四则运算运算定律
小学四年级数学知识点乘除法加减法四则运算定律和性质
运算定律和性质1、加法交换律:两个加数交换位置,和不变。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示:(a+b)+c= a +( b+c)3、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c4、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b5、乘法交换律:两个因数交换位置,积不变。
用字母表示:a×b=b×a6、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
用字母表示:(a×b)×c= a ×( b×c)7、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示:(a+b)×c= a×c+b×c a ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×c a ×( b-c) =a×b-a×c8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷b。
四则运算及运算规律
(3)列方程,解方程;
(4)检查或验算,写出答案。
4、等式的基本性质(一)
等式两边同时加上(或减去)一个相同的数(式子),所得结果仍然是等式。
5、等式的基本性质(二)
等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。
6、列方程解应用题的方法
(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
四则运算定律概念及公式
乘法的运算定律
两个数相乘,交换两个因数的位置,积不变,这就叫做乘法交换律。
a×b=b×a
三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这就叫做乘法结合律。
(a×b)×c=a×(b×c)
加法运算定律
两个数相加,交换加数的位置,和不变。这就叫做加法交换律。
a+b+a
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就叫做加法结合律。
(a+b)+c=a+(b+c)
加法运算定律的应用
在在计算加法时,要先观察数字的特点,看看哪些数字可以凑成整十、整百……,灵活运用加法运算定律,可以使计算更简便。
连减的简便运算
在计算连减时,可以把减数加起来,再从被减数里减去它们的和。
a-b-c=a-(b+c)
在计算减法时,要先观察数字的特点,如果减数的和可以凑成整十、整百……的数时,就可以改写成被减数减去两个减数的和的形式。
在连减计算时,任意交换减数的位置,差不变。
(如果被减数减去与它不相邻的数能得到一个整十、整百……的数时,可以先交换减数的位置再计算。)
加减乘除的四则运算定律
四则运算口诀+常见题型四则运算其实也就是孩子经常遇到的“加减乘除”,看起来知识点很简单,但是涉及的内容非常广。
在小学一年级至六年级,每学期都离不开它。
四则运算是数学的最基本运算法则,在学习基本运算法则时,还会有一些基本的运算关系式。
今天的内容就来总结一下四则运算的那些事!加法一、什么叫加法?把两个或两个以上的数合并到一个数的运算叫做加法。
二、组成加数+加数=和加数=和-另一个加数三、运算定律①加法交换律:a+b=b+a②加法结合律:a+b+c=a+(b+c)例如:12+99+38=(12+38)+99=50+99=149减法一、什么叫减法?已知两个数的和与其中一个加数,求另一个加数的运算。
二、组成被减数-减数=差减数=被减数-差被减数=减数+差三、运算定律减法的性质a-b-c=a-(b+c)例如:756-193-207=756-(193+207)=756-400=356乘法一、什么是乘法?求几个相同加数的和的简便运算。
二、组成因数×因数=积因数=积÷另一个因数三、运算定律乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)=(a×b)×c乘法分配律:a×(b+c)=a×b+a×ca×(b-c)=a×b-a×c例如:4×(25+50)=4×25+4×50=100+200=300除法一、什么是除法?已知两个因数的积与其中一个因数,求另一个因数的运算。
二、组成被除数÷除数=商······余数被除数=除数×商+余数除数=(被除数-余数)÷商三、易错点①余数不能比除数大②0不能做除数四、运算定律除法的性质a÷b÷c=a÷(b×c)例如:4800÷25÷4=4800÷(25×4)=4800÷100=48错中求解加法1.晴姐姐在做一道加法时,把一个加数47看作成69,结果计算的和为93。
完整版)四则运算和运算定律知识点
完整版)四则运算和运算定律知识点四则运算和运算定律是数学中的基础知识点。
首先,四则运算包括加法、减法、乘法和除法,没有括号的算式中,单独的加减法或乘除法按顺序从左往右计算,有混合运算的先算乘除法再算加减法。
如果有括号,要先算括号里面的,再算括号外面的,括号的计算顺序为小→中→大,括号里面的运算遵循以上的计算顺序。
其次,运算定律包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。
这些定律可以简化计算,例如交换加数位置不影响和的大小,三个数相加可以先把前两个数相加或后两个数相加,积的顺序也可以交换,两个数的和与一个数相乘可以先分别相乘再相加,两个数的差与一个数相乘可以先分别相乘再相减。
此外,还有连减定律和连除定律,也可以简化计算。
最后,我们可以通过简便计算来练四则运算和运算定律的应用,例如常见乘法计算、加法交换律、加法结合律和乘法交换律的简算例题。
掌握好这些知识点,可以帮助我们更快更准确地进行数学计算。
五、乘法结合律的应用:99×125×8可以改写为99×(125×8),再进行简算得到.六、加法交换律和结合律的应用:65+286+35+714可以改写为(65+35)+(286+714),再进行简算得到1100.七、乘法交换律和结合律的应用:25×0.125×4×8可以改写为(25×4)×(0.125×8),再进行简算得到100.八、乘法分配律的应用:1.分解式25×(40+4)可以拆分为25×40+25×4,再进行简算得到1100.2.合并式135×12.3—135×2.3可以拆分为135×(12.3—2.3),再进行简算得到1350.3.特殊例题1:99×25.6+25.6可以拆分为99×25.6+25.6×1,再进行简算得到2560.4.特殊例题2:45×102可以拆分为45×(100+2),再进行简算得到4590.5.特殊例题3:99×26可以拆分为(100—1)×26,再进行简算得到2574.6.特殊例题4:35.3×8+35.3×6—4×35.3可以拆分为35.3×(8+6—4),再进行简算得到353.九、连减的简便运算例子:1.528—6.5—3.5可以拆分为528—(6.5+3.5),再进行简算得到518.2.528—89—128可以拆分为528—128—89,再进行简算得到311.3.52.8—(40+12.8)可以拆分为52.8—12.8—40,再进行简算得到0.十、连除的简便运算例子:3200÷25÷4可以拆分为3200÷(25×4),再进行简算得到32.十一、其他简便运算例子:1.256—58+44可以拆分为256+44—58,再进行简算得到242.2.250÷8×4可以拆分为250×4÷8,再进行简算得到125.。
四则运算的运算定律
四则运算的运算定律
(一)加法运算定律:
1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c 拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b。
四则运算巧算的规律
四则运算巧算的规律小学阶段的数学成绩不理想,主要就是在运算能力上出了问题。
计算能力是小学数学学习的基础,东方学校的老师详细整理了关于四则运算的基础知识及运算过程中常用到的简便方法,帮孩子们查漏补缺,提高计算能力扎实数学基础。
1运算定律1.加法交换律两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2.加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3.乘法交换律两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5.乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6.减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
2运算法则1.整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5. 小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
四则运算定律公式
四则运算定律公式四则运算定律公式一、加法定律加法定律是四则运算中最基础的定律之一。
它包括以下几个要点:•任意数与零相加,结果仍为原数;•两个数相加,顺序不影响结果。
二、减法定律减法定律是四则运算中相对较为复杂的一条定律。
它主要涉及以下几点:•任意数减去零,结果仍为原数;•一个数减去自身,结果为零;•减法可以转换为加法运算。
三、乘法定律乘法定律是四则运算中比较重要的一条定律。
它包括以下关键内容:•任意数与零相乘,结果为零;•任意数与一相乘,结果仍为原数;•乘法满足交换律和结合律。
四、除法定律除法定律是四则运算中最复杂的一条定律,需要特别注意以下几个方面:•任意数除以一,结果仍为原数;•非零数除以零是不合法的;•除法可以转换为乘法运算。
五、小结四则运算定律公式是数学中非常重要的基础知识。
通过了解和熟练运用这些定律,我们能更加灵活地进行运算,简化计算过程。
在实际生活和工作中,四则运算定律也有着广泛的应用。
因此,我们应该加强相关知识的学习和理解,以提高我们的计算能力和数学素养。
六、实例应用接下来,我们将以实例的形式来应用和演示四则运算定律公式的使用。
假设有以下数学算式需要求解:1. 3 + 4 * 2 - 5 = ?2. 6 * 7 - (9 - 3) = ?3.8 / 2 + 5 - 1 = ?我们将逐步使用四则运算定律公式来计算结果:例1:1.首先,按照乘法定律,计算4 * 2 = 8;2.然后,按照加法定律,计算3 + 8 = 11;3.最后,按照减法定律,计算11 - 5 = 6。
所以,3 + 4 * 2 - 5 = 6。
例2:1.首先,按照减法定律,计算9 - 3 = 6;2.然后,按照乘法定律,计算6 * 7 = 42;3.最后,按照减法定律,计算42 - 6 = 36。
所以,6 * 7 - (9 - 3) = 36。
例3:1.首先,按照除法定律,计算8 / 2 = 4;2.然后,按照加法定律,计算4 + 5 = 9;3.最后,按照减法定律,计算9 - 1 = 8。
小学四则运算及运算定律专题
一、四则运算宇文皓月(一)四则运算法则:1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
如:10+2-3 10-2+3 8÷2×4 8×2÷42、在没有括号的算式里,有乘、除法和加、减法,先算乘、除法再算加、减法。
如:4+18×2 16-15÷3 36÷6+4×63、有括号的算式里,先算括号里面的数,再算括号外的数。
如:(4+5)÷3 5×(7-3)(10-2)×(8+3)(二)四则运算:加法、减法、乘法、除法统称四则运算。
注意:一个数加上0或减0,还得原来的数。
被减数等于减数,差是0.0除以一个不是0的数,还得0,0不成以作除数。
任何数和0相乘都得0.二、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)(二)乘法运算定律:1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c拓展:(a-b)×c=a×c-b×c 或a×(b-c) =a×b-a×c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
字母公式:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
四年级下数学四则运算和运算定律知识点总结
一、四则运算四则运算是数学中最基本的运算法则,它包括了加法、减法、乘法和除法四种运算。
1.加法加法是两个数进行相加得到一个和的运算。
在加法中有以下几个重要的概念和规律:(1)加数、被加数和和:加数和被加数合在一起得到的数叫做和;(2)顺序不影响结果:加法满足交换律,即两个数相加的结果与加数的顺序无关;(3)加零不变:任何一个数加0的结果仍然等于这个数本身。
2.减法减法是一个数减去另一个数得到差的运算。
在减法中有以下几个重要的概念和规律:(1)被减数、减数和差:被减数减去减数得到的数叫做差;(2)减零不变:任何一个数减去0的结果仍然等于这个数本身;(3)减法的性质:减法不满足交换律,即减数和被减数顺序的改变,结果也会改变。
3.乘法乘法是两个数相乘得到积的运算。
在乘法中有以下几个重要的概念和规律:(1)乘法的含义:乘法是相同因数的加法;(2)因数和积:参与乘法运算的数叫做因数,相乘的结果叫做积;(3)因数的交换律:乘法满足交换律,即两个数相乘的结果与因数的顺序无关;(4)与1的乘积等于自己:任何一个数与1相乘的积仍然等于这个数本身;(5)乘0得0:任何一个数乘以0的积都等于0。
4.除法除法是一个数被另一个数除得到商的运算。
在除法中有以下几个重要的概念和规律:(1)被除数、除数、商和余数:被除数除以除数得到的商和余数;(2)整除的概念:如果一个数除以另一个数的商是整数,则称这个数能被另一个数整除;(3)整除的性质:如果一个数能被另一个数整除,则它同时也能被另一个数的倍数整除;(4)除以1等于自己:任何一个数除以1的商仍然等于这个数本身;(5)除以0没有意义:任何数除以0的运算是没有意义的。
二、运算定律1.加法的交换律加法满足交换律,即a+b=b+a。
无论加数和被加数的顺序如何,加法的结果不变。
2.加法的结合律加法满足结合律,即(a+b)+c=a+(b+c)。
无论运算顺序如何,结果不变。
3.减法的反运算减数与被减数的差与原来的被减数相加等于减数,即a-b=a+(-b)。
四则运算定律口诀
四则运算定律口诀
四则运算定律口诀:
混合试题要计算,明确顺序是关键。
同级运算最好办,从左到右依次算,
两级运算都出现,先算乘除后加减。
遇到括号怎么办,小括号里算在先,
每算一步都检査,又对又快喜心间。
【扩展知识】
一、四则运算运算顺序
同级运算时,从左到右依次计算;
两级运算时,先算乘除,后算加减。
有括号时,先算括号里面的,再算括号外面的;
有多层括号时,先算小括号里的,再算中括号里面的,,再算大括号里面的,最后算括号外面的。
要是有乘方,最先算乘方。
在混合运算中,先算括号内的数,括号从小到大,如有乘方先算乘方,然后从高级到低级。
二、四则运算的意义
1、加法
把两个数合并成一个数的运算,把两个小数合并成一个小数的运算,把两个分数合并成一个分数的运算。
2、减法
已知两个加数的和与其中一个加数,求另一个加数的运算;已知两个加数的和与其中一个加数,求另一个加数的运算;已知两个加数的和与其中一个加数,求另一个加数的运算。
3、乘法
求几个相同加数的和的简便运算;小数乘整数的意义与整数乘法意义相同;一个数乘纯小数就是求这个数的十分之几,百分之几;分数乘整数的意义与整数乘法意义相同;一个数乘分数就是求这个数的几分之几。
4、除法
已知两个因数的积与其中一个因数,求另一个因数的运算;与整数除法的意义相同;与整数除法的意义相同。
四则运算定律概念及公式
四则运算定律概念及公式
四则运算是指加法、减法、乘法和除法这四种基本运算。
四则运算定律是指这四种基本运算中的一些性质和规则。
1.加法定律:
-交换律:对于任意的实数a和b,a+b=b+a。
-结合律:对于任意的实数a、b和c,(a+b)+c=a+(b+c)。
2.减法定律:
-减法与加法的关系:对于任意的实数a、b和c,如果a+b=c,那么c-b=a。
3.乘法定律:
-交换律:对于任意的实数a和b,a*b=b*a。
-结合律:对于任意的实数a、b和c,(a*b)*c=a*(b*c)。
4.除法定律:
-除法与乘法的关系:对于任意的实数a、b和c(其中b和c不为零),如果a*b=c,那么c/b=a。
-倒数:对于任意的非零实数a,存在一个实数b,使得a*b=1,这个b被称为a的倒数,记作1/a。
此外,还有一些其他的四则运算定律:
5.零元素:
-加法的零元素:对于任意的实数a,a+0=a。
-乘法的零元素:对于任意的实数a,a*0=0。
6.乘法的单位元:
-乘法的单位元:对于任意的实数a,a*1=a。
7.分配律:
-左分配律:对于任意的实数a、b和c,a*(b+c)=a*b+a*c。
-右分配律:对于任意的实数a、b和c,(a+b)*c=a*c+b*c。
以上是四则运算的一些基本定律和公式。
在进行四则运算时,这些定律和公式可以帮助我们简化和优化计算过程,提高计算的准确性和效率。
四则运算定律性质整理
四则运算运算定律性质整理一,四则运算运算定律1.加法结合律: 三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变,这叫加法结合律。
字母表达式 : ( a + b )+ c = a + ( b + c ) 例子: 456+455+445=456=456+(455+445)=456+900=13562.乘法结合律:三个数相乘,先把前两个数乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘 ,它们的积不变,这叫乘法结合律。
字母表达式:( a xb )xc = a x (b x c ) 例子 : 243x8x125=243x( 8x125)=243x1000=2430003. 加法交换律: 两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。
字母表达式: a + b= b = a 例子: 123+345=345=1234乘法交换律 : 两个数相乘, 交换因数的位置,他们积不变,这叫做乘法交换律。
字母表达式: a x b = b x a 例子: 1276 x762 =762 x12765. 乘法分配律:两个数的和和一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,所得的结果不变,这叫乘法分配律。
字母表达式:( a + b ) x c= a x c + b x c 例子:( 100+ 125 ) x8 = 8 x100 + 8x 125 =800 +1000 =1800二,四则运算性质1.减法运算性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。
字母表达式: a - b - c =a - ( b + c ) 例子: 274 – 23 – 177 =274 - (23 + 177 )=274 - 200 = 742.除法运算性质 :一个数连续除以两个数,可以先把两个除数乘起来 , 再去除被除数。
字母表达式: a ÷ b ÷ c = a ÷ ( b x c ) (b≠0 c≠0) 例子: 2000 ÷8÷125 =2000÷(8 x125 ) = 2000 ÷1000= 23.商不变性质:被除数和除数同时乘或除以一个相同的数,(零除外) ,它们的商不变,这叫做商不变性质. 字母表达式: a ÷ b = ( a ÷x c)÷ ( b ÷x c) ( b ≠ 0) ( c≠0 )例子:1100÷25 = (1100 x4 ) ÷ ( 25x 4) =4400÷100 =44。
四则运算和运算定律知识点
四则运算和运算定律知识点四则运算是数学中最基本且最常见的运算方式,包括加法、减法、乘法和除法。
四则运算在日常生活和各个学科中应用广泛,它们是建立数学基础的重要环节。
运算定律则是四则运算中的一些重要规则,它们帮助我们简化计算、加深理解和解决复杂问题。
下面将对四则运算和运算定律进行详细的介绍。
一、加法运算加法运算是将两个或多个数相加得到一个和的运算方式。
例如,3+4=7,表示将3和4相加得到7、加法运算有以下几个特点:1.交换律:a+b=b+a,两个数的顺序变化不影响结果。
例如,2+3=3+2=52.结合律:(a+b)+c=a+(b+c),将三个数按照不同的顺序相加得到的结果相同。
例如,(2+3)+4=2+(3+4)=93.加法逆元:对于任意的数a,存在一个数-b,使得a+(-b)=0。
例如,3+(-3)=0。
这里的-3就是数3的加法逆元。
二、减法运算减法运算是将一个数减去另一个数得到一个差的运算方式。
例如,5-3=2,表示将5减去3得到2、减法运算有以下几个特点:1.减法的定义:a-b=a+(-b),将减法运算转化为加法运算。
例如,5-3=5+(-3)=22.减法的交换律不存在:a-b≠b-a,减法的顺序不能随意调换,结果会发生改变。
三、乘法运算乘法运算是将两个或多个数相乘得到一个积的运算方式。
例如,2×3=6,表示将2和3相乘得到6、乘法运算有以下几个特点:1.交换律:a×b=b×a,两个数的顺序变化不影响结果。
例如,2×3=3×2=62.结合律:(a×b)×c=a×(b×c),将三个数按照不同的顺序相乘得到的结果相同。
例如,(2×3)×4=2×(3×4)=243.乘法逆元:对于任意的非零数a,存在一个数1/a,使得a×(1/a)=1、例如,2×(1/2)=1、这里的1/2就是数2的乘法逆元。
初一数学运算定律
初一数学运算定律一、四则运算定律在初一数学中,四则运算是基础中的基础。
它包括加法、减法、乘法和除法四种运算。
这四种运算都有一些基本定律,下面我们来逐一介绍。
1. 加法定律加法定律可以简单地表述为“交换律”和“结合律”。
交换律:对于任意两个数a和b,a+b=b+a。
结合律:对于任意三个数a、b和c,(a+b)+c=a+(b+c)。
2. 减法定律减法的运算规则相对简单,只需要注意减法的定义即可。
减法的定义:对于任意两个数a和b,a-b是指找到一个数x,使得x+b=a。
3. 乘法定律乘法定律包括“交换律”和“结合律”。
交换律:对于任意两个数a和b,a×b=b×a。
结合律:对于任意三个数a、b和c,(a×b)×c=a×(b×c)。
4. 除法定律除法的运算规则也需要注意。
除法的定义:对于任意两个数a和b,a÷b是指找到一个数x,使得x×b=a,并且b不等于0。
二、整数运算定律在初一数学中,我们还会学习到整数的运算定律。
整数运算定律包括加法、减法、乘法和除法。
1. 加法定律整数的加法定律与自然数的加法定律相同。
2. 减法定律整数的减法定律也与自然数的减法定律相同。
3. 乘法定律整数的乘法定律同样包括“交换律”和“结合律”。
交换律:对于任意两个整数a和b,a×b=b×a。
结合律:对于任意三个整数a、b和c,(a×b)×c=a×(b×c)。
4. 除法定律整数的除法定律与自然数的除法定律相同。
三、分配律分配律是初一数学中的重要定律,它适用于整数和有理数的运算。
1. 左分配律对于任意三个数a、b和c,a×(b+c)=a×b+a×c。
2. 右分配律对于任意三个数a、b和c,(a+b)×c=a×c+b×c。
四、乘方运算定律在初一数学中,我们还会学习到乘方运算定律。
四则运算定律
第一单元四则运算1.把两个数合并成一个数的运算,叫做加法。
相加的两个数叫做加数。
加得的数叫做和。
2.和=加数+加数加数=和-另一个加数3.已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
在减法中,已知的和叫做被减数。
减法是加法的逆运算。
4.差=被减数-减数减数=被减数-差被减数=减数+差5.求几个相同加数的和的简便运算,叫做乘法。
相乘的两个数叫做因数。
乘得的数叫做积。
6.积=因数×因数因数=积÷另一个因数7.已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
在除法中,已知的积叫做被除数。
除法是乘法的逆运算。
8.商=被除数÷除数除数=被除数÷商被除数=商×除数被除数=商×除数+余数除数=(被减数-余数)÷商9.一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
一个算式里,只有加减或只有乘除,从左往右依次算。
一个算式里,既有加减又有乘除,先算乘除法,后算加减法。
第三单元运算定律1.两个数相加,交换加数的位置,和不变。
这叫做加法交换律。
a+b=b+a2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
(a+b)+c=a+b+c3.一个数连续减去两个数,等于这个数减去这两个数的和。
a-b-c=a-(b+c)4.在连减运算中任意交换减数的位置,差不变。
a-b-c=a-c-b5.加减混合,带号搬家。
a-b+c=a+c-b6. a-(b-c)=a-b+c7.两个数相乘,交换两个因数的位置,积不变。
这叫做乘法交换律。
a×b=b×a8.三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
这叫做乘法结合律。
(a×b)×c=a×b×c9.两个数的和与一个数相乘,可以先把它们与这两个数分别相乘,再相加。
这叫做乘法分配律。
小学四则运算及运算定律专题
一、四则运算(一)四则运算法则:1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
如:10+2-3 10-2+3 8÷2×4 8×2÷42、在没有括号的算式里,有乘、除法和加、减法,先算乘、除法再算加、减法。
如:4+18×2 16-15÷3 36÷6+4×63、有括号的算式里,先算括号里面的数,再算括号外的数。
如:(4+5)÷3 5×(7-3)(10-2)×(8+3)(二)四则运算:加法、减法、乘法、除法统称四则运算。
注意:一个数加上0或减0,还得原来的数。
被减数等于减数,差是0.0除以一个不是0的数,还得0,0不可以作除数。
任何数和0相乘都得0.二、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)(二)乘法运算定律:1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
字母公式:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
字母公式:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
小学四则运算及运算定律专题
(一)四则运算法则:1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
如:10+2-310-2+38÷2×4 8×2÷42、在没有括号的算式里,有乘、除法和加、减法,先算乘、除法再算加、减法。
如:4+18×2 16-15÷3 36÷6+4×63、有括号的算式里,先算括号里面的数,再算括号外的数。
如:(4+5)÷35×(7-3)(10-2)×(8+3)(二)四则运算:加法、减法、乘法、除法统称四则运算。
注意:一个数加上0或减0,还得原来的数。
被减数等于减数,差是0.0除以一个不是0的数,还得0,0不可以作除数。
任何数和0相乘都得0.二、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律:1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
字母公式:(a+b)×c=a×c+b×c 或a×(b+c)=a×b+a×c拓展:(a-b)×c=a×c-b×c 或a×(b-c)=a×b-a×c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
字母公式:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《四则运算和运算定律的复习》教学反思
复习课不好上,将四则运算和运算定律这两单元合起来上更有难度。
这节课该怎么设计呢?
内容很多,面面俱到有困难,于是我选择了有重点的复习,并将重点放在了简便计算。
简便计算需要用到运算定律和运算性质,也就是《运算定律》这一单元的内容。
至于《四则运算》这单元,我将重点放在运算的顺序上。
其实“四则运算”不就是包含了“简便计算”和“一般计算”吗?于是我将两单元的内容整合成了这两部分。
由此展开复习。
课堂的第一部分:理。
根据班上学生的实际情况发现学生对运算定律可以说已经滚瓜
烂熟,因此课上我让学生通过“想一想有哪些知识点”、“说一说用字母怎么表示”对运算定律和性质进行了简单的罗列。
通过“选择个别定律和性质说说含义”、“运用对比、比喻等方法对运算定律进行记忆”,整理复习了简便计算。
结合具体题目,自然地将“简便计算”与“一般计算”串起来,整合成了四则混合运算,帮助学生将碎片化的知识点转化成条理化的知识结构。
第二部分:练。
复习课的练习不同于练习课中的练习,除了用比较典型的习题巩固知识外还要有所提升。
因此我设计了“算一算”、“选一选”、“填一填”及“应用”这一系列的题目帮助学生巩固和提升。
第三部分:总结。
在学生经历了整理和练习之后,交给学生整理复习的方法。
同时,我也有几点思考和疑问:
1. 这两单元的知识点很多,怎么理比较好?
2. 《运算定律》这单元作为重点,学生对公式记得很牢,对于定律和性质的含义也理解,需不需要每个孩子经历书写整理的过程?。