世界地图常用地图投影知识大全
几种常用地图投影
一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的直线,纬距由中心向外扩大。
变形:投影中央部分的长度和面积变形小,向外变形逐渐增大。
用途:主要用于编绘两极地区,国际1∶100万地形图。
二:等距正割圆锥投影概念:圆锥体面割于球面两条纬线。
变形:纬线呈同心圆弧,经线呈辐射的直线束。
各经线和两标纬无长度变形,即其它纬线均有长度变形,在两标纬间角度、长度和面积变形为负,在两标纬外侧变形为正。
离开标纬愈远,变形的绝对值则愈大。
用途:用于编绘东西方向长,南北方向稍宽地区的地图,如前苏联全图等。
三:等积正割圆锥投影概念:满足mn=1条件,即在两标纬间经线长度放大,纬线等倍缩小,两标纬外情况相反。
变形:在标纬上无变形,两标纬间经线长度变形为正,纬线长度变形为负;在两标纬外侧情况相反。
角度变形在标纬附近很小,离标纬愈远,变形则愈大。
用途:编绘东西南北近乎等大的地区,以及要求面积正确的各种自然和社会经济地图。
四:等角正割圆锥投影概念:满足m=n条件,两标纬间经线长度与纬线长度同程度的缩小,两标纬外同程度的放大。
变形:在标纬上无变形,两标纬间变形为负,标纬外变形为正,离标纬愈远,变形绝对值则愈大。
用途:用于要求方向正确的自然地图、风向图、洋流图、航空图,以及要求形状相似的区域地图;并广泛用于制作各种比例尺的地形图的数学基础。
如我国在1949年前测制的1∶5万地形图,法国、比利时、西班牙等国家亦曾用它作地形图数学基础,二次大战后美国用它编制1∶100万航空图。
五:等角正切圆柱投影——墨卡托投影概念:圆柱体面切于赤道,按等角条件,将经纬线投影到圆柱体面上,沿某一母线将圆柱体面剖开,展成平面而形成的投影。
是由荷兰制图学家墨卡托(生于今比利时)于1569年创拟的,故又称(墨卡托投影)。
变形:经线为等间距的平行直线,纬线为非等间距垂直于经线的平行直线。
离赤道愈远,纬线的间距愈大。
纬度60°以上变形急剧增大,极点处为无穷大,面积亦随之增大,且与纬线长度增大倍数的平方成正比,致使原来只有南美洲面积1/9的位于高纬度的格陵兰岛,在图上比南美洲大。
地图投影总结
6经纬网正交
正轴在任意经线上,由极点向外纬线间隔↑
经纬网形状:纬线表现为同心圆,经线表现为交于极点的放射状直线(同心圆半径),其交角与经差相等
横轴在中央经线上。自赤道向南北纬线间隔↑
在赤道上,自中央经线向东西经线间隔↑
经纬网形状:除经过切点的经线和赤道投影为互相垂直的直线外,其余的经纬线均为曲线
在赤道自中央经线向东西经线间隔相同
(同上)
斜轴经线与所有纬线正交
中央经线上自切点向南北纬线间隔相同
(同上)
圆(延赤道方向延伸图)
柱
1同一纬线上各种变形数值相等
2等变形线与危险平行成同心圆弧分布
标准纬线为赤道(切)
等角(广泛应用于航海图赤道附近地区地图)
3离标准纬线越远,长度、面积变形↑
4离标准纬线等距处,长度、面积变形相同
等距
3离标准纬线越远,角度、面积变形↑
4离标准纬线等距处,角度、面积变形相同
5在任意一条经线上,由赤道(标准纬线)向南北纬线间隔相同
圆
锥
1投影后经线为放射直线,经线夹角小于经差,纬线为同心圆弧
2等变形线与纬线平行成同心圆弧分布
3同一纬线上各种变形数值相同
等角(我国1:1000000地形图,交通图)
4离标准纬线越远,长度、面积变形↑
3全图沿垂直圈方向长度无变形
4离切点越远,角度、面积变形数值↑
5离且点等距处,角度面积变形数值相等
正轴经纬线正交
任意一条经线,从极点向外纬线间隔相同
经纬网形状:纬线表现为同心圆,经线表现为交于极点的放射状直线(同心圆半径),其交角与经差相等
横轴中央经线与所有纬线正交
赤道于所有经线正交
第四节常见的地图投影
(3)高斯-克吕格投影 )高斯为了提高地图的精确度,数学家高 斯和地图学家克吕格设计了一套方案。 每次投影,只使用中央经线两侧3 每次投影,只使用中央经线两侧3º范 围内的图,即一次投影的宽度为6 围内的图,即一次投影的宽度为6°, 全球投影60次,形成60个投影带,东 全球投影60次,形成60个投影带,东 西半球各30个带,以赤道为轴线,把 西半球各30个带,以赤道为轴线,把 这些带连接在一起,形成一个类似西 瓜切开形态的分瓣投影,称为高斯瓜切开形态的分瓣投影,称为高斯-克 吕格投影。带的编号从本初子午线向 东,第一带的中央经线是3 东,第一带的中央经线是3°经线。
2、横轴圆柱投影 圆柱轴与地轴垂直,一个经 圈与圆柱内侧相切。
(1)经纬网形状 (1)经纬网形状 与圆柱相切的经线投影成直线,长度比为 1,称中央经线,其它经线为对称于中央经线 的曲线,所有经线交于极点。赤道投影成垂 直于中央经线的直线,其它纬线为对称于赤 道的曲线。
(2)变形规律
中央经线不变形,离中央经线越远 变形越大。 等高圈为平行于中央经线的直线, 即等变形线平行于中央经线,垂直圈 垂直于中央经线,即从中央经线向两 侧变形增大。与中央经线经差90º 侧变形增大。与中央经线经差90º的经 线变形为无穷大。 离中央经线越远的图形使用价值越 小。
(2)变形规律
纬线上的长度比n=1/cosφ 纬线上的长度比n=1/cosφ,等角性 质的投影n=m, 质的投影n=m,相同纬差的两纬线间的 间距向高纬增大。等积投影mn=1, 间距向高纬增大。等积投影mn=1,相 mn=1 同纬差的两纬线间距向高纬变小。等距 投影m=1, 投影m=1,纬线间距不变。 等高圈(等变形线)就是纬线,垂直 圈(变形增大的方向)就是经线。
再看平射方位投影,经线上的长度比m 再看平射方位投影,经线上的长度比m、 纬线上的长度比n 纬线上的长度比n都是纬度的函数,与经度 没关系。即纬度相等,长度比相等,等变 形线与纬线平行,也可以说等变形线就是 纬线。切点长度比为1 纬线。切点长度比为1,是不变形的点,向 外变形增大,经线是变形增大的方向。 球心投影,经线上的长度比m 球心投影,经线上的长度比m、纬线上 的长度比n 的长度比n也都只是纬度的函数,与经度无 关。同样,纬线就是等变形线,切点不变 形,经线是变形增大的方向。
地图投影
世界地图常用地图投影知识大全在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。
一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。
1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。
等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。
通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。
从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。
我国绝大部分地区的面积变形在10%以内。
中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。
全国大部分地区的最大角度变形在10º以内。
等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。
类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。
常用地图投影
常用的几种地图投影世界地图常用投影一、墨卡托投影(等角正切圆柱投影)投影方法:圆柱投影。
经线彼此平行且间距相等。
纬线也彼此平行,但离极点越近,其间距越大。
不能显示极点。
应用:标准海上航线图(方向)。
其他定向使用:航空旅行、风向、洋流。
等角世界地图。
此投影的等角属性最适合用于赤道附近地区,例如,印尼和太平洋部分地区。
特点:形状等角。
由于该投影维持局部角度关系不变,所以能很好地描绘微小形状。
面积明显变形方向保持了方向和相互位置关系的正确距离沿赤道或沿割纬线的比例是真实的。
局限:在墨卡托投影上无法表示极点。
可以对所有经线进行投影,但纬度的上下限约为80° N 和80° S。
大面积变形使得墨卡托投影不适用于常规地理世界地图。
墨卡托投影坐标系:取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
二、桑逊投影(正轴等积伪圆柱投影)应用:除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等特点:该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线,是等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。
因此,该投影中心部分变形较小。
三、摩尔维特投影(伪圆柱等积投影)投影方法:伪圆柱等积投影。
所有纬线都是直线,所有经线都是等间距的椭圆弧。
唯一例外的是中央子午线,中央子午线是直线。
极点是点。
应用:适用于绘制世界专题或分布地图,经常采用不连续的形式。
将其与正弦曲线投影组合使用可创造出古蒂等面积和博格斯投影。
属性:形状在中央子午线和40°44' N 与40°44' S 纬线的交点处,形状未发生变形。
向外离这些点越远,变形越严重,在投影边处变形严重。
面积等积。
方向仅在中央子午线和40°44' N 与40°44' S 纬线的交点处,局部角度才是真实的。
地图投影知识点总结
地图投影知识点总结地图投影是将三维地球表面映射到二维平面上的过程。
由于地球是一个三维的球体,而地图是一个二维平面,因此无法完美地将地球表面映射到地图上。
地图投影是一项复杂的工程,需要考虑到地球的形状、尺寸、方向和角度等因素,以及地球表面的曲率和变形等问题。
地图投影有很多种类,每种投影方法都有其优点和局限性。
以下是地图投影的一些基本知识点总结:地图投影的分类:地图投影可分为等距投影、等角投影和等面积投影。
等距投影是指保持地球表面上任意两点之间的距离比例不变,但方向可能会发生变化。
等角投影是指保持地球表面上任意两点之间的夹角不变,但距离和面积可能会发生变化。
等面积投影是指保持地球表面上任意两个区域的面积比例不变,但方向和角度可能会发生变化。
根据投影面的形状,地图投影可分为圆柱投影、圆锥投影和平面投影。
地图投影的选择:选择适合的地图投影方法需要考虑到所要表达的地理信息、地图的使用目的和范围等因素。
例如,对于航海、航空和导航等领域,需要选用等角投影;而对于地图的变形要求较小的地理信息分析和遥感影像处理等领域,适合使用等面积投影。
地图投影的变形:地图投影会造成三种类型的变形:形状变形、大小变形和方向变形。
形状变形是指地球表面上的形状在地图上可能发生拉伸或压缩;大小变形是指地球表面上的面积在地图上可能会发生增加或减小;方向变形是指地球表面上的方向在地图上可能会发生偏差。
地图投影方法的选择要考虑到这些变形问题,以减小变形的影响。
常见的地图投影方法:1. 麦卡托投影:是一种圆柱形等距投影,常用于世界地图,保持了纬线和经线的直角,但是南北两极地区的变形严重。
2. 鲍尔投影:是一种圆柱形等面积投影,保持了地区间的面积比例,但是形状变形较大。
3. 兰伯特等角投影:是一种圆锥形等角投影,保持了地区间的角度比例,但是大小和形状变形较大。
4. 鲁宾逊投影:是一种混合投影,综合了以上投影方法的优点,常用于世界地图,尽量减小了地图的变形。
地图投影基础知识知识讲解
一、地图投影的基本问题 二、常见地图投影 三、地图投影的选择与辨认
一、地图投影的基本问题
1 地图投影的概念
地图投影就是在球面与平面之间建立其 经纬度与直角坐标函数关系的数学方法
2 地图投影的变形 3 地图投影的分类 4 地图投影的命名 5 GIS中地图投影的选择与判别
1 地图投影的概念
• 数学上的投影 面1
高斯—克吕格投影 (Gauss-Kruger Projection)
横轴圆柱投影
x y
高斯-克吕格投影原理图
高斯—克吕格投影 (Gauss-Kruger Projection)
高斯投影特征: 中央经线和赤道投影为互相垂直的直线,且为投影 的对称轴 投影后无角度变形,即保角投影 中央经线无长度变形 同一条经线上,纬度越低,变形越大,赤道处最大 同一条纬线上,离中央经线越远,变形越大; 为了保证地图的精度,采用分带投影方法,即将投 影范围的东西界加以限制,使其变形不超过一定的限 度,这样把许多带结合起来,可成为整个区域的投影 在6°带范围内,长度变形线最大不超过0.14%
长度变形、面积变形、角度变形
地图投影变形的图解示例 (摩尔维特投影-等积伪圆柱投影)
长度变形
角度变形
地图投影变形的图解示例
(UTM-横轴等角割圆柱投影)
面积变形和长度变形
投影变形示意图
地图投影——地图投影的变形
地图投影的变形示意
3 地图投影的分类
按承影面的形状分为:方位投影(平面 投影)、圆锥投影Байду номын сангаас园柱投影
空间斜轴墨卡托(SOM)投影
• 该投影是美国针对陆地卫星对地面扫描 图像的需要设计的一种近似等角性质的 投影。
世界地图常用地图投影知识大全
世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。
一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。
1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。
等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。
通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。
从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。
我国绝大部分地区的面积变形在10%以内。
中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。
全国大部分地区的最大角度变形在10º以内。
等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。
类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。
3.3常用地图投影
摩尔维特投影常用来编制世界,大洋图,由于离中央 经线经差±900的经线是一个圆,且圆面积恰好等于半 球面积,因此,该投影也用来编制东、西半球地图。
4、分瓣伪圆柱投影
——古德投(Goode
•
Projection)
1923年美国地理学家古德(J.Paul Goode)提出了一种对伪圆柱投影进行分 瓣的投影方法,即古德投影。 • 全图被分成几瓣,各瓣通过赤道连接在 一起,地图上仍无面积变形,核心区域的 长度、角度变形和相应的伪圆柱投影相比 明显减小,但投影的图形却出现了明显的 裂缝,这种尽量减少投影变形,而不惜图 面的连续性是古德投影的重要特征
17
3、伪圆柱投影
(1)桑逊投影(Sanson Projection)
•
桑逊投影是一种经线为正炫曲线的正轴等 积伪圆柱投影,又称桑逊-弗兰斯蒂德 (Sanson- Flamsteed)投影。该投影的纬线 为间隔相等的平行直线,经线为对称于中央经 线的正弦曲线(图2-27)。中央经线长度比为 1,即m0=1,且n=1, p=1。桑逊投影为等面 积投影,赤道和中央经线是两条没有变形的线, 离开这两条线越远,长度、角度变形越大。因 此,该投影中心部分变形较小,除用于编制世 界地图外,更适合编制赤道附近南北延伸地区 的地图,如非洲、南美洲地图等。
• 彭纳投影 4、伪圆柱投影
3.3.3 中国地图常用投影
斜轴方位投影
正轴割圆锥投影
1、斜轴方位投影
(1)斜轴等积方位投影 全中国地图,亚洲地图,半球地图 (2)斜轴等角割方位投影 中国全图 (3)斜轴等距方位投影 行政区图,交通地图
2、正轴割圆锥投影
1)正轴等角割圆锥投影 全中国及各省或大区域的地势图、气象 图与气候图,专题图。 2)正轴等积割圆锥投影 行政区划图、土地利用图、土壤图。森 林分布图。 3)正轴等距割圆锥投影 交通图及要求距离不变形的图
介绍几种常用的地图投影
介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|)一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
基准纬线取至整度或整分。
1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
2 第二章 地图投影
m
kl
a sin
(2.3)
m
sin 0 sin
tg
2
tg 0
2
k
(2.4)
NIM NUIST
三、极射赤面投影
极射赤面投影 是一种正形割投影, 其光源位于南极,映 像面为一与地球相割 于600N的平面,标 准纬度0 =600
P65-图2.6
NIM NUIST
NIM NUIST
投影后,在映像平 面上,经线为一组 由北极点向赤道辐 射的直线; 而纬线 为一组以北极点为 圆心的同心圆. 可 见投影后经纬线仍 然是正交的,它是 正形投影的一种特 例。
当 l , k 0 为正形圆锥投影的 极限情形。不能再 采用普遍的正形投 影中的关系式来对 之进行讨论,
而是从地图放大系 数的定义入手,来 求有关的表达式。
NIM NUIST
等经纬度网格,没反映麦卡托投影的 放大系数
NIM NUIST
高纬放大系数大
地球表面纬度为处,纬圈的长度为: Ls 2Rs 2a cos
P64-图2.5
1、地图放大系数m的计算
地球表面纬度为 处,纬圈的长度为: Ls 2 Rs 2 a cos
定义:k 为单位经度所张的圆锥角,它表
示了圆锥的几何特征,称之为圆锥常数, 故整个圆锥面张开所成的平面角为 2 k
纬度为 处的纬圈在映像平面上的长度为
: L 2 kl
( l 为映像平面上纬度为 的纬圈上任意
积分
l dl kd
l l0 0 sin
利用三角变换知识: sin 2sin( / 2)cos( / 2)
l dl cos( / 2)
l0
l
k
0
sin(
世界地图常用地图投影知识大全
世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。
一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。
1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。
等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。
通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。
从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。
我国绝大部分地区的面积变形在10%以内。
中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。
全国大部分地区的最大角度变形在10º以内。
等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。
类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。
地理信息系统常用的地图投影
地理信息系统常用的地图投影1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影该投影是等角横切椭圆柱投影。
想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。
所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。
高斯投影的条件和特点★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴高斯投影的条件★投影具有等角性质★中央经线投影后保持长度不变★中央子午线长度变形比为1,其他任何点长度比均大于1★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方★长度比的变形线平行于中央子午线高斯投影6°和3为了控制变形,我国地图采用分带方法。
我国1:1.25万—1:50万地形图均采用6度分带, 1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。
6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。
一般从南纬度80到北纬度84度的范围内使用该投影。
3度分带法从东经1度30分算起,每3度为一带。
这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。
高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制;★径纬网和直角坐标的偏差小,便于阅读使用;★计算工作量小,直角坐标和子午收敛角值只需计算一个带。
第二章_地图投影
最终,得出计算的表达式: (2.22)
可见,其放大系数是关于赤道成纬向轴对称的。
三种地图投影方式小结:
(1)极射赤面投影:通常用于制作极地天气图 和北半球天气底图。 (2)兰勃托投影:通常用于制作中纬度地区的 天气图,如亚欧天气底图。 (3)麦卡托投影:通常用于制作低纬或热带地 区的天气底图。
本章习题及思考题
1、l 、m 和 k 的表达式 利用(2.3)式,可得到l的表达式:
(2.13)
而地图投影放大系数的表达式则为:
(2.14)
在标准纬度上有m=1,根据(2.14)式可解出k
→
(2.15)
2、实际计算m的方法 采用求解极射赤面投影地图投影放大系数的同等的方 法,不难得到以下关系式: 令 =11142.37KM(2.16) 为兰勃托投影映像面上赤道到北极点的距离。
四、Lambert Projection(兰勃托)
在双标准纬线下是一“等角正轴割圆锥投影”,兰勃托 投影属于正形投影,其光源位于地球球心,映像面为一 个与地球表面相割30°N和60°N的圆锥面,圆锥角为 90°。
投影后,在映像平面上,经线为一组由北极点向赤道辐 射的直线,而纬线为一组以北极点为圆心的同心圆弧, 可见投影后经纬线仍然是正交的,也称为双标准线等角 圆锥投影。下面用类似的方法来讨论其地图投影放大系 数的计算。
正形投影的光源位于球心,映像面为圆锥面,映像 面圆锥角为α(0° <α<180°),标准纬度为 Φ。
πΚ
1、地图放大系数m的计算 地球表面纬度为 Φ处,纬圈的长度为: 定义:k 为单位经度所张的圆锥角,表示了圆锥的几 何特征,称之为圆锥常数,故整个圆锥面张开所成 的平面角为 2πΚ 。纬度为 Φ处的纬圈在映像平面上 的长度为 ( l 为映像平面上纬度为 Φ的纬圈上任意一点到北极点 的距离)
各种地图投影的特点及分带方法
各种地图投影的特点及分带方法一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
基准纬线取至整度或整分。
1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y 轴,构成墨卡托平面直角坐标系。
2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
地图学投影总结
关于地图学中几种投影的总结类型一、方位投影方位投影是以平面作为投影面,使平面与地球表面相切或相割,并将球面上的经纬线投影到平面上所得到的图形。
方位投影可分为透视方位投影类和非透视方位投影两。
根据投影面和地球球面相切位置的不同,透视投影可分为三种①当投影面切于地球极点时,称为正轴方位投影。
②当投影面切于赤道时,称为横轴方位投影。
③当投影面切于既不在极点也不在赤道时,称为斜轴方位投影。
一、正轴方位投影投影中心为极点,纬线为同心圆,经线为同心圆的半径,两条经线间的夹角与实地相等。
等变形线都是以投影中心为圆心的同心圆。
包括等角、等距变形性质,主要用于制作两极地区图。
1.正轴等角方位投影平射正轴方位投影又叫等角方位投影或球面投影。
投影条件:视点位于球面上,投影面切于极点。
特点:①纬线投影为以极点为圆心的同心圆,纬线方向上的长度比大于1。
赤道上的长度变形比原来扩大1倍。
②经线投影为以极点为圆心的放射性直线束,经线夹角等于相应的经差,沿经线方向上的长度比大于1,赤道上各点沿经线方向上的长度变形比原来扩大1倍。
③这种投影的误差分布规律是,由投影中心向外逐渐增大。
④经纬线投影后,仍保持正交,所以经纬线方向就是主方向,又因为m = n,即主方向长度比相等,⑤没有角度变形,但面积变形较大,在投影边缘面积变形是中心的四倍。
2.正轴等距方位投影等距方位投影属于任意投影,它既不等积也不等角。
投影后经线保持正长,经线上纬距保持相等。
角度、面积等变形线为以投影中心为圆心的同心圆。
在此投影中,球面上的微圆投影为椭圆,且误差椭圆的长半径和纬线方向一致,短半径与经线方向一致,并且等于微圆半径r 又由于自投影中心,纬线扩大的程度越来越大,所以变形椭圆的长半径也越来越长,椭圆就越来越扁了。
等距正轴方位投影常用来做两极的投影。
二.横轴方位投影平面与球面相切,其切点位于赤道上的任意点。
特点:通过投影中心的中央经线和赤道投影为直线,其他经纬线投影后都是对称于中央经线和赤道的曲线1.横轴等距方位投影其特点是在中央经线上从中心向南向北,纬线间隔相等;在赤道上,自投影中心向西,向东,经线间隔是逐渐扩大的。
最新世界地图常用地图投影知识大全
世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。
一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。
1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。
等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。
通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。
从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。
我国绝大部分地区的面积变形在10%以内。
中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。
全国大部分地区的最大角度变形在10º以内。
等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。
类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界地图常用地图投影知识大全2009-09-30 13:20在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。
一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。
1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。
等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。
通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。
从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。
我国绝大部分地区的面积变形在10%以内。
中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。
全国大部分地区的最大角度变形在10º以内。
等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。
类似投影还有正切差分纬线多圆锥投影(Polyconic Projectionwith Me ridional Intervals on Decrease Away From Central Meridian by T angent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。
该投影的经纬线形状和上一个投影相同,其经线间隔从中央经线向东西两侧按与中央经线经差的正切函数递减。
该投影属于角度变形不大的任意投影,角度无变形点位于中央经线和纬度±44º的交点处,从无变形点向赤道和东西方向角度变形增大较慢,向高纬增长较快。
面积等变形线大致与纬线方向一致,纬度±30º 以内面积变形为10%-20%,在±60º处增至200%。
总体来看,世界大陆轮廓形状表达较好,我国的形状比较正确,大陆部分最大角度变形均在6º以内;大部分地区的面积变形在10%-20%以内。
我国常采用该投影编制世界地图。
2.古德投影(Goode Projection)ﻫ从伪圆柱投影的变形情况来看,中央经线是一条没有变形的线,离开它越远,变形越大。
因此,为了更大程度地减小投影变形,同时使各部分的变形分布相对均匀,1923年美国地理学家古德(J.Paul Goode)提出了一种对伪圆柱投影进行分瓣的投影方法,即古德投影。
古德投影的设计思想是对摩尔维特等积伪圆柱投影进行“分瓣投影”,即在整个制图区域的几个主要部分,分别设置一条中央经线,然后分别进行投影。
投影的结果,全图被分成几瓣,各瓣通过赤道连接在一起,地图上仍无面积变形,核心区域的长度、角度变形和相应的伪圆柱投影相比明显减小,但投影的图形却出现了明显的裂缝,这种尽量减少投影变形,而不惜图面的连续性是古德投影的重要特征(图2-29)。
回味古德投影的设计思想,不难看出:尽可能地减小投影变形,而不惜图面的连续,是该投影设计的重要思路。
3、摩尔维特投影(Mollweide Projection)ﻫ摩尔维特投影是一种经线为椭圆曲线的正轴等积伪圆柱投影。
该投影的的中央经线为直线,离中央经线经差±900的经线为一个圆,圆的面积等于地球面积的一半,其余的经线为椭圆曲线。
赤道长度是中央经线的两倍。
纬线是间隔不等的平行直线,其间隔从赤道向两极逐渐减小。
同一纬线上的经线间隔相等(图2-28)。
摩尔维特投影没有面积变形。
赤道长度比n0=0.9。
中央经线与南北纬40 = 0 \* Arabic 04 4´11.8″的两个交点是没有变形的点,从这两点向外变形逐渐增大,而且越向高纬,长度、角度变形增加的程度越大。
摩尔维特投影常用来编制世界,大洋图,由于离中央经线经差±900的经线是一个圆,且圆面积恰好等于半球面积,因此,该投影也用来编制东、西半球地图。
4、桑逊投影(Sanson Projection)ﻫ桑逊投影是一种经线为正炫曲线的正轴等积伪圆柱投影,又称桑逊-弗兰斯蒂德(Sanson-Flamsteed)投影。
该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线(图2-27)。
中央经线长度比为1,即m0=1,且n=1, p=1。
桑逊投影为等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。
因此,该投影中心部分变形较小,除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等。
5、空间斜轴墨卡托投影(Space Oblique Mercator Projection)这是美国针对陆地卫星对地面扫描图像的需要而设计的一种近似等角的投影。
这种投影与传统的地图投影不同,是在地面点地理坐标(λ,φ)或大地坐标(x,y,z)的基础上,又加入了时间维,即上述坐标是时间t的函数,在四维空间动态条件下建立的投影。
空间斜轴墨卡托投影(简称SOM投影),是将空间圆柱面斜切于卫星地面轨迹,因此,卫星地面轨迹成为该投影的无变形线,其长度比近似等于1。
这条无变形线是一条不同于球面大圆线的曲线,其地面轨迹迹只所以是弯曲的,是因为卫星在沿轨道运行时地球也在自转,卫星轨道对于赤道面的倾角,将卫星地面轨迹限制在约±810之间的区域内(图2-26)。
这种投影,是设想空间圆柱面为了保持与卫星地面轨迹相切,必须随卫星的空间运动而摆动,并且根据卫星轨道运动、地球自转等几种主要条件,将经纬网投影到圆柱表面上。
在该投影图上,卫星地面轨迹为以某种角度与赤道相交的斜线,卫星成像扫描线与卫星地面轨迹垂直,并且能正确反映上述几种运动的影响,可将地面景像直接投影到SOM投影面上。
6、墨卡托投影(MercatorProjection)墨卡托投影属于正轴等角圆柱投影。
该投影设想与地轴方向一致的圆柱与地球相切或相割,将球面上的经纬线网按等角的条件投影到圆柱面上,然后把圆柱面沿一条母线剪开并展成平面。
经线和纬线是两组相互垂直的平行直线,经线间隔相等,纬线间隔由赤道向两极逐渐扩大(图2-25)。
图上无角度变形,但面积变形较大。
在正轴等角切圆柱投影中,赤道为没有变形的线,随着纬度增高,长度、面积变形逐渐增大。
在正轴割圆柱投影中,两条割线为没有变形的线,离开标准纬线愈远,长度、面积变形值愈大,等变形线为与纬线平行的直线。
墨卡托投影的等角航线(斜航线)表现为直线。
这一特性对航海具有重要意义。
但球面上两点之间的最短距离是大圆航线,而不是等角航线,因此远洋航行,完全沿等角航线航行是不经济的。
墨卡托投影的等角性质和把等角航线表现为直线的特性,使其在航海地图中得到了广泛应用。
另外,该投影也可用来编制赤道附近国家及一些区域的地图。
二、半球地图常用投影1、横轴等积方位投影(Lambert,s Azimuthal Equivalent Projection)又名兰勃特(J.H.Lambert)方位投影,赤道和中央经线为相互正交的直线,纬线为凸向对称于赤道的曲线,经线为凹向对称于中央经线的曲线。
该投影图上面积无变形,角度变形明显。
投影时的切点为无变形点,角度等变形线以切点为圆心,呈同心圆分布。
离开无变形点愈远,长度、角度变形愈大,到半球的边缘,角度变形可达38º37΄。
横轴等积方位投影常用于编制东、西半球地图。
东半球的投影中心为70ºE与赤道的交点(图2-31);西半球的投影中心为110º W与赤道的交点。
2、横轴等角方位投影(Transverse Azimuthal Orthomorphic Projection) 横轴等角方位投影又名球面投影(Stereographic Projection)、平射投影,是一种视点在球面,切点在赤道的完全透视的方位投影(图2-32),又称赤道投影。
经纬线网形状与横轴等积方位投影的经纬线网相同。
在变形方面,该投影没有角度变形,但面积变形明显。
赤道上的投影切点为无变形点,面积等变形线以切点为圆心,呈同心圆分布。
离开无变形点愈远,长度、面积变形愈大,到半球的边缘,面积变形可达400%。
3、正轴等距方位投影(Postel’s Projection)ﻫ正轴等距方位投影又名波斯特尔(G.Postel)投影,纬线为同心圆,经线为交于圆心的放射状直线,其夹角等于相应的经差。
该投影的特点是经线方向上没有长度变形,因此纬线间距与实地相等。
切点在极点,为无变形点。
有角度变形和面积变形,等变形线均以极点为中心,呈同心圆分布,离无变形点愈远,变形愈大(图2-33)。
在世界地图集中,正轴等距方位投影多用于编制南、北半球地图和北极、南极区域地图。
三、分洲、分国地图常用投影ﻫ分洲、分国地图采用的投影以方位投影、圆锥投影和伪圆锥投影为主。
1、斜轴等积方位投影(Oblique Equal-area Projection)投影而与椭球面相切于极地与赤道之间的任一点(投影中心)。
中央经线为直线,其余经线为凹向对称于中央经线的曲线;纬线为凹向极地的曲线。
中央经线上,纬线间距从投影中心向南、向北逐渐缩短(图2-34)。
该投影没有面积变形,中央经线上的投影中心无变形,长度和角度变形随着远离投影中心而逐渐增加,等变形线为同心圆,主要用于编制亚洲、欧洲和北美洲等大区域地图。
中国政区图可采用此投影,投影中心通常位于300N,1050E。
类似投影斜轴等角方位投影(Oblique Conformal Projection)的经纬线形状和该投影完全相同,但投影条件按ω=0设计,中央经线上的纬线间距从中心向南、向北逐渐增加。
2、正轴等角圆锥投影(Labert Projection)ﻫ正轴圆锥投影的纬线为同心圆弧,经线为放射性直线。
无论变形性质如何,只要是切圆锥投影,相切的纬线就是标准纬线,其长度比等于1,其它纬线的长度比均大于1;只要是割圆锥投影,相割的两条纬线为标准纬线,其长度比为1。