第九章 第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

合集下载

直线和圆的位置关系(第1课时)课件

直线和圆的位置关系(第1课时)课件

内部
直线完全在圆的内部。
如何判断直线与圆的位置关系
要判断直线和圆的位置关系,可以使用以下几种方法: • 计算直线与圆心的距离,判断是否等于半径 • 求解直线方程与圆方程的交点 • 观察直线与圆的相对位置关系
直线与圆的常见例题
1
例题二
2
求解直线方程与圆方程的交点。
3
例题一
判断直线与圆的位置关系,并说明理 由。
直径
直径是通过圆心并且两个圆上 的点的距离。它是圆的最长宽 度。
圆心
圆的中心点,它在所有圆上的 点的中点。
直线与圆的位置关系
直线与圆可以有不同的位置关系。了解这些关系对于解决与直线和圆有关的问题非常重要。
外部
直线完全在圆的外部,不与圆相交。
切线
直线刚好与圆相切,只有一个切点。
相交
直线与圆相交于两个不同的点。
直线和圆的位置关系(第1 课时)课件
本课程将介绍直线和圆的位置关系,并探讨圆的基本概念。了解直线与圆的 位置关系的方法,以及解决这类问题的常见例题。
圆的基本概念
在数学中,圆是由一组与中心点等距离的点组成的曲线。它具有许多独特的特性,例如半径、直径和圆 心。
半径
半径是从圆心到任何圆上的点 的距离。它是圆的关键尺寸之 一。
例题三
已知圆上两点和圆心的坐标,求直线 方程。
练习题与课堂互动
让我们通过一些练习题和课堂互动,更好地理解直线和圆的位置关系。
总结与下节课预告
通过本课时的学习,我们已经了解了直线和圆的位置关系以及解决问题的方 法。请准备好下节课的内容,我们将进一步探

第一课时直线和圆的位置关系PPT课件(人教版)

第一课时直线和圆的位置关系PPT课件(人教版)

探究新知 直线与圆有__三___种位置关系,是用直线与圆的__公__共__点__的个数 来定义的.这也是判断直线与圆的位置关系的重要方法.
(1)相交 (2)相切 (3)相离
两个公共点 一个公共点 没有公共点
探究新知
O
l
相交
O
l
A
相切
O
l
相离
上述变化过程中,除了公共点的个数产生了变化,还有什么量在 改变?你能否用数量关系来判别直线与圆的位置关系?
13
时,
线段AB与⊙C只有一个公共点.
60
CD= cm
13
B
13
12
D
C5A
归纳总结
图形
直线与圆的 位置关系
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
.O r d┐ l
相离
0
d>r
.o
.O
d .┐r l
A.Br 来自d .lC相切 相交
1
2
d=r 切点 切线
d<r 交点 割线
24 圆
24.2.2.1 直线和圆的位置关系
课时目标
1.掌握直线和圆的三种位置关系的定义及其判定方法和性质。
2.通过直线和圆的位置关系的探究,渗透类比,分类, 数形结合思想,培养视察、分析和发现问题的能力。
探究新知
A B
C
点和圆的位置关系有几种?
点到圆心的距离为d,
圆的半径为r,则:
点在圆外 点在圆上 点在圆内
d>r; d=r; d<r.
数量关系
探究新知
把太阳看成一个圆,地平线看成一条直线,注意视
察直线与圆的公共点的个数.

直线和圆的位置关系(第1课时)课件2

直线和圆的位置关系(第1课时)课件2
图形表示
直线与圆有两个交点,分别用A和B表示。
相切
总结词
直线和圆有一个公共点,即相 切。
详细描述
当直线与圆心的距离等于半径 时,直线与圆只有一个交点, 即切点。此时,切线与半径垂 直。
公式
$d = r$
图形表示
直线与圆有一个切点,用T表示 。
相离
01
02
总结词
直线和圆没有公共点,即相离 。
详细描述
在物理学中,解析几何可以 用来描述物体的运动轨迹、 力的方向和大小等,例如在 研究抛物线运动、圆周运动 等物理现象时,需要用到解 析几何的知识。
在工程学中,解析几何可以 用来解决各种实际问题,例 如在建筑设计、机械设计、 电子工程等领域中,需要用 到解析几何的知识来描述物 体的形状、位置和运动等。
在经济学中,解析几何可以 用来描述各种经济现象,例 如在研究市场供需关系、价 格波动等经济问题时,需要 用到解析几何的知识来描述 数据和趋势。
直线和圆在几何图形中的应用
直线和圆是几何图形中最基本的两种图形,它们在许多实际问题中都有广泛的应用。例如, 在建筑设计、机械制造、城市规划等领域中,需要用到直线和圆的知识来描述建筑物的形状 、位置和尺寸等。
在城市规划中,直线和圆可以用来描述道路网络、城市边界等,帮助规划师更好地规划和设 计城市。在建筑设计领域中,直线和圆可以用来描述建筑物的平面图、立面图和剖面图等, 帮助建筑师更好地设计和建造建筑物。
圆方程
表示圆的一般式为 (x - h)^2 + (y k)^2 = r^2,标准式为 x^2 + y^2 + Dx + Ey + F = 0。
02
直线和圆的位置关系
相交

《直线、圆与圆的位置关系》课件

《直线、圆与圆的位置关系》课件

考点二:圆和圆的位置关系
例 3.已知圆 A:x2 y 2 2x - 2 y 7 0 ,圆 B:x2 y 2 2x 2y 2 0 .
(I)判断圆 A 与圆 B 是否相交.若相交,求其公共弦所在直线方程,
若不相交,说明理由;(II)求两圆的公切线长.
解:(1)圆 A: (x 1)2 ( y 1)2 9,圆 B: (x 1)2 ( y 1)2 4 ,
1、圆与圆的位置关系有五种:
相离 外切 相交 内切 内含 _________、_________、_________、_________、_________.
2、判断圆与圆的位置关系常用几何法: 两圆 (x a1)2 ( y b1)2 r1(2 r1 0)与 (x a2 )2 ( y b2 )2 r2(2 r2 0)的圆心距为 d,则:
3、已知直线 l:y x b 和曲线 C:y 1- x2 有两个公共点,则 b 的取值范围是
_____[_1_, __2__)_____.
2 2 4、直线 y x 被圆 x2 ( y 2)2 4 的截得弦长为____________________.
5、已知圆 (x 2)2 ( y 1)2 16 的一条直径通过直线 x 2y 3 0 被圆所截弦的中
则两圆公共弦方程为: (D 2)x (E 4)y F 1 0
∴ D 2 E 4 F 1 ,又点 A 在圆上得5 2D E F 0 ,
2
1
4
由上可求得: D 2 , E 14 , F 5 ,
3
3
3
即所求圆的方程为 x2 y2 2 x 14 y 5 0 .
333
双基自测
1、以点 P(a, b) 在圆 C:x2 y 2 1的外部,则直线 ax by 1 0 与圆 C 的

学圆与方程直线与圆的位置关系

学圆与方程直线与圆的位置关系

《学圆与方程直线与圆的位置关系》xx年xx月xx日•圆与方程的概述•直线与圆的位置关系•点与圆的位置关系•圆的方程的应用目录01圆与方程的概述圆是一种几何图形,由一条线段绕其一个端点旋转360度而成。

圆有且仅有唯一的一条直径,且该直径将圆分成两个半圆。

圆的定义圆是中心对称图形,其对称中心为圆心。

圆也是旋转对称图形,其旋转中心为圆心。

圆还具有轴对称性质,即沿圆的任意一条直径对折,两边完全重合。

圆的性质圆的定义与性质圆的标准方程对于在平面直角坐标系中的任意一点(x, y),若该点到定点(a, b)的距离为r,则该点在以定点(a, b)为圆心,以r为半径的圆上。

该圆的方程为(x-a)^2+(y-b)^2=r^2。

圆的一般方程在三维空间中,一个圆可以由三个参数方程表示,其中两个参数变量表示圆心坐标和半径,第三个参数变量表示圆的旋转角度。

圆的标准方程圆的一般方程圆的一般方程在平面直角坐标系中,一个圆可以由两个参数方程表示,其中一个是圆的方程,另一个是垂直于该圆的直线方程。

通过代入参数值,可以求出该圆上任意一点的坐标。

圆的参数方程对于在平面直角坐标系中的任意一点(x, y),若该点到定点(a, b)的距离为r,则该点在以定点(a, b)为圆心,以r 为半径的圆上。

该圆的参数方程为x=a+r*cos(t),y=b+r*sin(t),其中t为参数变量,表示该点在圆上的角度(0<=t<2pi)。

02直线与圆的位置关系直线与圆相切时,直线与圆的唯一公共点为切点,切线垂直于过切点的半径。

直线与圆相切定义圆的切线垂直于经过切点的半径。

性质在几何学中,切线与切点是图形性质的重要元素,例如在求圆的面积、周长和体积时,需要使用切线与切点。

应用性质连接交点与圆心的线段均小于圆的半径。

定义直线与圆相交时,直线与圆有两个不同的公共点,即交点。

应用在几何学中,交点与交线的性质用于求解涉及圆的问题,例如在求圆的面积、周长和体积时,需要使用交点与交线。

24.2.2直线与圆的位置关系第一课时说课稿

24.2.2直线与圆的位置关系第一课时说课稿

直线与圆的位置关系说课稿(第一课时)尊敬的各位老师,大家好。

今天我说课的题目是《直线与圆的位置关系》,这是人教版九年级第二十四章《圆》的第二节的内容。

这节课分两个课时,我说的是第一课时。

下面我将从教材分析,说教法,说学法,与教学过程四个方面对本课进行说明。

一、教材分析1、教材的地位与作用“直线和圆的位置关系”是《圆》这章的重点内容之一,是在学生已经学习过圆的有关性质基础上进行的,它既是对前面所学知识的进一步深化,又是以后学习圆的切线的判定与性质的预备知识。

另外,向学生渗透数形结合与转化思想进而渗透由量变到质变的辨证唯物主义思想。

根据教材的地位和作用,我制定了如下的教学目标。

2、教学目标1)知识目标1、从具体的事例中认识和理解直线与圆的三种位置关系并能概括其定义。

2、会用定义来判断直线与圆的位置关系。

3、探究直线与圆的位置关系的数量表示,并运用其关系。

2)能力目标:体验数学活动中的探索与创造,培养学生的观察、归纳能力,以及分析问题,解决实际问题的能力。

3)情感目标:1、体会事物间的相互渗透,初步掌握转化的思想;2、感受数学思维的严谨性,并在合作学习中获得成功的体验。

3、教材的重点难点直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

二、说教法本节课中我采取自主探究与类比迁移法,并结合多媒体直观演示、数形结合、动手操作等多种形式的教学手段进行教学,这样不仅充分调动了学生的积极性,也让整个课堂活跃起来。

三、说学法教是为了学生更好地学,学生是课堂教学的主体,现代教育更重视在教学过程中对学生的学法指导。

我主要指导学生采用小组讨论、分析及归纳等多种学习方法,从而真正落实到把课堂还给学生,让学生成为课堂的主角。

四、教学过程复习导入、回顾旧知——创设情境,提出问题——探究发现,建构知识——应用举例,巩固提高——回顾反思,拓展延伸1、复习导入、回顾旧知1.点和圆的位置关系有哪几种?2.如何判定点和圆的位置关系?【设计意图】通过提问帮助学生复习了点和圆的位置关系的相关知识,既加深了学生对点与圆位置关系的认识,同时也为本节课从数量关系判定直线和圆的位置关系打下了伏笔2创设情境,提出问题首先利用唐诗中的“大漠孤孤烟直,长河落日圆”体会这里蕴涵的数学意境,再让学生观察太阳升起的过程,我们能发现什么?引出课题【设计意图】问题是数学的心脏,是学生思维和兴趣的开始。

圆直线和圆的位置关系课件

圆直线和圆的位置关系课件

影响最小化。圆和直线的位置关系在此规划中有着重要的应用。
02
管道设计
在管道设计中,确定管道的铺设路线和铺设深度至关重要。利用圆和直
线的位置关系,可以更好地确定管道的位置,避免不必要的冲突。
03
建筑设计
在建筑设计中,为了确保建筑的美观和功能性,需要考虑各种因素。圆
和直线的位置关系在建筑设计中也被广泛运用,例如窗户的设计、楼梯
详细描述
直线与圆相切时,直线与圆的圆心距离等于圆的半径。此时,直线与圆之间的夹 角为直角。在相切的情况下,只有一条切线与圆相切,且切点是唯一的。
相交
总结词
当直线与圆有两个公共点时,直线与圆相交。
详细描述
直线与圆相交时,直线与圆的圆心距离小于圆的半径。此时,直线与圆之间的夹角为钝角。在相交的情况下,有 多条切线与圆相交,且切点不止一个。
VS
详细描述
设直线与圆上一点的夹角为θ,利用正弦 或余弦定理可计算出圆心到直线的距离d ,再与圆的半径r进行比较,判断位置关 系。
利用勾股定理进行证明
总结词
通过已知直线与圆上一点的夹角和该点到圆 心的距离,利用勾股定理计算出圆的半径, 进而判断位置关系。
详细描述
设直线与圆上一点的夹角为θ,该点到圆心 的距离为a,利用勾股定理可计算出圆的半 径r,再与圆心到直线的距离d进行比较,判 断位置关系。
直径
通过圆心且两个端点都在 圆上的线段,是圆中最长 的线段。
直线的性质
直线两端可以无限延 伸,没有起点和终点 。
直线上的任意两点确 定一条直线。
直线是平直的,无法 弯曲。
圆和直线的相互关系
相离
当直线与圆心的距离大于 圆的半径时,直线与圆相 离。

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

人教版九年级数学上册课件:24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系

人教版九年级数学上册课件:24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系

14.如图,⊙O的直径DE=12 cm,在Rt△ABC中,∠ACB=90°, ∠ABC=30°,BC=12 cm,⊙O以2 cm/s的速度从左向右移动,在运动 过程中,DE始终在直线BC上,设运动的时间为t(s),当t=0时,⊙O在 △ABC的左侧,OC=8 cm,当t为何值时,△ABC的一边所在的直线与 ⊙O相切?
PB 与⊙O 相切.
12.如图,在 Rt△ABC 中,∠C=90°,∠A=30°,O 为 AB 上一 点,BO=x,⊙O 的半径为 2.
(1)当 x 为何值时,直线 BC 与⊙O 相切? (2)当 x 在什么范围内取值时,直线 BC 与⊙O 相离、相交?
解:(1)过点 O 作 OH⊥BC 于 H,∵∠BOH=∠A=30°,BO=x, ∴BH=12x,OH= 23x,由 OH= 23x=2,得 x=43 3,此时 BC 与⊙C 相 切 (2)当 0≤x<4 3 3时,直线 BC 与⊙O 相交;当 x>43 3时,直线 BC 与⊙O 相离
5.(练习变式)在 Rt△ABC 中,∠C=90°,AB=4 cm,BC =2 cm,以 C 为圆心,r 为半径的圆与 AB 有何种位置关系?
(1)r=1.5 cm;(2)r= 3 cm;(3)r=2 cm. 解:过点 C 作 CD⊥AB,垂足为 D,可求 CD= 3.(1)r=1.5 cm 时,相离;(2)r= 3 cm 时,相切; (3)r=2 cm 时,相交
第二十四章 圆
24.2 点和圆、直线和圆的位置关系
24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系
知识点1:直线和圆的位置关系的判定 1.如图,若把太阳看成一个圆,则太阳与地平线的位置关系是 (A ) A.相离 B.相切 C.相交 D.以上都不对 2.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l 与⊙O的位置关系的图形是( B )

直线与圆的位置关系(第1课时)教学设计

直线与圆的位置关系(第1课时)教学设计

拓宽视角,让数学教学更自然——苏科版“直线与圆的位置关系”(第1课时)教学设计1教材简解直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆位置关系的延续与提高,又是学习切线的判定定理的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

因此,直线和圆的位置关系在圆一章中起承上启下的作用。

2目标预设2.1知识与技能目标:知道直线和圆相交、相切、相离的定义;会根据定义来判断直线和圆的位置关系;会根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆位置关系。

2.2过程与方法目标:通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力。

2.3情感态度与价值观:使学生从运动的观点来观察直线和圆相交、相切、相离的关系,培养学生辩证唯物主义观点。

3重点、难点重点:引导发现直线与圆的位置关系与圆心到直线的距离与半径的数量关系之间的联系。

难点:理解并灵活运用圆心到直线的距离与半径的数量关系判定直线与圆的位置关系。

4设计理念翻看数学史,不难发现:数学定理、数学思想、数学方法都是数学家们经历曲折、艰辛的研究结果;完美的数学符号、概念、法则是数学界长期自然、合理进化的结果。

从再创造的角度出发,学生的思维和当初创建这些数学知识的数学家们的思维本质一致。

既然数学知识的产生和发展是自然合理的,那么,数学教学只能以自然、合理的方式展开。

[1]本节课的教学中,努力挖掘内容的本质和联系,充分考虑学生的学习基础和思维发展方向,力求教学过程的自然流畅.5教学设计环节1:课题引入问题1:几何学习中,我们常常会研究图形与图形之间的位置关系,我们学习过哪些图形与图形之间的位置关系?大家还想研究哪些图形与图形之间的位置关系呢?问题2:观察太阳缓缓升起的过程,把地平线看成一条直线,而把太阳抽象成一个运动着的圆,地平线与太阳经历了哪些位置关系?环节2:实践探索一问题3:在纸上画一条直线,把它看成水平线,借助圆形纸片演示太阳升起的过程,猜想直线和圆的位置关系?师生活动:在学生尝试活动的基础上,教师再用几何画板演示。

圆的方程-直线与圆的位置关系--知识点

圆的方程-直线与圆的位置关系--知识点

圆的方程,直线、圆的位置关系 一·圆的方程1. 圆的标准方程:求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.圆的一般方程:022=++++F Ey Dx y x2240D E F +->表示圆,圆心C (,22D E -- 2240D E F +-=表示点(,22D E --) 2240D E F +-<不表示任何图形二·直线、圆的位置关系1. 点与圆的位置关系:点00(,)M x y 与圆的关系的判断方法:(1)圆方程为标准式222()()x a y b r -+-= 222()()x a y b r -+->⇔点在圆外222()()x a y b r -+-=⇔点在圆上222()()x a y b r -+-<⇔点在圆内(2)圆方程为一般式022=++++F Ey Dx y x 220x y Dx Ey F ++++>⇔点在圆外022=++++F Ey Dx y x ⇔点在圆上220x y Dx Ey F ++++<⇔点在圆内2. 直线与圆的位置关系:直线l :0Ax By C ++=与圆C 的位置关系判断方法(1)求出圆的半径r ,圆心C 到直线l 的距离为dr d >⇔直线l 与圆C 相离⇔直线l 与圆C 无交点 r d =⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点r d <⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点(2)将直线方程代入圆的方程消元变成一元二次方程,求出判别式24b ac =-0<⇔直线l 与圆C 相离⇔直线l 与圆C 无交点0=⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点0>⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点3. 4. 圆与圆的位置关系:圆与圆的位置关系判断方法求出圆心距12C C ,两圆的半径12,r r1212C C r r >+⇔圆1C 与圆2C 相离⇔有4条公切线 1212C C r r =+⇔圆1C 与圆2C 外切⇔有3条公切线 121212||r r C C r r -<<+⇔圆1C 与圆2C 相交⇔有2条公切线1212||C C r r =-⇔圆1C 与圆2C 内切⇔有1条公切线 1212||C C r r <-⇔圆1C 与圆2C 内含⇔有0条公切线 补充:直径圆方程: (x-x 1)(x -x 2)-(y -y 1)(y -y 2)=0圆系方程: 设圆C 1 : x 2+y 2+D 1x+E 1 y+F 1=0, C 2 : x 2+y 2+D 2x+E 2 y+F 2=0,则方程C : x 2+y 2+D 1x+E 1 y+F 1 + m(x 2+y 2+D 2x+E 2 y+F 2)=0表示过两圆C 1、C 2的交点的圆系方程(m 不为-1,且不含圆C 2). 其中一圆可以退化成直线。

第3讲-圆的方程及直线与圆、圆与圆的位置关系

第3讲-圆的方程及直线与圆、圆与圆的位置关系

圆的方程以及直线与圆、圆与圆的位置关系学习提纲1、了解圆的方程2、了解直线和圆、圆与圆的位置关系及其判断标准3、了解圆的切线方程,相交弦方程1.圆的定义:平面内到定点的距离等于定长的点的轨迹是圆.这个定点叫做圆的圆心,定长称为该圆的半径。

2.圆的标准方程在平面直角坐标系中,设动点(,)P x y ,圆心(,)C a b ,半径为r ,由圆的定义有22()()x a y b r -+-=,即222()()x a y b r -+-=此即为:以(,)C a b 为圆心,r 为半径的圆的标准方程.特别地,以原点为圆心,半径为(0)r r >的圆的标准方程为222x y r +=3.圆的一般方程有时,我们也把圆的方程写成如下形式220x y Dx Ey F ++++= (*)由于22222240()()224D E D E F x y Dx Ey F x y +-++++=⇔+++= 因此,(*)表示圆的方程,前提是2240D E F +-> 事实上,如2240D E F +-=,方程(*)表示一个点(,)22D E -- 如2240D E F +-<,则方程(*)不表示任何图形.4、点00(,)P x y 与圆222()()(0)x a y b r r -+-=>的位置关系(1)若22200()()x a y b r -+->,则点P 在圆外;(2)若22200()()x a y b r -+-=则点P 在圆上;(3)若22200()()x a y b r -+-<,则点P 在圆内. 5.直线与圆的位置关系直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有两种方法:(1)代数法:直线方程与圆的方程联立,化简得一元二次方程,令其判别式为∆,则0∆<⇔相离; 0∆=⇔相切; 0∆>⇔相交;(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d r <⇔相交; d r =⇔相切; d r >⇔相离.6.圆与圆的位置关系的判定设⊙1C :2221111()()(0)x a y b r r -+-=>, ⊙2C :2222222()()(0)x a y b r r -+-=>,则有: 1212||C C r r >+⇔⊙1C 与⊙2C 相离;1212||=C C r r +⇔⊙1C 与⊙2C 外切;121212||||r r C C r r -<<+⇔⊙1C 与⊙2C 相交;121212||||()C C r r r r =-≠⇔⊙1C 与⊙2C 内切;1212||||C C r r <-⇔⊙1C 与⊙2C 内含;一条规律过圆外一点M 可作两条直线与圆相切,求切线方程时,可先设出方程,再用圆心到切线的距离等于半径列出方程求出切线的斜率.求直线被圆所截得弦长的两种常用方法(1)几何方法圆心到弦所在直线的距离、半弦长、半径构成直角三角形,用勾股定理.(2)代数方法运用根与系数关系及弦长公式 222||1||1()4A B A B A B AB k x x k x x x x =+-=++-说明:圆的弦长、弦心距的计算常用几何方法. CA B D7、切线方程,切点弦方程,相交弦方程(1)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>上,则过P 的切线之方程为 200()()()()x a x a y b y b r --+--=(2)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>外,则过P 可作两条切线,设切点为,A B ,则切点弦AB 所在直线的方程为 200()()()()x a x a y b y b r --+--=(3)如果圆22211:()()C x a y b r-+-=与22222:()()C x c y d r -+-=交于,A B 两点,则相交弦AB 所在直线的方程为 22222212()()[()()]x a y b x c y d r r -+---+-=-例1(1)若点(1,1)在圆22()()4x a y a -++=的内部,则实数a 的取值范围是( ).A .11a -<<B .01a <<C .1a >或1a <-D .1a =±(2)方程(1)(7)(2)(10)0x x y y --+--=表示什么曲线?【解】(1)因为点(1,1)在圆的内部,∴22(1)(1)4a a -++<∴11a -<< (2)(1)(7)(2)(10)0x x y y --+--=22812270x y x y ⇒+--+=22(4)(6)25x y ⇒-+-=故,原方程表示的曲线为以点(4,6)为圆心,5为半径的圆。

直线与圆的位置关系课件

直线与圆的位置关系课件
直线和圆相交于两个交 点。
直线与圆相离
1
外切
直线与圆相离,并且与圆有且仅有一
外离不相交
2
个切
分离。
3
外离相离
直线与圆没有任何交点或切点,但它 们还是有一定的接近性。
直线与圆相切
1
切点性质
直线与圆相切于一个切点,切点在圆上。
2
法线性质
直线在切点处垂直于圆的切线。
圆的定义和特征

圆是由一条曲线围成的,所有 点到圆心的距离相等。
球体
球体是三维空间中由一条曲线 围成的,所有点到球心的距离 相等。
气旋
气旋是带状大气旋转体,呈圆 形或类似圆形的自然现象。
直线与圆的位置关系分类
1 相离
直线和圆没有交点,彼 此没有相交。
2 相切
直线切到圆的边界,只 有一个接触点。
3 相交
3
角度性质
直线与半径的夹角等于切线与半径的夹角,并且都是直角。
直线与圆相交
1
交点性质
直线与圆相交于两个交点,交点分别
切线性质
2
在圆内和圆外。
直线通过切点,既是直线也是圆的切
线。
3
夹角性质
直线与切线的夹角等于直线与半径的 夹角。
直线与圆相切的性质
1 唯一性
直线和圆之间最多只能有一个切点。
2 切点位置
切点在圆上,与圆的切线垂直。
3 切线方向
切线通过切点,既是直线也是圆的切线。
直线与圆相交的性质
1 交点个数
2 切点位置
直线和圆相交于两个交 点,分别在圆内和圆外。
切点在圆上,与圆的切 线垂直。
3 夹角性质
直线与切线的夹角等于 直线与半径的夹角。

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

直线和圆的位置关系ppt课件

直线和圆的位置关系ppt课件

∵ OC 是 ⊙O 的半径,
AC B
∴ AB 是 ⊙O 的切线.
方法总结
当已知直线过圆上的一点时,连接圆心和该点 得到圆的半径,然后证明直线与这条半径垂直,即 可得出已知直线为圆的切线.
例3 如图,在 Rt△ABC 中,∠ABC = 90°,∠BAC 的平
分线交 BC 于 D,以 D 为圆心,DB 长为半径作⊙D.
我们说这条直线是圆的切线;
l
2. 数量关系法:圆心到这条直线的距离 等于半径(即 d = r)时,直线与圆相切;
Or d
l
3. 判定定理:经过半径的外端且垂直于 这条半径的直线是圆的切线.
O
A
l
例1 如图,线段 AB 是☉O 的直径,直线 AC 与 AB 交于
点 A,∠ABC = 45°,且 AB = AC.
O dr 直线和圆相交 直线和圆相切 直线和圆相离 数形结合:位置关系
Or d
O r
d

d<r d=r d>r
直线与圆的位置关系
的性质与判定的区别:
位置关系
性质 判定
数量关系.
数量关系
公共点个数
练一练 1. 已知圆的半径为 6 cm,设直线和圆心的距离为 d.
(1) 若 d = 4 cm,则直线与圆 相交 ,直线与圆有__2__ 个公共点; (2) 若 d = 6 cm,则直线与圆__相__切__,直线与圆有__1__ 个公共点; (3) 若 d = 8 cm,则直线与圆_相__离___,直线与圆有__0__ 个公共点.
半径长 1 cm,则 OD = 2 cm.
方法总结
利用切线的性质解题时,常需作辅助线,一般 连接圆心与切点,构造直角三角形,再利用直角三 角形的相关性质解题.

高中数学_圆与方程——直线、圆的位置关系教学课件设计

高中数学_圆与方程——直线、圆的位置关系教学课件设计

基础知识
题型分类
思想方法
练出高分
复习回顾 3.直线与圆相切、相交位置关系中的等量关系
P
基础知识
题型分类
思想方法
练出高分
要点梳理 直线与圆的位置关系及其(A2+B2≠0),
圆:(x-a)2+(y-b)2=r2 (r>0). 1.直线与圆三种位置关系:_相__交__、_相__切__、_相__离__.
2.两种判定方法:
相交
相切 相离
相交 相切 相离
基础知识
题型分类
思想方法
练出高分
要点梳理 直线与圆的位置关系及其判定
设直线 l:Ax+By+C=0 (A2+B2≠0),
圆:(x-a)2+(y-b)2=r2 (r>0),
d 为圆心(a,b)到直线 l 的距离,
Δ为联立直线与圆的方程,并消元得到二次方程的判别式.
考 1.以选择题、填空题的形式考查直线与圆的相交、相切关系; 向 预 2.在解答题中与圆锥曲线的定义、标准方程、几何性质综合考查; 测 3.在选做题中与极坐标参数方程综合考查.
基础知识
题型分类
思想方法
练出高分
学习目标
1.掌握直线与圆的位置关系及其判定方法(重点) 2.掌握直线与圆相切位置关系中切线方程、切线长的求法(重难点) 3.掌握直线与圆相交位置关系中弦方程、弦长的求法(重难点)
§9. 4 直线与圆的位置关系
第九章 平面解析几何
考情分析
五年五考 考

2014
2015
2016
2017
2018
分 析
20
23
6, 22
22
15
考 1.能根据给定直线、圆的方程判定直线与圆是位置关系; 纲 要 2.能用直线和圆的方程就解决一些简单的问题; 求 3.初步了解用代数方法处理几何问题的思想.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节圆与方程[考纲要求]1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.能根据给定直线、圆的方程判断直线与圆的位置关系.4.能根据给定两个圆的方程判断两圆的位置关系.5.能用直线和圆的方程解决一些简单的问题.6.初步了解用代数方法处理几何问题的思想.第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系圆的方程1.圆的定义及方程定义平面内到定点的距离等于定长的点的轨迹叫做圆标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b) 半径:r一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心:⎝⎛⎭⎫-D2,-E2半径:r=D2+E2-4F2点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.理论依据点到圆心的距离与半径的大小关系三种情况(x0-a)2+(y0-b)2=r2⇔点在圆上(x0-a)2+(y0-b)2>r2⇔点在圆外(x0-a)2+(y0-b)2<r2⇔点在圆内[提醒]不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点.(2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上.(3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切.[小题练通]1.[人教A 版教材P124A 组T4]圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为____________.答案:(x -2)2+y 2=102.[教材改编题]经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝⎛⎭⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =0直线与圆的位置关系1.直线与圆的位置关系(半径r ,圆心到直线的距离为d ) 相离相切相交图形量化 方程观点Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard .[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|. [谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切B .相交C.相离D.随a的变化而变化解析:选B∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.3.[教材改编题]已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.解析:由题意知点M在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x-1)2+y2=1相切的直线的方程为________________.解析:当切线的斜率存在时,设圆的切线方程为y=k(x-2)+3,由圆心(1,0)到切线的距离为1,得k=43,所以切线方程为4x-3y+1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x-3y+1=0或x=2.答案:x=2或4x-3y+1=05.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是________.答案:(x-1)2+y2=86.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.∴圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d=|1+1|2=2,∴|AB|=2r2-d2=24-2=2 2.答案:2 2圆与圆的位置关系圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)相离外切相交内切内含图形量的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|d<|r1-r2|[提醒]涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交时:(1)将两圆方程直接作差,得到两圆公共弦所在直线方程;(2)两圆圆心的连线垂直平分公共弦;(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0表示过两圆交点的圆系方程(不包括C2).[小题练通]1.[人教A版教材P133A组T9]圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则实数a=________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+(-1)2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21 B.19C.9 D.-11解析:选C圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有() A.1条B.2条C.3条D.4条解析:选A两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.[课时跟踪检测]1.(2019·广西陆川中学期末)圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A .内含B .外离C .外切D .相交解析:选D 圆C 1的标准方程为(x +1)2+(y +4)2=25,圆C 2的标准方程为(x -2)2+(y -2)2=9,两圆的圆心距为(2+1)2+(2+4)2=35,两圆的半径为r 1=5,r 2=3,满足r 1+r 2=8>35>2=r 1-r 2,故两圆相交.故选D.2.(2019·闽侯第八中学期末)若圆Ω过点(0,-1),(0,5),且被直线x -y =0截得的弦长为27,则圆Ω的方程为( )A .x 2+(y -2)2=9或(x +4)2+(y -2)2=25B .x 2+(y -2)2=9或(x -1)2+(y -2)2=10C .(x +4)2+(y -2)2=25或(x +4)2+(y -2)2=17D .(x +4)2+(y -2)2=25或(x -4)2+(y -1)2=16解析:选A 由于圆过点(0,-1),(0,5),故圆心在直线y =2上,设圆心坐标为(a,2),由弦长公式得|a -2|2=a 2+(5-2)2-7,解得a =0或a =-4.故圆心为(0,2),半径为3或圆心为(-4,2),半径为5,故选A.3.(2019·北京海淀期末)已知直线x -y +m =0与圆O :x 2+y 2=1相交于A ,B 两点,且△OAB 为正三角形,则实数m 的值为( )A.32B.62 C.32或-32D.62或-62解析:选D 由题意得圆O :x 2+y 2=1的圆心坐标为(0,0),半径r =1. 因为△OAB 为正三角形,则圆心O 到直线x -y +m =0的距离为32r =32,即d =|m |2=32,解得m =62或m =-62,故选D. 4.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B.-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 6.(2019·西安联考)直线y -1=k (x -3)被圆(x -2)2+(y -2)2=4所截得的最短弦长等于( )A. 3 B .2 3 C .2 2D. 5解析:选C 圆(x -2)2+(y -2)2=4的圆心C (2,2),半径为2,直线y -1=k (x -3), ∴此直线恒过定点P (3,1),当圆被直线截得的弦最短时,圆心C (2,2)与定点P (3,1)的连线垂直于弦,弦心距为(2-3)2+(2-1)2=2,所截得的最短弦长为222-(2)2=22,故选C.7.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4B .(x -2)2+(y +2)2=2C .(x -2)2+(y +2)2=4D .(x -22)2+(y +22)2=4解析:选C 设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,∴a =2,∴该圆的标准方程为(x -2)2+(y +2)2=4,故选C. 8.(2018·唐山二模)圆E 经过A (0,1),B (2,0),C (0,-1)三点,且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254B.⎝⎛⎭⎫x +342+y 2=2516C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r , 则有⎩⎪⎨⎪⎧(a -2)2=r 2,a 2+(0+1)2=r 2,a 2+(0-1)2=r 2,解得a =34,r 2=2516,则圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516.故选C.9.(2018·合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25解析:选C因为圆C的圆心的坐标C(6,8),所以OC的中点坐标为E(3,4),所求圆的半径|OE|=32+42=5,故以OC为直径的圆的方程为(x-3)2+(y-4)2=25.故选C.10.(2018·荆州二模)圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是() A.2 B.-2C.1 D.-1解析:选B∵圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,∴直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.故选B.11.(2019·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为()A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4 D.(x-1)2+(y-2)2=4解析:选A由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),∴圆C的标准方程为(x-1)2+(y-2)2=2,故选A.12.(2019·孝义一模)已知P为直线x+y-2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有()A.0个B.1个C.2个D.无数个解析:选B连接OM,ON,则OM=ON,∠MPN=∠ONP=∠OMP=90°,∴四边形OMPN为正方形,∵圆O的半径为1,∴|OP|=2,∵原点(圆心)O到直线x+y-2=0的距离为2,∴符合条件的点P只有一个,故选B.13.(2019·北京东城联考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k =1”是“|AB|=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,∴圆心到直线的距离d =11+k 2,则|AB |=21-d 2=21-11+k 2=2k 21+k 2,当k =1时,|AB |=2 12=2,即充分性成立;若|AB |=2,则2k 21+k 2=2,即k 2=1,解得k =1或k =-1,即必要性不成立,故“k =1”是“|AB |=2”的充分不必要条件,故选A.14.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是________________.解析:因为圆C 与两轴相切,且M 是劣弧AB 的中点,所以直线CM 是第二、四象限的角平分线,所以斜率为-1,所以过M 的切线的斜率为1.因为圆心到原点的距离为2,所以|OM |=2-1,所以M ⎝⎛⎭⎫22-1,1-22,所以切线方程为y -1+22=x -22+1,整理得x -y +2-2=0.答案:x -y +2-2=015.(2018·枣庄二模)已知圆M 与直线x -y =0及x -y +4=0都相切,且圆心在直线y =-x +2上,则圆M 的标准方程为________________.解析:∵圆M 的圆心在y =-x +2上, ∴设圆心为(a,2-a ),∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),圆M 的半径为|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=216.(2019·天津联考)以点(0,b )为圆心的圆与直线y =2x +1相切于点(1,3),则该圆的方程为____________________.解析:由题意设圆的方程为x 2+(y -b )2=r 2(r >0). 根据条件得⎩⎪⎨⎪⎧1+(3-b )2=r 2,|-b +1|5=r ,解得⎩⎨⎧b =72,r =52.∴该圆的方程为x 2+⎝⎛⎭⎫y -722=54. 答案:x 2+⎝⎛⎭⎫y -722=5417.(2019·丹东联考)经过三点A (1,3),B (4,2),C (1,-7)的圆的半径是________. 解析:易知圆心在线段AC 的垂直平分线y =-2上,所以设圆心坐标为(a ,-2),由(a -1)2+(-2-3)2=(a -4)2+(-2-2)2,得a =1,即圆心坐标为(1,-2),∴半径为r =(1-1)2+(-2-3)2=5. 答案:518.(2019·镇江联考)已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A (0,-6),则圆C 的标准方程为____________________.解析:设圆C 的标准方程为(x -a )2+(y -b )2=r 2,其圆心为C (a ,b ),半径为r (r >0). ∵x 2+y 2+10x +10y =0可化简为(x +5)2+(y +5)2=50, ∴其圆心为(-5,-5),半径为5 2.∵两圆相切于原点O ,且圆C 过点(0,-6),点(0,-6)在圆(x +5)2+(y +5)2=50内,∴两圆内切,∴⎩⎨⎧a 2+b 2=r 2,(a +5)2+(b +5)2=52-r ,(0-a )2+(-6-b )2=r 2,解得a =-3,b =-3,r =32, ∴圆C 的标准方程为(x +3)2+(y +3)2=18. 答案:(x +3)2+(y +3)2=18。

相关文档
最新文档