:()1,e 2分 切线方程为:ex y =3分(1)()12ln 2ln 21 1-=--=-=⎰e x x x e xdx e D ee 5分(2)()22 65 312122πππππ+-=--=⎰e e dy e e e V y7分。
高数一试题与答案解析
高数一试题(卷)与答案解析(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim 21x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( )A.22y x =+B.22y x =-+C.23y x =+D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+ 5. 211lim sin x x x →-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( ) A 1 B 2 C 3 D 47. 求函数43242y x x =-+的拐点有( )个。
A 1B 2C 4D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB.1x e C. 211x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3)lim 2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C + 15. 2ln x dx x=⎰( D ) A.2ln x x C + B.ln x C x + C.2ln x C + D.()2ln x C + 16. 211lim ln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( ) A 1 B 0 C 2- D 218. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A ) A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x - D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求.3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分80⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x ⎰13. 求21ln e xdx x ⎰14.求⎰三、解答题1.若(1lim 36x x →∞=,求a 2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型 4. 设2sin ,.xy xy x e y '+=求5.求y =的导数. 6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin y y y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1y y xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解.4. 求方程3595x y y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题1-5: DABAA6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求dx x⎰.解:13(43ln )(ln )x d x x=+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1x x x dx x =-+⎰21arctan ln(1)2x x x C =-++. 4.求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C =+.5. 求2356x dx x x +-+⎰. 解:由上述可知23565623x x x x x +-=+-+--,所以 2356()5623x dx dx x x x x +-=+-+--⎰⎰115623dx dx x x =-+--⎰⎰5ln 26ln 3x x C =--+-+.6.求定积分80⎰t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算20cos x xdx π⎰. 解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是 22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得20000cos 2cos 2(cos )cos x xdx xd x x x xdx ππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰ 002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰. 解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64x C x-=++. 9. 求解:令u =32x u =-,23dx u du =,从而有22311311u u du du u u -+==++⎰⎰ 213(1)3(ln 1)12u u du u u C u =-+=-++++⎰ 11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰12. 求3x ⎰解:333223(3)(3)3xx x C =--=--+⎰13. 求21ln ex dx x⎰ 解:22111ln 111ln (ln )ln ln 333e e e x dx xd x x e x ====⎰⎰ 14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。
高数I(一)A及答案
1 ⎧ ⎪ 1+ x , x ≥ 0 ⎪ 2.设 f ( x ) = ⎨ ⎪ cos x , x < 0 ⎪ ⎩ 2 + sin x
求
∫π
−
4
f ( x )dx .
2
序号
封
3.设函数 y = f ( x) 由参数方程 ⎨ 班级
⎧ x = ln(1 + t 2 ) dy d 2 y 所确定,求 、 . 2 d x d x = − y t t arctan ⎩
…… 5 分 …… 6 分
sin x (cos x ln x + )dx x
= ln( 2 +
序号
sin x ) − π + ∫
2
2t dt 01+ t
2
…… 4 分 …… 6 分
= ln 2 + 4 − 2 ln 3 3、已知 f ( x) 的一个原函数是 解:
⎧ x = ln(1 + t 2 ) dy d 2 y 3、设函数 y = f ( x) 由参数方程 ⎨ 所确定,求 、 . dx d x 2 ⎩ y = t − arctan t
. .
2.设 f ( x) =
e x −1 e +1
1 x
,则 x = 0 是 f ( x) 的( B. 跳跃间断点; D. 连续点.
) .
1.函数 y = 学号
2 − x + ln( x − 1) 的定义域为
A. 可去间断点; C. 第二类间断点; 3. lim(e + x) x =(
x x →0 1
2015 年秋季学期 《高等数学 (一)》课程期末考试试卷(A 卷)
注意:1、本试卷共 3 页; 3、姓名、学号必须写在指定地方; 2、考试时间 110 分钟; 4、阅卷负责人签名: 1.设 f ( x) = x + ln(1 + x) ,当 x → 0 时,有(
大学数学1试题(A)参考答案
大 学 数 学 I (A 卷)参考答案选择题选择题1.C 2. D 3. A 4. A 二、填空题二、填空题 5. xdx xsin 5ln 5cos - 6. 0 7.61 8.1,1==b a三、计算题三、计算题 9.原式xx x x x x ln )1(1ln lim1-+-=® 2分xx x x11ln ln lim 1-+=® 4分21111limxx x x +=® 6分21=7分 10.A X A E =-)(1分()÷÷÷øöçççèæ----=--1101211201A E 5分÷÷÷øöçççèæ-----=-=-210111121)(1A A E X 7分11.令tdt dx t x x t 2,,2=== 2分 原式ò=pcos tdt t 3分 ò-=ppsin sin tdt tt5分 2cos 0-==p t7分 12.原式òò=12xxxydy dx3分()ò-=104221dx xx x5分 241=7分13.两边求导得.两边求导得xyyyye y e y xe e +=+'' 4分xyy x exee ye y --=' 7分四、讨论题:(每小题9分,共18分) 14.将微分方程化为.将微分方程化为xx y x dxdysin 1=+ 2分其通解为其通解为xxc y cos -=7分由初始条件得1-=p c ,所求解为,所求解为xx y cos 1--=p9分15.对方程组的增广矩阵做初等变换,化为阶梯矩阵.对方程组的增广矩阵做初等变换,化为阶梯矩阵÷÷÷øöçççèæ--®÷÷÷øöçççèæ-40003130101161031011121k k 3分当4¹k 时,方程组无解。
_高等数学(1)(A卷)
(A 卷)一 填空题(每小题4分,共12分) 1.极限()=+-+-∞→2sin212lim 1πn n nnn .2. 已知点()1,2是曲线()32y f x x ax bx ==++的拐点,则a = ,b = . 3.2sin cos 1cos x xdx x =+⎰.答案:1 2 . 2 a =,b =4 . 3()C x ++-2c o s 1ln 21.二、单选题(每小题4分,共12分,多选,错选均不得分)1.0tan tan44lim t t t→⎛⎫+- ⎪⎝⎭=ππ( )(A ) 2 (B )2(C )12(D )2. 函数()1ln 1f x x x=+,则()f x 有( ) (A )两个可去间断点 (B )两个无穷间断点(C )一个可去间断点和一个跳跃间断点 (D )一个可去间断点和一个无穷间断点3. 如果()f x 在[],a b 上连续,积分上限函数()[](),x af t dt x a b ∈⎰是( )(A )常数 (B )函数()f x (C )()f x 的一个原函数 (D )()f x 的所有原函数答案1 ( A ) 2 ( D ) 3 ( C )三、计算题(每小题5分,共40分)1 求极限⎪⎭⎫ ⎝⎛---→311311lim x x x 。
解)1)(1()2)(1(lim )1)(1(31lim 1311lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=⎪⎭⎫ ⎝⎛---→→→112lim 21-=+++-=→xx x x .2 设函数()x f 可导,求函数()()xf x f y 22cos sin +=的导数dxdy 。
解y '=f'(sin 2x )⋅(sin 2x )'+f'(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 3 求参数方程⎩⎨⎧-==)()(')('t f t tf y t f x (设)(''t f 存在且不为零)所确定的函数的二阶导数22dx y d : ,解t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()()(1)(22t f x y dx y d t tx ''='''=。
06-07 高等数学1试题(A卷)及解答
广州大学2006-2007学年第一学期考试卷课 程:高等数学(A 卷)(90学时) 考 试 形 式: 闭卷 考试一.填空题(每小题3分,本大题满分15分)1.=∞→xxx sin lim ________.2.设函数(ln )y f x =, 其中()f x 可微, 则d y =________________. 3.曲线sin y x =上点(0,0)处的切线斜率为=k ________.4.设()xf x xe =, 则(2006)()fx =________________. 5.质点以速度)sin(2t t 米/秒作直线运动, 则从时刻21π=t 秒到π=2t 秒内质点所经过的路程等于___________米.二.选择题 (每小题3分, 本大题满分15分)1. 当1x →时,无穷小量(1)x -是2(1的( ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小.2. 0x =是函数1arctany x=的( )间断点. A. 可去; B. 跳跃; C. 无穷; D. 振荡.学 院专 业班级姓名学号3. 下列函数在指定区间上满足罗尔定理条件的是( ). A. ];3,2[,65)(2∈+-=x x x x f B . ];2,0[,)1(1)(32∈-=x x x fC. ];1,0[,)(∈=x e x f xD. ].1,1[,)(-∈=x x x f4. 设函数()y y x =的导函数为cos x ,且(0)1y =,则()y x =( ). A. cos x ; B. sin x ; C. cos 1x +; D. sin 1x +.5. 若22001()d ()d 2axf x x f x x =⎰⎰,则a =( ). A. 4; B. 2; C. 12; D. 1.三.解答下列各题(每小题6分,本大题满分12分)1.21sin ()xe y x-=,求y '.2.设)(x y y =由参数方程2ln(1)arctan x t y t t ⎧=+⎨=-⎩所确定, 求d d y x 和22d d x y.四.解答下列各题(每小题6分,本大题满分12分)1.求极限 10lim(1)x xx xe →+.2.设函数22(1cos ),0()1,0ax x f x x x bx x ⎧-<⎪=⎨⎪++≥⎩在(,)-∞+∞上处处连续、可导,求,a b 的值.五.(本题满分8分)求函数x xy ln 1+=的单调区间、极植,凹凸区间和拐点.装 订线 内不要答题六.计算下列积分(每小题5分,本大题满分15分)1.21d 413x x x x +++⎰.2.0a x x ⎰, 其中0.a >3.21arctan d xx x+∞⎰.七.(本题满分13分)设直线(01)y ax a =<<与抛物线2y x =所围图形的面积为1S ,它们与直线1x =所围图形的面积为2S .(1) 试确定a 的值使12S S +达到最小;(2) 求该最小值所对应的平面图形绕x 轴旋转所得旋转体的体积.装 订线 内不要答题八.证明题(每小题5分,本大题满分10分)1.证明:当0ln(1)1xx x x>+>+时,.2.设当1x ≤<+∞时,()f x '连续,且210()f x x'<<. 证明:数列()n x f n =的极限存在.广州大学2006-2007学年第一学期考试卷高等数学(A 卷)(90学时)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.=∞→xxx sin lim 02.设函数(ln )y f x =, 其中()f x 可微, 则d y =(ln )d f x x x'3.曲线sin y x =上点(0,0)处的切线斜率为=k 14.设()xf x xe =, 则(2006)()fx =2006x x xe e + 5.质点以速度)sin(2t t 米/秒作直线运动, 则从时刻21π=t 秒到π=2t 秒内质点所经过的路程等于 0.5 米.二.选择题 (每小题3分, 本大题满分15分)1. 当1x →时,无穷小量(1)x -是2(1的( C ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小. 2. 0x =是函数1arctany x=的( B )间断点. A. 可去; B. 跳跃; C. 无穷; D. 振荡.3. 下列函数在指定区间上满足罗尔定理条件的是( A ). A. ];3,2[,65)(2∈+-=x x x x f B . ];2,0[,)1(1)(32∈-=x x x fC. ];1,0[,)(∈=x e x f xD. ].1,1[,)(-∈=x x x f4. 设函数()y y x =的导函数为cos x ,且(0)1y =,则()y x =( D ). A. cos x ; B. sin x ; C. cos 1x +; D. sin 1x +.5. 若221()d ()d 2axf x x f x x =⎰⎰,则a =( A ).A. 4;B. 2;C.12; D. 1. 三.解答下列各题(每小题6分,本大题满分12分)1.21sin ()xe y x -=,求y '. 解:112sin (sin )x x e e y x x --''=⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--《高等数学1(一)》课程考试试卷(A 卷参考答案)注意:1、本试卷共3页; 2、考试时间:120分钟; 3、姓名、学号必须写在指定地方。
一. 单项选择题,请将答案填入题后的方括号内(每小题2分, 共20分)1.与函数()f x =[ C ]. A.lnx B.21()2ln x C .lnx D.ln x2.若(1)(2)(3)(4)(5)lim (32)x x x x x x x αβ→∞-----=-,则α与β的值为[ D ]. A.11,3αβ== B .15,3αβ== C.511,3αβ== D .515,3αβ==3.设函数()y f x =在点0x 处可导,dy 为()f x 在0x 处的微分,当自变量x 由0x 增加到0x x +∆时, 极限0limx y dyx∆→∆-∆等于[ B ].A .-1 B.0 C .1 D.∞4.若()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是[ D ].A .1lim [()()]h h f a f a h →+∞+-存在 B.0(2)()lim h f a h f a h h→+-+存在C.0()()lim2h f a h f a h h →+--存在 D.0()()lim h f a f a h h→--存在5.已知函数1sin ,0(),0x x f x xax b x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续,则a 与b 等于[ C ].A.1,1a b ==B.0,a b R =∈ C .,0a R b ∈= D.,a R b R ∈∈6.若函数32()f x x ax bx =++在1x =处取得极值2-,则下列结论中正确的是[ B ].A.3,0a b =-=,且1x =为函数()f x 的极小值点B.0,3a b ==-,且1x =为函数()f x 的极小值点 C .1,0a b =-=,且1x =为函数()f x 的极大值点D.0,3a b ==-,且1x =为函数()f x 的极大值点7.设1()1f x x =-,其n 阶麦克劳林展开式的拉格朗日型余项()n R x 等于[ C ]. A.11,(01)(1)(1)n n x n x θθ++<<+- B .11(1),(01)(1)(1)n n n x n x θθ++-<<+-C.12,(01)(1)n n x x θθ++<<- D.11(1),(01)(1)n n n x x θθ++-<<-8.若sin 2x 为函数()f x 的一个原函数,则()xf x dx ⎰等于[ D ]. A.sin 2cos2x x x C ++ B .sin 2cos2x x x C -+C.1sin 2cos 22x x x C -+ D.1sin 2cos 22x x x C ++9.若非零向量,,a b c 满足0a b ⋅=与0a c ⨯=,则b c ⋅等于[ A ]. A .0 B .-1 C.1 D.310.直线2020x y z x y z -+=⎧⎨+-=⎩与平面1x y z ++=的位置关系是[ C ].A .直线在平面内B .平行C .垂直 D.相交但不垂直二.填空题(每小题2分,共10分)1.一质点作直线运动,其运动规律为426s t t t =-+,则速度增加的时刻t = 1 . 2.若21arctan (1)2y x x ln x =-+,则dy =arctan xdx . 3.已知21adx x π+∞-∞=+⎰,则a = 1 .4.已知()xf x e =,则()f lnx dx x'=⎰ x C + . 5.设向量,,m n p 满足0m n p ++=,且6m =,8n =,10p =,则m n n p p m ⨯+⨯+⨯= 144 .三.求解下列各题(每小题5分,共10分)1.11lim(1)21n n n +→∞-+解:原式=((21)(1)1)/21lim(1)21n n n -+-+→∞-+ 2 =(21)(1/2)(1/2)11lim(1)lim(1)2121n n n n n -+-→∞→∞-⋅-++ 41/2e -= 52.20(13)lim (sec cos )x ln x x x →+-解:原式=203cos lim (1cos )(1cos )x x xx x →-+ 2=2023cos lim1(1cos )2x x x x x →+ 4=6 5四. 求解下列各题(每小题6分,共12分)1.若方程arctan 1xyy e =+确定了y 是x 的函数,求函数y 的微分dy . 解:原方程两边同时对x 求导,有2()1xyy e y xy y ''=++ 则22(1)1(1)xy xy y y e y x y e +'=-+ 4 则22(1)1(1)xyxyy y e dy dx x y e +=-+ 62.设参数方程21cos x t y t⎧=+⎨=⎩确定了y 是x 的函数,求22d ydx .解:sin 2dy tdx t-=3 222cos sin 122t t td y t dx t-=- 5 3sin cos 4t t tt-= 6五.求解下列各题(每小题6分,共18分)1.222()lnx dx xlnx +⎰解:原式=212()()d xlnx xlnx ⎰ 42C xlnx-=+ 6 2.222max{,}x x dx -⎰解:原式=0122221x dx xdx x dx -++⎰⎰⎰ 4323012201[][][]323x x x -=++ 5=11/2 63.设21sin ()x tf x dt t =⎰,求10()xf x dx ⎰解:21100()()()2x xf x dx f x d =⎰⎰ 2221100[()](())22x x f x d f x =-⎰ 422112200sin 02sin 2x x xdx x x dx x =-=-⎰⎰ 2101[cos ]2x =cos112-= 6六. (本题10分)y已知星形线33cos sin x a ty a t ⎧=⎨=⎩如右图所示,其中0a >, a 1) 计算星形线的全长; a - 0 a x2) 求星形线与坐标轴所围成图形的面积.解:1)长度4L =⎰2 a -4=⎰46a = 52)面积024202443sin cos a S ydx a t tdt π==-⎰⎰ 82422012sin cos at tdt π=⎰238a π= 10七. (本题7分)已知某直角三角形的边长之和为常数,求该直角三角形面积的最大值. 解:设两直角边与斜边分别为,,x y z ,其和为常数k ,所求面积为S因x y z k ++=及222x y z +=,则222()kx k y x k -=- 3则221224()kx xk S xy x k -==-,且222(24)()4()k x kx k S x x k -+'=-有驻点22x k -= 5则22max34S k -==为所求 7八. (本题7分)求过点(2,1,3)M 且与直线11321x y z+-==-垂直相交的直线方程. 解:记直线111:321x y zL +-==-,设过点(2,1,3)M 且垂直相交于直线1L 的平面为π 则平面π方程为3(2)2(1)(3)0x y z -+---= 2令11321x y zt +-===-则13,12,x t y t z t =-+=-+=- 代入平面π得3/7t =,即交点为2133(,,)777A - 4以12624(,,)777MA --=为所求直线的方向向量得到所求直线为:213214x y z ---==- 7九. (本题6分)设函数()f x 在闭区间[0,1]上连续且0()1f x <<,试判断方程02()1x x f t dt -=⎰在(0,1)内有几个实根,并证明你的结论. 证:记0()2()1x g x x f t dt =--⎰则10(0)10,(1)1()0g g f t dt =-<=->⎰2且0()1f x <<知()2()0g x f x '=->,即在闭区间[0,1]上单调增加 4 故02()1x x f t dt -=⎰在(0,1)内有一个实根 6。