光学谐振腔

合集下载

第二章 光学谐振腔基本理论

第二章   光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。

光线在两镜间来回不断反射的腔叫光学谐振腔。

由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。

光学谐振腔的分类方式很多。

按照工作物质的状态可分为有源腔和无源腔。

虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。

2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。

若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。

在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。

与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。

非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。

这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。

2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。

3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。

第五节 光学谐振腔

第五节 光学谐振腔

Optical fiber communications 1-2
A. 谐振频率与谐振波长
2010-12-12
Copyright Wang Yan
foq =
oq 2nl 2nl q
q为模指数
λoq=
.纵模 B .纵模
L=q 介质中波长在谐振情况下, L=qλoq/2n= λqq/2 λq 介质中波长在谐振情况下,腔长是介质 中波长的整数倍,( 个半驻波,对应与不同的q ,(q 中波长的整数倍,(q个半驻波,对应与不同的q值,得到不同的纵 向分布,形成不同的腔的模式。由于这种场分布发生在场的纵向, 向分布,形成不同的腔的模式。由于这种场分布发生在场的纵向, 所以称为纵模。 所以称为纵模。 fq=c/(2nl)等间隔的 等间隔的。 纵模频率间隔 ∆fq=c/(2nl)等间隔的。
cos α cos β c与Z轴之间的夹角 发散角,波的传播方向与Z
Optical fiber communications 1-8
2010-12-12
Copyright Wang Yan
cos γ =
( m )2 +( n / b)2 −1 q/l n 2 = [1 + ] m 2 n 2 q 2 ( q )2 ( ) +( ) +( ) l a b l 1 l 2 m 2 2 ( ) [( n ) + ( n / b ) ] 2 q
在光波波段,由于采用介质腔,轴向角γ 在光波波段,由于采用介质腔,轴向角γ较大的光线不满足全反 射条件,他们将很快逸出腔外.只有m,n m,n为小整数 ,kz较小 较小) 射条件,他们将很快逸出腔外.只有m,n为小整数 (kx ,ky ,kz较小) 角较小的徬轴光能留在腔内。又由于波长极短,故波数k极大,kz γ角较小的徬轴光能留在腔内。又由于波长极短,故波数k极大,kz 极大所以kx, 这说明腔中的电磁波基本上是平行与腔轴的, 极大所以kx, ky<<kz, 这说明腔中的电磁波基本上是平行与腔轴的, 腔中各模式的纵向场比横向场小得多。 腔中各模式的纵向场比横向场小得多。因此常把他近似的看做横电 磁波,把由波指数m, q确定的模式记作TEMmnq模 确定的模式记作TEMmnq 磁波,把由波指数m, n, q确定的模式记作TEMmnq模。

第3章光学谐振腔理论

第3章光学谐振腔理论



凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组

光学谐振腔基本概念

光学谐振腔基本概念

R1
R2
g1g2<0
R2g1g2>1源自R2g1g2>1
.
六、稳定性几何判别法 1、任一镜的两个特征点(顶点与曲率中心) 之间,只包含另一镜的一个特征点时,为稳 定;包含两个特征点或不含特征点时为非稳
2、两镜特征点有重合时,一对重合为非 稳;两对重合为稳定
例 稳定:
非稳:
.
例 判断谐振腔的稳定性(单位:mm)
R1、R2:两反射镜面曲率半径 L:谐振腔长度



R1
R2


L
.
r22 T1r11
r33T2r22T2T1r11 r44T3r33T3T2T1r11 r55T4r44T4T3T2T1r11
TT4T3T2T1
.
1 L
T1 T3 0 1
R1

② R2
1 0
T2
2 R2
1
1 0
T4
.
g
1
0LR
五、谐振腔示例 1、稳定腔
(1)双凹
① R1>L R2>L
R1
证 ∵ R1>L ∴0<g1<1
∵ R2>L ∴0<g2<1 ∴0<g1g2<1
R<0 0<R<L R>L R g>1 g<0 0<g<1 g=1
R2
.
② R1<L,R2<L
R1+R2>L
R1
R2
R<0 0<R<L R>L R g>1 g<0 0<g<1 g=1

光学谐振腔基本概念

光学谐振腔基本概念
T = T4T T2T 3 1
1 L T = T3 = 1 0 1
1 T2 = 2 − R 2 0 1
1 T4 = 2 − R 1
0 1
R1 ④
① ③
② R2
L
1 T = 2 − R 1
01 L 1 2 0 1 − R 1 2
2、实例 (1)单程传播L (1)单程传播L距离 单程传播 证
θ1 r1 θ2 r2 L
1 ∴T = 0 L 1 1 T = 0 L 1
r2=r1+Lθ1 +Lθ θ2= θ1
(2)球面反射镜 (2)球面反射镜
1 0 T = 2 − 1 R
θ2 = i
r α≈ F r r =2 F R
o i F α F
R
θ2 r
R = 2F
1 0 T = 0 1 →
r2 r = 1 θ θ 2 1

R=∞ 或 F =∞
即平面镜的反射定律
θ1
θ2 θ1
2、非稳定腔
(1)g >1(2) (2)g <0(3) =0或 =0(4) (3)g (4)g (1)g1g2>1(2)g1g2<0(3)g1=0或g2=0(4)g1g2=1 =∞,平行平面腔, 如g1=g2=1, 即R1=R2=∞,平行平面腔,则
F
讨论 (1)若r =0,θ 任意 (1)若 1=0,θ1
r2 1 = 1 θ − 2 F 0 0 0 = 1θ1 θ1
θ2 θ1
过光心的 光线不改 变方向
-θ2 θ2
(2)若 任意, (2)若r1任意, θ1=0

光学谐振腔的模式

光学谐振腔的模式

空间模式匹配
通过调整入射光场与谐振腔本征模式的空 间分布和频率,使得光场能量能够高效地 耦合进谐振腔,进而实现模式匹配。
通过调整入射光场的波前形状,使其与谐 振腔的模式空间分布相匹配。
频率模式匹配
相位模式匹配
通过调谐入射光场的频率,使其与谐振腔 的共振频率相一致。
通过控制入射光场的相位分布,实现与谐 振腔模式的相位匹配。
色散特性
不同模式在谐振腔内的色散特性不同。基模的色散较小,而高阶模的色散较大。 这是因为高阶模在谐振腔内的光程更长,导致光波在传播过程中的相位延迟更 大。
稳定性及调谐范围比较
稳定性
基模在谐振腔内的稳定性较高,而高阶模的稳定性较低。这 是因为高阶模容易受到腔内扰动(如热效应、机械振动等) 的影响,导致模式跳变或失稳。
实现特定波长输出
通过选择特定的光学材料和结构,可以设计出具 有特定波长输出的光学谐振腔,满足不同应用需 求。
非线性光学现象研究应用
频率转换
利用非线性光学效应,可以实现 激光频率的转换,获得不同波长 的激光输出,扩展了激光器的应 用范围。
光参量振荡
在光学谐振腔中引入非线性介质, 可以实现光参量振荡,产生宽带 可调谐的相干光输出,应用于光 谱分析等领域。
优化入射光场设计
通过精确控制入射光场的空间分布、频率和相位,提高模式匹配精度。
采用自适应光学技术
利用自适应光学元件(如变形镜、空间光调制器等)实时调整入射光 场,以补偿由于环境扰动或系统误差引起的模式失配。
控制非线性效应
通过降低入射光功率密度、优化谐振腔设计等方式,减小非线性效应 对模式匹配的影响。
作用
谐振腔是激光器、光放大器、光调制 器等光学器件的核心组成部分,对于 提高器件性能、优化光束质量、实现 特定功能等具有重要意义。

5 谐振腔

5 谐振腔

2、往返n周 往返n
) Asin nϕ −sin(n−1 ϕ sin ϕ T =Tn = n Csin nϕ sin ϕ Bsin nϕ sin ϕ Dsin nϕ −sin(n−1 ϕ ) sin ϕ
(5-1-15) 15)
ϕ= arccos 1 (A+D ) 2
临界腔的稳定性要根据具体腔来判断
典型临界腔 1、对称共焦腔(R1=R2=L) 、对称共焦腔(R1=R2=L) 2、平行平面腔(R1=R2=∞) 、平行平面腔(R1=R2=∞) 3、对称共心腔(R1=R2=L/2) 、对称共心腔(R1=R2=L/2)
1、对称共焦腔(R1=R2=L) 对称共焦腔(R1=R2=L)
当 n →∞时, Tn各元素保持有界 θ 应为实数,且不为0 则 ϕ 应为实数,且不为0或 π
1 − 1 < ( A + D) < 1 2
= Cnr + Dθ1 1 n
L L 0 < 1 − 1 − < 1 R R 1 2
0 < g1 g 2 < 1
2 L L L 1− − + <1 R2 R1 R1R2
L L )(1− ) <1 R1 R2
∴g1g2<1 R2 ∴0<g1g2<1

2L A=1− = −1 R2 L B = 2L(1− ) = 0 R2 4L 1 1 C= −2( + ) = 0 R R2 R R2 1 1
2L 2L 2L D = (1− )(1− ) − = −1 R R2 R 1 1
−1 0 T = 0 −1
−1 0 −1 0 1 0 T = 0 −1 0 −1 = 0 1

第七章光学谐振腔

第七章光学谐振腔

1,2 ( ) 1,2 confocal

(l
1 / R)[2
(l
/
1/ 4

R)]

(7.2-1)
图 7.2 给出了(7.2-1)式的结果,可见在 l / R =0(平面平行反射镜)和 l / R
=2 (两个共心反射镜)时,光斑尺寸变成无限大,从而因衍射损耗使得大 部分光束能量在反射镜边缘“逸出”。
100% I0
I’
工作物质 l
1. 激光工作物质 2. 泵浦源 3. 聚光腔 4. 谐振腔 5. 冷却与滤光
R
激光器中谐振腔的作用
1、提供光学正反馈:
在腔内共振频率处建立高的场强,
维持自激振荡。
(W21)i
Wi ( )

2I 8 h n2tspont
g( )
2、频率滤波:
有效地控制腔内实际振荡的模式数目,使大量光子集结在少数几个 状态中,提高光子简并度,获得单色性好的相干光。
R 400l 800m
于是由(7.1-7)式的
z02

l(2R l) 4
求出 z02 ,
代入(7.1-3)式可得最小光斑尺寸(束腰):
0 = 0.9994 1,2 0.3 cm
因此,若将镜面光斑尺寸从 0.08cm 增加到 0.3 cm,
就需要采用近似平面的反射镜 R 800m
D A 1 2
(7.2-6)
7.3 共振频率 以上我们讨论了谐振腔的空间特性(谐振腔的横模)与谐振腔参数的
关系,下面讨论已知横模的共振频率(谐振腔的纵模)。 根据模式在谐振腔往返一次位相延迟2整数倍的要求来确定共振频率
(或谐振腔长度等于导波半波长的整数倍)。这样能够在谐振腔的轴线 方向建立稳定的驻波,从而形成激光振荡。

光学谐振腔

光学谐振腔

光学谐振腔光学谐振腔是常用激光器的三个主要组成部分之一。

组成:在简单情况下,它是在激活物质两端适当地放置两个反射镜。

目的:就是通过了解谐振腔的特性,来正确设计和使用激光器的谐振腔,使激光器的输出光束特性达到应用的要求。

光学谐振腔的理论:近轴光线处理方法的几何光学理论、波动光学的衍射理论无源腔:又称为非激活腔或被动腔,即无激活介质存在的腔。

有源腔(激活腔或主动胺):当腔内充有工作介质并设有能源装置后。

一、构成、分类及作用1、谐振腔的构成和分类构成:最简单的光学谐振腔是在激光工作物质两端适当位置放置两个镀高反射膜的反射镜。

与微波腔相比光频腔的主要特点是:侧面敞开没有光学边界,以抑制振荡模式,并且它的轴向尺寸(腔长)远大于振荡波长:L》λ,一般也远大于横向尺寸即反射镜的线度。

因此,这类腔为开放式光学谐振腔,简称开腔。

开式谐振腔是最重要的结构形式----气体激光器、部分固体激光器谐振腔2、激光器中常见的谐振腔的形式1)平行平面镜腔。

由两块相距上、平行放置的平面反射镜构成2)双凹球面镜腔。

由两块相距为L,曲率半径分别为R1和R2的凹球面反射镜构成当R1=R2=L时,两凹面镜焦点在腔中心处重合,称为对称共焦球面镜腔;当R1+R2=L表示两凹面镜曲率中心在腔内重合,称为共心腔。

3)平面—凹面镜腔。

相距为L的一块平面反射镜和一块曲率半径为R的凹面反射镜构成。

当R=2L时,这种特殊的平凹腔称为半共焦腔4)特殊腔。

如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,需使用这类谐振腔5)其他形状的3、谐振腔的作用(1) 提供光学正反馈作用谐振腔为腔内光线提供反馈,使光多次通过腔工作物质,不断地被放大,形成往复持续的光频振荡;取决因素:组成腔的两个反射镜面的反射率,反射率越高,反馈能力越强;反射镜的几何形状以及它们之间的组合方式。

上述因素的变化会引起光学反馈作用大小的变化,即引起腔内光束能量损耗的变化。

(2) 对振荡光束的控制作用主要在方向和频率的限制,其功能为:①有效地控制腔内实际振荡的模式数目,使大量的光子集结在少数几个沿轴向、且满足往返一次位相变化为2π的整数倍的光子状态中,提高了光子简并度,从而获得单色性好、方向性好及相干性强的优异辐射光。

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。

第二章光学谐振腔

第二章光学谐振腔

实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009
湖北工大理学院
23
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状
纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
1.5803106
q 1.5 10 9 Hz 5 310 8 Hz
2009
湖北工大理学院
28
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长;
解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2L/ 2L
2 • 2L q • 2
光腔中的驻波
驻波条件(光波波长和平行平面腔腔长):
L
q

2
q•
q
2
谐振频率(频率和平行平面腔腔长):
q
q•
C
2L
2009
湖北工大理学院
9
纵模-纵向的稳定场分布
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
3
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
湖北工大理学院
4
R1+R2=L
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1=R2=L
由两块相距09
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页

光学谐振腔

光学谐振腔

一次往返后 I1 I0e2
多种因素引起
1 ln I0 2 I1
i1 23
i
2. 光子平均寿命(定义)
往返t 时间后 I(t)I0et/R
腔内光强衰减为初始值的1/e所需时间。
24
光学谐振腔的描述参量
两者关系:
1.一平次均往单返程后损I耗1 因子I0de:2t=0,Im 光强为I0I0e,2mm次I往0e返后L'/tc
(2)选择损耗,随不同模式而异; (1), (3),(4)非选择损耗,对所有模式相同
22
光学谐振腔的描述参量
• 模式 纵模 横模 • 损耗 损耗机制 单程损耗 光子寿命 品质因子 纵模线宽
23
光学谐振腔的描述参量
二、损耗 Beer Law dI
1. 平均单程损耗因子(定义)d: Idz
I I0ez
q=2,
λ2 = 800nm, υ2= 3.75×1014 Hz ;
q=3,
λ3 = 533nm, υ3= 5.625×1014 Hz ;
注意:△υ=c/2ηL; υ32= υ21= 1.875×1014
14
光学谐振腔的描述参量
1、L=10 cm 的气体激光器
qq1q2 cL1.5190Hz
2、L=100 cm 的气体激光器(h=1)
光学谐振腔的描述参量
TEMmnq
m,n表示x方向、y方向(方镜) 或径、角向(圆)节线
基横模 空间相 干性最

各模斑上各点的偏振、相位相同
20
光学谐振腔的描述参量
• 模式 纵模 横模 • 损耗 损耗机制 单程损耗 光子寿命 品质因子 纵模线宽
21
光学谐振腔的描述参量

第二章 光学谐振腔信息光学 最新

第二章  光学谐振腔信息光学 最新
1、在光频区采用敞开式反射镜谐振器 (在微波区采用闭合腔) 一对平行平面(球面)反射镜
2、其他方向开放导致损耗,限制了模数 (包括扩散、衍射、镜面非完全反射、工 作物质吸收等) 纵模:只有沿轴方向传播的模才能维持 振荡, ...(折射率 1, m, n 0) 满足 q 2 l..........
2
2
V lxl ylz ...... 实空间体积
( 4 )模密度(K空间)
8l xl y l z 1 8V 3 3 模体积 (2 ) (2 )
(5)振荡模总数
km , kn , kq 0
1 N 模 2 (球体积) k空间的模密度 8
因子2:每一个模有两个相互垂直偏振方向
dI 其中 f I
t tc
I I 0e
fc t l
I 0e
l 其中tc 光子在腔内的寿命,也 称腔的时间常数 fc
若只考虑反射损耗R,则 f=1-R l
tc (1 R )c
例如: l=100cm,
R 0.98....... tc 100 0.02 31010 1.7 107
8 2 N总 PmV 3 V c
2 28 | 8 1020 8 6 10 10 10 9 Pm 3 10 1 P 10 3 10 | m 3 1030 33 1030
获得单模振荡
| 该腔激起的模巨大,多模
§2.2 开放式谐振腔的模间距及带宽
l tc (1 R)c
1 (1 R)c (1 R)c c 2t c 2l l
R越大,带宽 越窄。 三种情况: R≈0;R<1; R≈1。
(4)谐振腔的品质因素Q 0 l Q 2 0tc 2l 0 (1 R)c c c(1 R)

第二章光学谐振腔理论

第二章光学谐振腔理论

(2n1)((G0 )l / 2ikl )
02 2 12
n0
n0
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l2ikl
2.1 光学谐振腔概论
FP腔输出光场:E
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l 2ikl
1
r1r2e(G0
q
q
c 2L
q
c 2L
2 2L q 2 L q q
q
2
L'一定的谐振腔只对一定频率的光波才能提供正反馈,使之谐 振; F-P腔的谐振频率是分立的
2.1 光学谐振腔概论
腔光学长度为半波长的整数倍 L l q q (驻波条件)
2
2.1 光学谐振腔概论
L l q q
2
达到谐振时,腔的光学长度应为半波长的整数倍。满足此 条件的平面驻波场称为平行平面腔的本征模式
2.1 光学谐振腔概论
麦克斯韦方程的本征解的电场分量
Ex
(
x,
y,
z,
t
)
E0
sin
m
a
x
sin
n
b
y
cos
p
l
z
e
im
,n
,
p
t
E y ( x,
y,
z,
t)
E0
cos
m
a
x
sin
n
b
y
sin
p
l
z e im,n,pt
Ez
(
x,
y,
z,
t
)
E0
sin
m
a
x

光学谐振腔

光学谐振腔

光学谐振腔光学谐振腔的基本原理光学谐振腔是借助反射和透射来实现对光的反复强度调制的一种微型机械装置。

它利用反射实现光的来回反复传播,因而出现的各种光学现象。

它的工作原理主要包括:一个光源将一定的能量投入,通过反射、衍射和透射进入一个包含玻璃物体的空间,玻璃物体内安装一个能使光束在光路上循环传播的反射面,当光束在空间中循环传播时,空间中的玻璃物体可吸收和折射一部分光能,而另一部分光能被反射,反射的光与玻璃物体的位置有关。

光路的反复传播使其能量发生振荡现象,使光能聚焦到一个点,最后经过空间的一个特定的点附近反射,从而产生特定的光现象。

光学谐振腔的优点1、密封可行:光学谐振腔具有优越的密封性能,能有效防止外界未经控制的特定污染物例如水雾及其他有害气团进入到腔体内部。

2、低成本:光学谐振腔制造制造或者说版印型可以使用相对便宜的材料进行制作,使其可以在短时间内达到高性能的目的。

3、调节准确:光学谐振腔具有完善的调节系统,能够有效地分辨控制和调节光的调节强度,从而达到定位的精度。

4、可扩展性:光学谐振腔凭借其优秀的可扩展性可以灵活的适用不同类型的光学仪器上,并能使其仪器在设计上更加紧凑。

1、激光技术:光学谐振腔可以用来调整激光器发出的波长,获得更好的激光光斑,进而改变激光器发出的光强度。

2、微小型位置测量:光学谐振腔可以用来测量外部物体精确的位置关系,因此可以实现精确的微小型位置测量,使其可以应用于电子产品的测试和实验。

3、光学分析技术:可以利用光学谐振腔对光的性质进行测量和分析,例如利用光学谐振腔来测量光的衍射角度,反射率等参数,进而了解光源的特性。

4、显微镜:光学谐振腔可以用在显微镜中,可以将光源里边射入空气,或者将聚焦光线通过接口腔体传送到显微镜的眼睛,从而使显微镜具有更强的光学放大能力。

激光器中光学谐振腔的作用

激光器中光学谐振腔的作用

激光器中光学谐振腔的作用光学谐振腔是激光器中至关重要的元件之一,它在激光器的工作中发挥着重要的作用。

本文将从光学谐振腔的定义、原理、特点以及在激光器中的作用等方面加以阐述。

一、光学谐振腔的定义和原理光学谐振腔是由两个或多个反射镜组成的光学装置,其内部形成一系列的光学谐振模式。

反射镜的反射率决定了光学谐振腔的性能。

在光学谐振腔中,光波来回反射,形成了驻波,从而增强了光的强度。

光学谐振腔的工作原理是利用反射镜反射光波,使得光波在空间中多次来回传播,从而增加光的强度。

当光波在光学谐振腔中反射时,如果满足相干条件,光波将会形成驻波,驻波的节点和腹部分别对应着光波的消光和增强。

二、光学谐振腔的特点1. 高品质因子:光学谐振腔的品质因子是衡量光学谐振腔性能的重要指标,它反映了光在腔内的损耗情况。

高品质因子意味着光在腔内的损耗小,能够有效地存储和放大光能。

2. 频率选择性:光学谐振腔能够选择性地放大特定频率的光波,而对其他频率的光波进行衰减。

这是因为光波只有在满足谐振条件时才能在光学谐振腔中得到增强。

3. 光学谐振模式:光学谐振腔中的光波可以形成多种不同的谐振模式,如基模、高阶模等。

这些不同的谐振模式具有不同的空间分布和频率特性,可以满足不同应用需求。

三、光学谐振腔在激光器中的作用光学谐振腔在激光器中发挥着至关重要的作用,主要有以下几个方面:1. 提供正反馈:光学谐振腔能够提供正反馈,使得激光器产生连续的激光输出。

当激发源产生的光波进入光学谐振腔后,满足谐振条件的光波将得到增强,从而形成激光输出。

2. 光波放大:光学谐振腔中的光波经过多次反射,与激光介质发生相互作用,从而实现光波的放大。

光波在激光介质中的放大过程受到谐振腔的限制,只有满足谐振条件的光波才能得到增强。

3. 频率选择:光学谐振腔能够选择性地放大特定频率的光波,从而实现激光器的单色性。

通过调整谐振腔的结构和参数,可以选择性地放大某个特定频率的光波,并实现单频或多频激光输出。

光学谐振腔

光学谐振腔
• 假设初始时在镜面1上有分布为u1的电磁场从镜面1向镜面 2传输,经过一次渡越,在镜面2上有分布为u2的场,在经 过反射后再次渡越回到镜面1时场的分布为u3,如此反复。 • 受到各种损耗的影响,不仅每次渡越会造成能量的衰减, 而且振幅横向分布也会由于衍射损耗的存在而发生改变; • 由于衍射损耗仅发生在镜面的边缘,因此只有中心振幅大, 边缘振幅小的场才会尽可能少的受到衍射损耗的影响。经 过多次渡越后,这样的模式除了振幅整体下降,其横向分 布将不发生变化,即在腔内往返传输一次后可以“再现” 出发时的振幅分布。
该叠加的场分布的振幅在沿z方向上有一个余弦分布。 – 在z点处的振幅为 e( x) 2 E 0 cos 2 z / z q, q 0,1, 2, 时,振幅有最大值 e max 2 E 0 ,称此 – 当 位置为波腹; – 当 z (2q 1), q 0,1, 2, 时,振幅有最大值 e min 0 ,称此位 置为波节; – 驻波频率为平面波频率,而且可以为任意值。
– 图中空白部分是谐振腔的稳 定工作区,其中包括坐标原 点。 – 图中阴影区为不稳定区;
g2
g1
– 在稳定区和非稳区的边界上 是临界区。对工作在临界区 的腔,只有某些特定的光线 才能在腔内往返而不逸出腔 外。
3.1.3光学谐振腔稳定性判别性
• 稳定性简单判别法
– 若一个反射面的曲率中心 与其顶点的连线与第二个 反射面的曲率中心或反射 面本身二者之一相交,则 为稳定腔; – 若和两者同时相交或者同 时不相交,则为非稳腔; – 若有两个中心重合,则为 临界腔;
4 2
3.2.1平平腔的驻波
• 平行平面腔中的驻波
– 当光波在腔镜上反射时,入射波与反射波发生干涉,而多次往复 反射形成的多光束干涉,稳定的振荡要求干涉加强,发生相长干 涉的条件为:波从某一点出发,经腔内往返一次再回到原位时, 相位应与初始出发时相差2π的整数倍。 2 4 2 L ' L q 2 – 以Δφ表示往返一周后的相位差: – 其中的q为任意正整数,将满足上式的波长以 0 q 来标记,则有:

光学谐振腔的基本知识

光学谐振腔的基本知识

2 临界腔
特别是:R1=R2=R=L/2时,为对称共心腔它对应图中B点。如果 R1和R2异号,且R1+R2=L公共中心在腔外,称为虚共心腔。由于 g1>0,g2>0,g1*g2=1,它对应图中第一象限的 g1*g2=1的双曲线。
c) 半共心腔。由一个平面镜和一个凹面镜组成。凹面镜半径 R=L,因而g1=1,g2=0,它对应图中C点和D点。
优点:是可以连续地改变输出光的功率,在某些特 殊情况下能使光的准直性、均匀性比较好。
二、共轴球面腔的稳定图以及分类
3 非稳腔
区分稳定腔与非稳腔在制造和使用激光器时有很重要的实际 意义,由于在稳定腔内傍轴光线能往返传播任意多次而不逸出腔 外,因此这种腔对光的几何损耗(指因反射而引起的损耗)极小。 一般中小功率的气体激光器(由于增益系数G小)常用稳定腔,它 的优点是容易产生激光。
二、共轴球面腔的稳定图以及分类
稳定图来表示共轴球面腔的稳定条件 • 定义参数:
共轴球面谐振腔的稳定性条件(式5.1.1)可改写为
讨论
非稳腔的条件:
临界腔的条件:
(5.1.2) (5.1.3) (5.1.4)
二、共轴球面腔的稳定图以及分类
备 注:
图中没有斜线的部分是谐振腔的稳定工作区, 其中包括坐标原点;
二、共轴球面腔的稳定图以及分类
2 临界腔
a) 平行平面腔。因g1= g2=1,它对应图中的A点。只有 与腔轴平行的光线才能在腔内往返而不逸出腔外。 b) 共心腔。满足条件R1+R2=L的腔称为共心腔。如果,
公共中心在腔内,称为实共心腔。这时:
它对应图中第三象限的g1*g2=1的双曲线
二、共轴球面腔的稳定图以及分类
以下将会看到,整个激光稳定腔的模式理论是建立在对称共 焦腔的基础上的,因此,对称共焦腔是最重要和最有代表性的一 种稳定腔。

量子电子学光学谐振腔

量子电子学光学谐振腔

• 与腔的几何参数有关
• 与横模阶次有关(the higher the transverse mode indices m,n, the greater the loss)
3、腔镜反射不完全引起的损耗
• 反射镜的吸收、散射和透射损耗。(Reflection loss is unavoidable, since without some transmission no power output is possible. In addition, no mirror is ideal; and even mirrors are made to yield the highest possible reflectivities, some residual absorption and scattering reduce the reflectivity to somewhat less than 100 percent )
二、共轴球面腔的稳定性条件
• 腔内光线往返传播的矩阵表示:
腔内任一傍轴光线在某一给定的横截面内都可以由
两个坐标参数来表征:光线离轴线的距离r、光线与
轴线的夹角。
光线在自由空间行进距离L时所引起的坐标变换为TL 球面镜对傍轴光线的变换矩阵为TR
• 共轴球面腔的稳定性条件:1 1 (A D) 1
2
对于复杂开腔,稳定性条件为:
• 光线在腔内往返传播时,从腔的侧面偏折 逸出的损耗。
• 取决于腔的类型和几何尺寸 • 几何损耗的高低依模式的不同而异,高阶
横模损耗大于低阶横模损耗 • 是非稳腔的主要损耗
2、衍射损耗
• 腔镜具有有限大小的孔径,光波在镜面上
发生衍射时形成的损耗

与腔的菲涅尔数( N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Optical fiber communications 1-2
A. 谐振频率与谐振波长
2010-11-18
Copyright Wang Yan
foq =
oq 2nl 2nl q
q为模指数
λoq=
.纵模 B .纵模
L=q 介质中波长在谐振情况下, L=qλoq/2n= λqq/2 λq 介质中波长在谐振情况下,腔长是介质 中波长的整数倍,( 个半驻波,对应与不同的q ,(q 中波长的整数倍,(q个半驻波,对应与不同的q值,得到不同的纵 向分布,形成不同的腔的模式。由于这种场分布发生在场的纵向, 向分布,形成不同的腔的模式。由于这种场分布发生在场的纵向, 所以称为纵模。 所以称为纵模。 fq=c/(2nl)等间隔的 等间隔的。 纵模频率间隔 ∆fq=c/(2nl)等间隔的。

λmnq = εrλ =
fmnq =
c c = λmnq 2 r
ε
(
m 2 n 2 q 2 ) + ( ) + ( ) ( 谐振频率) a b l
对傍轴模式
fmnq =
q l m 2 n 2 { + [( ) + ( ) ]} l 2q a b 2 εr
c
由于q>>m,n,所以谐振频率主要决定余q, 的响极小。 由于q>>m,n,所以谐振频率主要决定余q, 而m, n, 的响极小。 q>>m,n,所以谐振频率主要决定余
在光波波段,由于采用介质腔,轴向角γ 在光波波段,由于采用介质腔,轴向角γ较大的光线不满足全反 射条件,他们将很快逸出腔外.只有m,n m,n为小整数 ,kz较小 较小) 射条件,他们将很快逸出腔外.只有m,n为小整数 (kx ,ky ,kz较小) 角较小的徬轴光能留在腔内。又由于波长极短,故波数k极大,kz γ角较小的徬轴光能留在腔内。又由于波长极短,故波数k极大,kz 极大所以kx, 这说明腔中的电磁波基本上是平行与腔轴的, 极大所以kx, ky<<kz, 这说明腔中的电磁波基本上是平行与腔轴的, 腔中各模式的纵向场比横向场小得多。 腔中各模式的纵向场比横向场小得多。因此常把他近似的看做横电 磁波,把由波指数m, q确定的模式记作TEMmnq模 确定的模式记作TEMmnq 磁波,把由波指数m, n, q确定的模式记作TEMmnq模。
Optical fiber communications
金属闭腔近似(理想导体近似) 二 .金属闭腔近似(理想导体近似) 介质光学谐振腔与具有理想导电壁的金属谐振腔有类似之处。 介质光学谐振腔与具有理想导电壁的金属谐振腔有类似之处。 金属腔各壁的反射系数都为1 金属腔各壁的反射系数都为1,电磁波在理想导体界面处发生全发 介质腔两端的全反膜有接近 的反射系数, 的全反膜有接近1 射,介质腔两端的全反膜有接近1的反射系数,光在这里产生全发 另外由于光学腔的折射指数较高, 射,另外由于光学腔的折射指数较高,因此在侧面上很容易发生全 反射。如果只注意那些与腔的轴线夹角不大, 反射。如果只注意那些与腔的轴线夹角不大,以致在侧面上的入射 角大于临界角的光束是, 角大于临界角的光束是,则腔的侧面也可以当作闭合的金属腔来近 似处理。 似处理。 矩形谐振腔的尺寸a,b,L, 在矩形腔中有一序列互相兼并的TE 矩形谐振腔的尺寸a,b,L, 在矩形腔中有一序列互相兼并的TE TM振荡模式 各模式有自己的场分布,谐振频率及传播方向。 振荡模式, 及TM振荡模式,各模式有自己的场分布,谐振频率及传播方向。
Optical fiber communications
光学谐振腔的这种特性称为场的准横性。 光学谐振腔的这种特性称为场的准横性。 A.场的准横性 场的准横性: (见上 见上) A.场的准横性: TEMmnq (见上) B.横模 B.横模 纵模
1-11 2010-11-18
Copyright Wang Yan
Optical fiber communications 1-9
2. 谐振频率
2010-11-18
Copyright Wang Yan
k=

λ
λ
2π = = k
2 ( 真空中的波长) m 2 n 2 q 2 ( ) +( ) +( ) a b l 2 εr ( 谐振波长) m 2 n 2 q 2 ( ) +( ) +( ) a b l
Optical fiber communications 1-1
2010-11-18
第五节 光学谐振腔
Copyright Wang Yan
光学谐振腔对光波进行选频,反馈,放大,例如在激光器中。 光学谐振腔对光波进行选频,反馈,放大,例如在激光器中。 光学谐振强有各种形式。 腔是最简单的一种。实际Laser 光学谐振强有各种形式。F-P腔是最简单的一种。实际Laser 所用 的光学谐振腔要比F 腔复杂, 的光学谐振腔要比F-P腔复杂,对实际的谐振腔进行严格的分析是 十分困难的,下面采取两种近似方法, 十分困难的,下面采取两种近似方法,均匀平面波近似和金属闭合 腔近似。 腔近似。 一.均匀平面波近似 由于光波波长极短,故光学谐振腔的尺寸一般远大于波长, 由于光波波长极短,故光学谐振腔的尺寸一般远大于波长,这 是光学谐振腔与微波谐振腔的基本区别之一, 是光学谐振腔与微波谐振腔的基本区别之一,在这种情况下可假定 腔肉电磁波是均匀平面波,并认为他平行腔的轴线传播, 腔肉电磁波是均匀平面波,并认为他平行腔的轴线传播,即认为垂 直端面反射镜入射的, 直端面反射镜入射的,这种分析方法实际上是把上述光学腔看作一 个简单的F 实际情况当然不是这样简单, 个简单的F-P腔,实际情况当然不是这样简单,但这样的假设可为 我们提供一个关于腔中模式的粗糙的,然而很有用的图像。 我们提供一个关于腔中模式的粗糙的,然而很有用的图像。
由于q>>m,n 由于q>>m,n 故∆fm, ∆ fn<< ∆ fq
Optical 菲涅耳数 fiber communications 1-14 2010-11-18
1-3
2010-11-18
Copyright Wang Yan
Optical fiber communications 1-4
2010-11-18
Copyright Wang Yan
Optical fiber communications 1-5
.传播方向 1 .传播方向
2010-11-18
Copyright Wang Yan
∆ fn = fm , n
当 q , n 一定
+ 1, q
− fm , n , q = ∆ f
l 2 2 n +1 q 2 2q b
m 变化 l2 a2 2 m +1 2q
∆ fn
=
∆ fq
Optical fiber communications 1-13 2010-11-18
Copyright Wang Yan
每组m,n,q的组合,决定了一个谐振腔的模式, 每组m,n,q的组合,决定了一个谐振腔的模式,每个模式有一定的传 m,n,q的组合 播方向及谐振频率。 播方向及谐振频率。 (1)横模:在腔的横截面内的场分布,m,n,横模指数; (1)横模:在腔的横截面内的场分布,m,n,横模指数; 横模 ,m,n,横模指数 (2)纵模:沿腔的纵向的场分布, q为纵模指数 为纵模指数, (2)纵模:沿腔的纵向的场分布, q为纵模指数,模式的谐振频率 纵模 主要由q决定; 主要由q决定; m,n一定时,q可取一系列不同的值 一定时,q可取一系列不同的值, (3) 当m,n一定时,q可取一系列不同的值,即有一系列的纵模与 同一横模对应,这些模式的特点:有相同的横向场分布及传播方向, 同一横模对应,这些模式的特点:有相同的横向场分布及传播方向, 但有不同的谐振频率。 但有不同的谐振频率。
Optical fiber communications 1-7
2010-11-18
Copyright Wang Yan
k=
(
mπ 2 nπ 2 qπ 2 m n q ) +( ) +( ) = π ( )2 +( )2 +( )2 a b l a b l = m/a m n q ( )2 +( )2 +( )2 a b l n/b m n q ( )2 +( )2 +( )2 a b l q/l m n q ( )2 +( )2 +( )2 a b l
k = (kx 2 + ky 2 + kz 2 平面波色散方程 kx = k cos α ky = k cos β cos α = cos β =
kz x kx x ky x
kx = k cos γ cos γ =
Optical fiber communications 1-6
在谐振的情况下,沿腔的x,y,z三个方向都应出现完整的驻波, 在谐振的情况下,沿腔的x,y,z三个方向都应出现完整的驻波,即沿 x,y,z三个方向都应出现完整的驻波 的整数倍。 腔各边的相位变化都应是 π的整数倍。
Optical fiber communications 1-10 2010-11-18 3 闭腔模
Copyright Wang Yan
在闭腔内不存在像自由空间那样的横电磁波, 只能存在TM波 在闭腔内不存在像自由空间那样的横电磁波,而只能存在TM波 TM TE波 在微波波段,通常激发低阶模式,m,n,q,都是小整数, ,m,n,q,都是小整数 或TE波.在微波波段,通常激发低阶模式,m,n,q,都是小整数, kx, kz有相同的数量级 有相同的数量级, ky, kz有相同的数量级,因而横向场分量与纵向场分量有相同的数 量级. 量级.
Optical fiber communications 1-12 2010-11-18
相关文档
最新文档