工业催化原理精品PPT课件
合集下载
第一章工业催化剂概述 PPT
1746年J、Roebuck 铅室法制硫 酸 第,一用个N现O2代作工气业相催催化化过剂程,实。现了
1811年,俄国科学家从科学意义 上最先发现了催化作用,热得淀 粉水溶液中添加盐酸时促进淀粉 水解生成糖。
萌芽时期
1835年,Berzelius首先提 出“催化作用”
1875年耶可布(Cjacob) 建立了以Pt为催化剂得 接触法生产硫酸得工业 方法,就是化学工业得重 要进步。
J、J、 Berzeli
奠基时期
1907年油脂加氢生产硬化油,为近代有机工业 得先河。 (法国Scbatier 1912年获诺贝尔化 学奖 )
1904开始德国化学家Haber研究合成氨催化 剂,(1918年获诺贝尔化学奖)
大发展时期
1929年由法国E、J、Houdry开发流化床催 化裂化工艺(FCC)
非催化: A+B→AB
催化剂C: A+C→AC
AC+B→AB+C
A+B→AB
合成氨: N2+H2→NH3 Fe催化剂:N2+*→2N*
NH*+H*→NH2*
H2+* → 2H * N*+H*→NH* NH2*+H*→NH3+*
在500℃时,合成氨E非催= 334、6KJ/mol,E催=70 KJ/mol
催化剂与催化作用
催化循环
AB
P
separation
catalyst
bonding
AB
catalyst
P
catalyst
reaction
Ethylene Hydrogenation
Ni
C2H4 + H2 C2H6
1811年,俄国科学家从科学意义 上最先发现了催化作用,热得淀 粉水溶液中添加盐酸时促进淀粉 水解生成糖。
萌芽时期
1835年,Berzelius首先提 出“催化作用”
1875年耶可布(Cjacob) 建立了以Pt为催化剂得 接触法生产硫酸得工业 方法,就是化学工业得重 要进步。
J、J、 Berzeli
奠基时期
1907年油脂加氢生产硬化油,为近代有机工业 得先河。 (法国Scbatier 1912年获诺贝尔化 学奖 )
1904开始德国化学家Haber研究合成氨催化 剂,(1918年获诺贝尔化学奖)
大发展时期
1929年由法国E、J、Houdry开发流化床催 化裂化工艺(FCC)
非催化: A+B→AB
催化剂C: A+C→AC
AC+B→AB+C
A+B→AB
合成氨: N2+H2→NH3 Fe催化剂:N2+*→2N*
NH*+H*→NH2*
H2+* → 2H * N*+H*→NH* NH2*+H*→NH3+*
在500℃时,合成氨E非催= 334、6KJ/mol,E催=70 KJ/mol
催化剂与催化作用
催化循环
AB
P
separation
catalyst
bonding
AB
catalyst
P
catalyst
reaction
Ethylene Hydrogenation
Ni
C2H4 + H2 C2H6
工业催化原理PPT
1.2.1催化反应分类
按催化反应系统物相的均一性进行分类
均相催化反应
非均相(又称多 相)催化反应
酶催化反应
均相催化反应是指 反应物和催化剂居 于同一相态中的反 应。
非均相催化反应是 指反应物和催化剂 居于不同相态的反 应。
酶催化反应同时 具有均相和非均 相反应的性质。
1.2.1催化反应分类
按反应类型进行分类
表1-3 催化剂对可能进行的特定反应的选择催化作
反应类用型
常用催化剂
加氢 脱氢 氧化
羰基化
聚合 卤化 裂解 水合 烷基化,异构化
Ni,Pt,Pd,Cu,NiO,MoS2,WS2,Co(CN)63Cr2O3,Fe2O3,ZnO,Ni,Pd,Pt V2O3,MoO3,CuO,Co3O4,Ag,Pd,Pt,PdCl2 Co2(CO)8,Ni(CO)4,Fe(CO)3,PdCl(Pph3)3*,RhCl2(CO)Pp
问题2:请同学们举二个以上的实例?
1.1.4催化剂对加速化学反应具有选择性
表1-2 催化剂对可能进行的特定反应的选择催化作 用
反应物 催化剂及反应条件
Rh/Pt/SiO2,573K,7×105Pa
CO+H
2
Cu-Zn-O,Zn-Cr-O,573K, 1.0133×107~ 2.0266×107Pa
1.1.2催化作用不能改变化学平衡
问题1:实际工业上催化正反应、逆反应 时为什么往往选用不同的催化剂?
❖ 第一,对某一催化反应进行正反应和进行逆反应的操 作条件(温度、压力、进料组成)往往会有很大差别, 这对催化剂可能会产生一些影响。
❖ 第二,对正反应或逆反应在进行中所引起的副反应也 是值得注意的,因为这些副反应会引起催化剂性能变 化。
《工业催化精品课件》催化三.四
指催化剂能够加速化学反应的能力,通常用催化活度表示。
指催化剂在反应中能够促进特定化学反应的进行,而不影响其 他反应的能力。
指催化剂在反应条件下能够保持活性、稳定性的能力,包括热 稳定性、化学稳定性和机械稳定性等。
指催化剂的制备方法和原料是否易于获取,以及生产成本的高 低。
催化剂的制备方法
01
物理混合法
选择合适的催化剂
根据不同的工业催化过程,选择具有高活性、 高选择性、长寿命的催化剂。
优化反应条件
通过调整温度、压力、空速等反应条件,提 高工业催化过程的效率和产物质量。
改进工艺流程
通过对工业催化过程的工艺流程进行改进, 降低能耗和物耗,提高生产效率。
加强催化剂再生与循环利用
对失效的催化剂进行再生或循环利用,降低 生产成本并减少环境污染。
工业催化精品课件:催化三.四
目录
• 工业催化的定义与重要性 • 催化反应的原理与类型 • 催化剂的种类与特性 • 工业催化过程与设备 • 工业催化的未来发展与挑战
01
工业催化的定义与重要性
工业催化的定义
工业催化是指通过催化剂的作 用,加快化学反应速率,促进 物质转化的过程。
催化剂是一种能够改变化学反 应速率但不改变反应总热力学 平衡的物质。
在催化剂的作用下,重质烃类在高温下 发生裂解反应,生成轻质油品和裂化气。
烷基化
在催化剂的作用下,烷烃与烯烃发生 反应,生成异构烷烃和烷基化油。
催化重整
在催化剂的作用下,将低辛烷值的直 馏汽油转化为高辛烷值的汽油和苯、 甲苯等芳烃。
合成氨
在催化剂的作用下,氮气和氢气反应 生成氨。
工业催化设备
固定床反应器
工业催化过程通常涉及化工、 石油、环保等领域,是实现物 质转化和利用的重要手段。
工业催化原理ppt课件
CFSE对催化作用的影响
➢ 对六配位的八面体按SN-1机理进行反应时将形成 五配位中间过渡态构型。按SN-2机理进行时将形 成七配位的中间过渡态构型。
按配位场理论进行的过渡金属氧化物
催化过程
如果我们把吸附物当作配位体,多相催化过程可 以看作是均相配位(络合)催化过程的一个特例。
这样多相反应过程的吸附过程可以引起(稳定化 能)CFSE的变化。如在岩盐型结构氧化物(100) 表面金属离子的配位构型 退过吸附会从正方锥体 五配位变成八面体(六配位)。按SN-1机理吸附 作用对弱场中电子构型为d3和d8离子CFSE是有 利的。相反对反应物脱附来说则弱场中的d4和d9 离子和对强场中的d2,d7,d9离子有利。
B)对于施电子气体吸附(以H2为例)
➢ 对于H2来说,不论在n型还是p型氧化物上以正离 子(H+)吸附于表面,在表面形成正电荷,起施主 作用。
吸附气 半导体类 吸附物种 吸附剂 吸附位
EF
体
型
受电子 气体 (O2)
N型 V2O5)
O2→O2O-,O22-,O2-
P型 Cu2O
O2→O2O-,O22-,O2-
晶体场稳定化能(CFSE)
晶体场稳定化能(CFSE)
➢ d电子处于未分裂的d轨道的总能量和它们进入分 裂的d轨道的总能之差。即d电子从未分裂的d轨 道进入分裂后的d轨道后产生的总能量下降值。
➢ 这种由于中心离子(或原子)d轨道的分离,给予 氧化物(络合物)额外的稳定能,称这种能量为 稳定化能(CFSE)
半导体催化剂化学吸附与催化作用
1、化学吸附 A)受电子气体吸附(以O2为例) (1)在n型半导体上吸附
O2电负性大,容易夺导带电子,随氧压增大而使 导带中自由电子减少,导电率下降。另一方面在 表面形成的负电层不利于电子进一步转移,结果 是氧在表面吸附是有限的。
➢ 对六配位的八面体按SN-1机理进行反应时将形成 五配位中间过渡态构型。按SN-2机理进行时将形 成七配位的中间过渡态构型。
按配位场理论进行的过渡金属氧化物
催化过程
如果我们把吸附物当作配位体,多相催化过程可 以看作是均相配位(络合)催化过程的一个特例。
这样多相反应过程的吸附过程可以引起(稳定化 能)CFSE的变化。如在岩盐型结构氧化物(100) 表面金属离子的配位构型 退过吸附会从正方锥体 五配位变成八面体(六配位)。按SN-1机理吸附 作用对弱场中电子构型为d3和d8离子CFSE是有 利的。相反对反应物脱附来说则弱场中的d4和d9 离子和对强场中的d2,d7,d9离子有利。
B)对于施电子气体吸附(以H2为例)
➢ 对于H2来说,不论在n型还是p型氧化物上以正离 子(H+)吸附于表面,在表面形成正电荷,起施主 作用。
吸附气 半导体类 吸附物种 吸附剂 吸附位
EF
体
型
受电子 气体 (O2)
N型 V2O5)
O2→O2O-,O22-,O2-
P型 Cu2O
O2→O2O-,O22-,O2-
晶体场稳定化能(CFSE)
晶体场稳定化能(CFSE)
➢ d电子处于未分裂的d轨道的总能量和它们进入分 裂的d轨道的总能之差。即d电子从未分裂的d轨 道进入分裂后的d轨道后产生的总能量下降值。
➢ 这种由于中心离子(或原子)d轨道的分离,给予 氧化物(络合物)额外的稳定能,称这种能量为 稳定化能(CFSE)
半导体催化剂化学吸附与催化作用
1、化学吸附 A)受电子气体吸附(以O2为例) (1)在n型半导体上吸附
O2电负性大,容易夺导带电子,随氧压增大而使 导带中自由电子减少,导电率下降。另一方面在 表面形成的负电层不利于电子进一步转移,结果 是氧在表面吸附是有限的。
1-工业催化原理ppt课件
H2在金属催化剂表面均裂为化 学吸附的活泼的氢原子
42
Hale Waihona Puke 酸碱催化指通过催化剂和反应物的自由电子对或 在反应过程中由反应物分子的键非均裂 形成的自由电子对.使反应物与催化剂 形成非均裂键。
例如,催化异构化反应中,反应物烯烃 与催化剂的酸性中心作用、生成活泼的 正碳离子中间化合物
43
烯烃与催化剂酸性中心作用、 生成活泼正碳离子中间化合物
催化剂作为一种化学物质,它能够与反
应物相互作用,但是在反应的终结它仍 保持不变。
4
催化剂加速化学反应的实例
SO2+O2 SO3 ( V2O5),无催化剂时, 即使加热也几乎不生成 SO3。
N2+H2 NH3 (Fe催化剂),若没有铁催 化剂,在反应温度为400℃时,其反应速 度极慢,竞不能觉察出来,而当有铁催 化剂的存在时,就实现工业生产合成氨。
39
按催化反应分类
催化反应同非催化反应一样,也可根 据反应中反应分子之间电子传递的情况 来分类,可分为:
氧化还原反应
酸碱反应。
40
氧化还原
催化剂使反应物分子中的键均裂而出现 不成对电子,并在催化剂的电子参与下 与催化剂形成均裂键。
这类反应的重要步骤是催化剂与反应物 之间的单电子交换。
41
19
催化剂对反应具有选择性
根据热力学计算,某一反应可能生成不 只一种产物时,应用催化剂可加速某一 目的产物的反应,即称为催化剂对该反 应的选择性。
工业上就是利用催化剂具有选择性,使 原料转化为所需要的产品。
例如,以合成气(CO+H2)为原料,使用 不同的催化剂则沿不同的途径进行反应。
20
催化剂对反应具有选择性
46
双功能催化剂的实例
《工业催化精品课件》络合催化
04
络合催化的研究进展与挑战
BIG DATA EMPOWERS TO CREATE A NEW
ERA
新型络合催化剂的设计与合成
总结词
新型络合催化剂的设计与合成是络合催化领域的重要研究方向,旨在开发高效、稳定且具有广泛应用 前景的催化剂。
详细描述
络合催化是一种通过金属络合物活化反应底物的催化方式,广泛应用于有机合成、石油化工和制药等 领域。近年来,科研人员致力于设计和合成新型络合催化剂,以提高催化活性、选择性和稳定性。常 见的催化剂设计策略包括改变金属中心、优化配体结构以及使用多组分催化剂等。
ERA
络合催化的反应机制
络合催化的反应机制主要涉及配位体与金属催化剂的 相互作用,通过形成稳定的络合物来活化反应底物,
从而降低反应能垒,促进反应进行。
配位体在络合催化中起到关键作用,它们能够与金属 催化剂形成强相互作用,从而稳定活性中心,并调节
底物与催化剂之间的电子云分布。
络合催化的反应机制通常涉及多步骤过程,包括配位 体与金属催化剂的结合、底物与络合物的相互作用以
工业催化精品课件:络合
BIG DATA EMPOWERS TO CREATE A NEW
ERA
催化
• 络合催化的定义与重要性 • 络合催化反应原理 • 络合催化反应的应用 • 络合催化的研究进展与挑战 • 案例分析 Nhomakorabea目录
CONTENTS
01
络合催化的定义与重要性
BIG DATA EMPOWERS TO CREATE A NEW
子转移等关键步骤。理论计算还能预测催化剂的性能,为新催化剂的设计提供依据。
05
案例分析
BIG DATA EMPOWERS TO CREATE A NEW
工业催化ppt课件
新能源开发
用于生产太阳能电池、燃料电 池等新能源材料。
制药行业
用于合成药物、生物催化剂等 生物医药产品的生产。
02
工业催化原理与技术
催化反应原理
催化反应定义
在催化剂的作用下,反应物之间 发生化学反应并生成产物的过程
。
催化反应特点
反应速率快、选择性高、能耗低、 副产物少。
催化反应机理
了解催化反应过程中,反应物如何 通过催化剂表面的吸附、活化、反 应和脱附等步骤转化为产物。
对设计的催化反应流程进行技术经济评估 ,确保其在工业生产中的可行性和经济效 益。
工业催化设备及其选型
确定设备参数
根据工艺要求和设备类型,确定设备的主 体尺寸、材质、压力、温度等参数,以确
保设备的性能和安全性。
A 确定设备类型
根据催化反应的类型和规模,选择 适合的工业催化设备,如固定床反 应器、流化床反应器、搅拌釜等。
工业催化实验方法与操作规程
实验方法选择
根据实验目的和要求,选择合适 的实验方法和操作规程,确保实 验结果的准确性和可靠性。
实验操作流程
按照实验步骤和要求进行操作, 注意实验细节和注意事项,避免 实验误差和安全事故。
数据处理与分析
对实验数据进行处理、分析和解 释,得出实验结论,为实际工业 生产提供指导和参考。
提高工业催化效率的途径与方法
优化催化剂设计
通过改进催化剂的组成和结构,提高其活性和选 择性,从而提高催化效率。
强化反应条件
优化反应温度、压力、浓度等条件,以降低能耗 和提高产物收率。
过程集成与优化
通过集成和优化催化反应过程,实现能源的高效 利用和废物的减量化。
THANKS
感谢观看
工业催化PPT教学课件
总成绩=期末考试成绩(50%)+平时成绩(20%)+论文(30%)
论文是一篇关于“催化在各自领域中的研究与应用现状”的综述性文章。
.
3
参考书目
(1)工业催化基础 —赵光 编 哈尔滨工程大学出版社 1999年 (2)应用催化基础 —吴越著 化学工业出版社 2008年 (3)Heterogeneous Catalysis In Industrial Practice Second Edition---Charles N. Satterfield, McGraw-Hill, Inc.(实用多相催化) (4)Heterogeneous Catalysis Principles and Applications-----G.C. Bond, Oxford Science publications
经过一段时间的沉寂,化学 工业从“重视产量”转向 “重视功能化”发展,将过去
大宗化学品生产过程中累积的技术与经验转 向应用和高性能的精细化工方向发展,很快 使化学工业出现了转机。
此阶段催化技术配合化学工 业出现了“择形催化”、 “手性催化”、环境友好的 “固体酸催化”等,以及用 于具有监控能力的“传感器 催化技术”、防治汽车污染 的“三效催化技术”等。
H2、 甲醇、. 二甲醚、 FT合成
硫制
聚烯烃 芳烃
1973年 金属有机 催化
12
化学工业的发展与催化剂的应用是密不可分的。
20世纪 30年代以前
20世纪 30~80年代
20世纪 80~90年代至今
属于当时尖端科技的 化学工业主要是天然 物质的直接利用
能量
代谢
.
8
自然界催化现象普遍存在(3)
植物的光合作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Energy belt
2个Na+ 2×3S1 N个Na N×3S1
半导体的能带结构及其催化活性
本征半导体 n-型半导体 p-型半导体
绝缘体
图3-36
各种固体的能带结构
半导体的能带结构是不迭加的,形成分开 的带,价带,空带,禁带(能量宽度为Eg )。
金属的Eg为零,绝缘体的Eg很大,各种半 导体的Eg居于金属和绝缘体之间。
2)p型半导体 在空气中加热NiO会吸氧。少量Ni2+变成 Ni3+,NI3+实际是Ni2+束缚了一个正电 荷或一个空穴,温度不高时,就可以脱 离Ni2+离子而形成空穴,构成p型半导体, 称Ni3+为受主。
5.1.2 Theory of semiconductor energy belt Back
Li+消灭一个M2+⊕
3.本征 semiconductor
Back
不含杂质,具有理想的完整的晶体结构,具有 电子和孔穴两种载流体。
Fe3O4 Fe3(Fe2+, Fe3+)O4 没有 “donor and acceptor”
4.半导体的形成
1)n型半导体的形成 在空气中加热ZnO产生极少量的Zn Zn可以看成由Zn2+束缚两个电子,它 不稳定,容易给出电子,产生电子导电 形成n型半导体
n-型半导体 ZnO ;施主能级 ―提供电子的 附加能级 (靠近空带 )
p-型半导体 NiO ;受主能级 ―空穴产生的 附加能级 (靠近价带 )
Fermi能级Ef 。Ef越高电子逸出越易。 本征半导体,Ef在禁带中间;n-型半导体, Ef在施主能级与导带之间;p-型半导体, Ef在受主能级与满带之间。
入杂质中而产生空穴,此N杂i2+质O叫2受- N主i杂2+质O。2- Ni2+ O2-
NiO中Ni缺位。 O2- Ni2+ O2-
O2- Ni2+
Ni3+≡ Ni2++⊕ acceptor
Ni2+ O2- Ni2+ +⊕ O2- Ni2+ +⊕ O2-
O2- Ni2+ O2- Ni2+ O2- Ni2+
第五章半导体催化剂 第一讲
Chapter 5 Metal oxide
catalyst 5.1 Theory of semiconductor energy belt 5.1.1 Semiconductor type 5.1.2 Energy belt
5.1.3 Fermi energy
5.2 Metal oxide
adsorption
5.3 Oxidation tend,acid and catalysis performance of metal oxide reaction of 5.3.1 Oxygen species and their function 5.3.2 Oxidation of ethene 5.4 Effect of semiconductor properties on activity 5.5 metal sulfid catalyst
5.1.3 Fermi energy
Back
费米能级:是半导体性质的一个重要物理量,它表示 半导体中电子的平均位能 确切的说,它表示在任意温度下,电子出现的几率为 1/2的那个能级的能量。
电子逸出功:把一个电子从半导体内部拉到外部,变 成完全自由电子时,所需要 的最小能量
Ef与电子的逸出功φ直接相关。
(b)步为控制步骤
实分验解研,究 且p了-型许的多较种之半n导-型体的氧具化有物更都高能的使活N2性0催。化
用NiO为催化剂时,加入少量Li2O作助催化剂, 催化分解活性更好;若加入少量的Cr203作助催化 剂,则产生相反的效果。
5.2金属氧化物的结构及表面吸附
5.2.1金属氧化物上气体的吸附态
Semiconductor type
1.n type 靠与金属原子结合的电子导电,叫n-型(Negative Type)半导体。
2.P type 靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)
半导体。
n型半导体:含有能够给电子的杂质,此电 子输入空带而成为自由电子,空带变成 导带。此杂质叫施主杂质。
ZnO中Zn过量,它 存在于晶体内间隙 处,Zn+束缚一个e ,以保持中性。
Zn+e is called donor
Zn2+ O2- Zn2+ O2- Zn2+ O2O2- Zn2+ O2- Zn2+ O2- Zn2+ Zn2+ O2- Zn2+ O2- Zn2+ O2-
P 型半导体:含有易于接受电子的杂质,半导体满带中的电子输
(b)
图3-37 费米能级与逸出功的关系及能带弯曲 (a)Ef与φ的关系;(b)表面电荷与能带弯曲
对于给定的晶格结构,Fermi能级Ef的位置 对于它的催化活性具有重要意义。故在多
相金属和半导体氧化物催化剂的研制中,
常采用添加少量助催化剂以调变主催化剂 的Ef位置,达到改善催化剂活性、选择性的 目的。应该看到,将催化剂活性仅关联到Ef 位置的模型过于简化,若把它与表面化学
键合的性质结合在一起,会得出更为满意 的结论。
Ef的这些变化会影响半导体催化剂的催化性能。
探针反应——一氧化亚氮的催化分解
2 N2O → 2 N2 + 02 反应机理 :
N20 + e-(来自催化剂表面) N2 + O吸-
(a)
O吸- + N20 N2 + 02 + e-(去催化剂)
(b)
5.1半导体的能带结构 5.1.1基本概念
金属氧化物:复合氧化物 ;固溶体、杂多酸、混晶 等。
催化作用和功能 :主催化剂、助催化剂、载体等 应用 :主要催化烃类选择氧化 。所用催化剂主要
分三类:1)过渡金属氧化物,2)金属氧化物, 3)原态为金属,但其表面吸附氧形成氧化层。 金属硫化物:半导体型化合物。单 、复合组分系。
由于半导体中有自由电子或子化,用孔穴接受电子可使 被吸附物正离子化。
(由于形成O2- ,O- ,O22-等吸附态产生了 负电荷层,阻碍了电子的吸附)
第一种为弱键吸附,被吸附的粒子保持电中性, 粒子和固体催化剂表面无电子交换。 第二种为n键吸附,也称受主键吸附,属强化学 吸附,被吸附的粒子从催化剂表面俘获电子形成 吸附键。 第三种是p键吸附,也称施主键吸附,也属强化 学吸附,被吸附的粒子从催化剂表面俘获自由空 穴而形成吸附键。
2个Na+ 2×3S1 N个Na N×3S1
半导体的能带结构及其催化活性
本征半导体 n-型半导体 p-型半导体
绝缘体
图3-36
各种固体的能带结构
半导体的能带结构是不迭加的,形成分开 的带,价带,空带,禁带(能量宽度为Eg )。
金属的Eg为零,绝缘体的Eg很大,各种半 导体的Eg居于金属和绝缘体之间。
2)p型半导体 在空气中加热NiO会吸氧。少量Ni2+变成 Ni3+,NI3+实际是Ni2+束缚了一个正电 荷或一个空穴,温度不高时,就可以脱 离Ni2+离子而形成空穴,构成p型半导体, 称Ni3+为受主。
5.1.2 Theory of semiconductor energy belt Back
Li+消灭一个M2+⊕
3.本征 semiconductor
Back
不含杂质,具有理想的完整的晶体结构,具有 电子和孔穴两种载流体。
Fe3O4 Fe3(Fe2+, Fe3+)O4 没有 “donor and acceptor”
4.半导体的形成
1)n型半导体的形成 在空气中加热ZnO产生极少量的Zn Zn可以看成由Zn2+束缚两个电子,它 不稳定,容易给出电子,产生电子导电 形成n型半导体
n-型半导体 ZnO ;施主能级 ―提供电子的 附加能级 (靠近空带 )
p-型半导体 NiO ;受主能级 ―空穴产生的 附加能级 (靠近价带 )
Fermi能级Ef 。Ef越高电子逸出越易。 本征半导体,Ef在禁带中间;n-型半导体, Ef在施主能级与导带之间;p-型半导体, Ef在受主能级与满带之间。
入杂质中而产生空穴,此N杂i2+质O叫2受- N主i杂2+质O。2- Ni2+ O2-
NiO中Ni缺位。 O2- Ni2+ O2-
O2- Ni2+
Ni3+≡ Ni2++⊕ acceptor
Ni2+ O2- Ni2+ +⊕ O2- Ni2+ +⊕ O2-
O2- Ni2+ O2- Ni2+ O2- Ni2+
第五章半导体催化剂 第一讲
Chapter 5 Metal oxide
catalyst 5.1 Theory of semiconductor energy belt 5.1.1 Semiconductor type 5.1.2 Energy belt
5.1.3 Fermi energy
5.2 Metal oxide
adsorption
5.3 Oxidation tend,acid and catalysis performance of metal oxide reaction of 5.3.1 Oxygen species and their function 5.3.2 Oxidation of ethene 5.4 Effect of semiconductor properties on activity 5.5 metal sulfid catalyst
5.1.3 Fermi energy
Back
费米能级:是半导体性质的一个重要物理量,它表示 半导体中电子的平均位能 确切的说,它表示在任意温度下,电子出现的几率为 1/2的那个能级的能量。
电子逸出功:把一个电子从半导体内部拉到外部,变 成完全自由电子时,所需要 的最小能量
Ef与电子的逸出功φ直接相关。
(b)步为控制步骤
实分验解研,究 且p了-型许的多较种之半n导-型体的氧具化有物更都高能的使活N2性0催。化
用NiO为催化剂时,加入少量Li2O作助催化剂, 催化分解活性更好;若加入少量的Cr203作助催化 剂,则产生相反的效果。
5.2金属氧化物的结构及表面吸附
5.2.1金属氧化物上气体的吸附态
Semiconductor type
1.n type 靠与金属原子结合的电子导电,叫n-型(Negative Type)半导体。
2.P type 靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)
半导体。
n型半导体:含有能够给电子的杂质,此电 子输入空带而成为自由电子,空带变成 导带。此杂质叫施主杂质。
ZnO中Zn过量,它 存在于晶体内间隙 处,Zn+束缚一个e ,以保持中性。
Zn+e is called donor
Zn2+ O2- Zn2+ O2- Zn2+ O2O2- Zn2+ O2- Zn2+ O2- Zn2+ Zn2+ O2- Zn2+ O2- Zn2+ O2-
P 型半导体:含有易于接受电子的杂质,半导体满带中的电子输
(b)
图3-37 费米能级与逸出功的关系及能带弯曲 (a)Ef与φ的关系;(b)表面电荷与能带弯曲
对于给定的晶格结构,Fermi能级Ef的位置 对于它的催化活性具有重要意义。故在多
相金属和半导体氧化物催化剂的研制中,
常采用添加少量助催化剂以调变主催化剂 的Ef位置,达到改善催化剂活性、选择性的 目的。应该看到,将催化剂活性仅关联到Ef 位置的模型过于简化,若把它与表面化学
键合的性质结合在一起,会得出更为满意 的结论。
Ef的这些变化会影响半导体催化剂的催化性能。
探针反应——一氧化亚氮的催化分解
2 N2O → 2 N2 + 02 反应机理 :
N20 + e-(来自催化剂表面) N2 + O吸-
(a)
O吸- + N20 N2 + 02 + e-(去催化剂)
(b)
5.1半导体的能带结构 5.1.1基本概念
金属氧化物:复合氧化物 ;固溶体、杂多酸、混晶 等。
催化作用和功能 :主催化剂、助催化剂、载体等 应用 :主要催化烃类选择氧化 。所用催化剂主要
分三类:1)过渡金属氧化物,2)金属氧化物, 3)原态为金属,但其表面吸附氧形成氧化层。 金属硫化物:半导体型化合物。单 、复合组分系。
由于半导体中有自由电子或子化,用孔穴接受电子可使 被吸附物正离子化。
(由于形成O2- ,O- ,O22-等吸附态产生了 负电荷层,阻碍了电子的吸附)
第一种为弱键吸附,被吸附的粒子保持电中性, 粒子和固体催化剂表面无电子交换。 第二种为n键吸附,也称受主键吸附,属强化学 吸附,被吸附的粒子从催化剂表面俘获电子形成 吸附键。 第三种是p键吸附,也称施主键吸附,也属强化 学吸附,被吸附的粒子从催化剂表面俘获自由空 穴而形成吸附键。