热电偶是工业上最常用的温度检测元件之一其优点是测量精度高
接触式测温方法的分类和适用范围
接触式测温方法的分类和适用范围热电偶是工业上最常用的温度检测元件之一。
它通过将两种不同材料的导体或半导体A和B 焊接起来,构成一个闭合回路,当导体A和B的两个接触点之间存在温差时,两者之间便产生电动势,并在回路中形成热电流,因此,可将温度的变化转变成热电势或热电流的变化。
热电偶直接与被测对象接触,不受中间介质的影响。
①测量精度高;②测量范围广;③构造简单,使用方便;④将温度转换成电信号,便于处理和远传。
热电势的产生热电势=接触电势+温差电势!接触电势:金属导体的材料不同,导体内部自由电子密度不同→自由电子扩散→若A导体的自由电子密度较大,则→较多的自由电子由A至B,而返回较少→平衡时,A导体失去电子带正电,B导体得到电子带负电→A、B接触处形成一定的电位差,及接触电势(帕尔帖电势)。
k:玻尔兹曼常数(k=1.38×10-23J/K)e:电子电荷量(e=1.602×10-19)NA:导体A电子密度NB:导体B电子密度T:接触点绝对温度温差电势:单一导体两端温度不同,导体内部自由电子高温端具较大动能→自由电子向低温端扩散→高温端失去电子带正电,低温端得到电子带负电→导体内部形成静电场,阻止电子继续扩散→动态平衡时,在导体两端产生一个电位差,及温差电势(汤姆逊电势)δ:汤姆逊系数,表示温差为1℃时所产生的电动势值,与导体材料的性质有关。
热电势是T和T0的温度函数的差,而不是温差的函数-热电势的非线性若两个电极为同种导体,则NA=NB,δA=δB,则EAB(T,T0)≡0,即热电偶必为两种材料组成;若T=T0,则EAB(T,T0)≡0,即产生热电势的条件是两接点温度不同;导体接触面积无关。
若T0=0,则EAB(T,T0)=f(T),热电势和温度之间为唯一对应的单值函数关系。
结论:热电势的大小只与两种导体材料A、B及冷热端温度有关,与热电极的形状、大小、长短,以及两导体接触面积无关。
构成热电极的导体材质有何要求?均质导体定律由同一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不产生热电势热电偶的热电势如何输出?在制作热电偶时,一定要选用均质材料,以防止因材质不均匀而产生附加热电势,造成测量误差。
热电偶测温原理及常见故障
热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
电热偶的工作原理及使用注意事项
热电偶热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
热电偶介绍
K是热电偶的分度号表示可以检测0-1200的温度范围。
还有S分度号的可以检测0-1600的分度号。
1检出(测)元件热电偶是工业上最常用的温度检测元件之一。
必须配二次仪表,其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
2根据温度测量范围及精度,选用相应分度号的热电偶、使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。
(K型热电偶)镍铬-镍硅热电偶镍铬-镍硅热电偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。
正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200~1300℃。
K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。
广泛为用户所采用。
K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。
镍铬-镍硅热电偶材料性能参数名称镍铬合金丝镍硅合金丝密度g/cm3 8.5 8.620℃时的电阻率μ Ω•cm 70.6 29.40~1200℃平均电阻温度系数1/℃ 2.9×10-3 1.6×10-3熔点 1427 1399k热电偶有磁性那一极为负极,记住<慈父>这个词,就不忘了.品牌:胜利,V ICT OR,VC 型号:VC-01,VC01,VC 01,VICTOR 01,VICTOR-01,VICTOR01 测量范围:模拟八种热电偶(R/S/K/E/J/T/B/N)(kPa)精度等级:DCV输出(100mV/1000mV),电阻模拟输出(400Ω)环境温度:电阻类型过程仪表的校验(℃)装箱数:1胜利过程仪表校验仪VICTOR 01温度校验仪特点:模拟八种热电偶(R/S/K/E/J/T/B/N)和两种热电阻(Pt100/ Cu50)输出DCV输出(100mV/1000mV),电阻模拟输出(400Ω)mV、电阻输出功能可完成额外的温度及mV、电阻类型过程仪表的校验可摄氏和华氏温度显示5位LCD大字符显示,简便的键盘操作小巧、坚固、可靠,适合现场使用面板自动校准价格低廉技|术|指|标|输出功能。
热电偶热电阻测温应用原理
热电偶热电阻测温应用原理热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。
pt100和cu50的区别?
2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
3)端面热电阻
①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
热电偶和热电阻的区别,pt100和cu50的区别?
浏览次数:1446次悬赏分:0 | 解决时间:2009-6-15 23:34 | 提问者:beikehanrong
热电偶和热电阻的区别,pt100和cu50的区别?
最佳答案 热电偶
热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是:
热电偶和热电阻热敏电阻的区别
热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。
当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
温度传感器的总结
1.关于温度传感器方面的论文温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。
温度传感器是最早开发,应用最广的一类传感器。
温度传感器的市场份额大大超过了其他的传感器。
从17世纪初人们开始利用温度进行测量。
在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。
这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。
这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。
由于它必须有两种不同材质的导体,所以称之为“热电偶”。
不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。
热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。
对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。
由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。
也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。
温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC 温度传感器。
IC温度传感器又包括模拟输出和数字输出两种类型。
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。
热电偶原理和常见故障
热电偶原理和常见故障热电偶的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的阻碍。
②测量范围广。
经常使用的热电偶从-50~+1600℃都可持续测量,某些特殊热电偶最低可测到-271--+2800℃如金铁镍铬和钨-铼。
③构造简单,利用方便。
热电偶一般是由两种不同的金属丝组成,而且不受大小和开头的限制,外有爱惜套管,用起来超级方便。
一、热电偶测温大体原理是将两种不同材料的导体或半导体焊接起来,组成一个闭合回路。
由于两种不同金属所携带的电子数不同,当两个导体的二个执着点之间存在温差时,就会发生高电位向低电位放电现象,因此在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。
热电偶确实是利用这一效应来工作的。
二、热电偶的种类及结构形成(1)热电偶的种类经常使用热电偶可分为标准热电偶和非标准热电偶两大类。
所谓标准热电偶是指国家标准规定了其热电势与温度的关系、许诺误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在利用范围或数量级上均不及标准化热电偶,一样也没有统一的分度表,要紧用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全数按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶靠得住、稳固地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必需牢固;②两个热电极彼此之间应专门好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方即靠得住;④爱惜套管应能保证热电极与有害介质充分隔离。
3、热电偶冷端的温度补偿由于热电偶的材料一样都比较珍贵(专门是采纳贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低本钱,通常采纳补偿导线把热电偶的冷端(自由端)延伸到温度比较稳固的操纵室内,连接到仪表端子上。
热电偶和热电阻热敏电阻的区别
热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
基于热电偶的测温系统设计_毕业设计完整版
测温技术在生产过程中,在产品质量控制和检测设备在线故障诊断和安全保护 以及节约能源等方面发挥了重要作用。
xxxxxxxxxxxxxxxx设设设设基于热电偶的测温系统设计基于热电偶的测温系统设计基于热电偶的测温系统设计111111日日xxxxxxxxxxxxxxx测控技术与仪器测控技术与仪器测控技术与仪器11机电工程系机电工程系机电工程系xxxxxxxxxxxxxxxxxxxxxxxx基于热电偶的测温系统设计基于热电偶的测温系统设计基于热电偶的测温系统设计摘要摘要摘要在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同时结构简单动态响应好更能够远传时结构简单动态响应好更能够远传时结构简单动态响应好更能够远传420ma420ma420ma电信号便于自动控制和集中控制电信号便于自动控制和集中控制电信号便于自动控制和集中控制在温度测量中占有重要地位
XXXXXX 毕 业 设 计
基于热电偶的测温系统设计
摘要
在工业生产过程控制中,温度是一个重要的测量参数,而热电偶是工程上应用 最广泛的温度传感器之一,他的主要特点就是测温范围宽,性能比较稳定,同时同 时结构简单,动态响应好,更能够远传 4-20mA 电信号,便于自动控制和集中控制, 在温度测量中占有重要地位。但由于热电偶的热电势与温度成非线性关系增加了显 示与处理的复杂性;且随着工业发展、自动化的不断加强,对温度精度要求越来越 高。在现代化的工业现场,常用热电偶测试高温,测试结果送至主控机。由于热电 偶的热电势与温度呈非线性关系,所以必须对热电偶进行线性化处理以保持测试精 度。该系统以单片机为控制核心,通过高精度模/数转换器对热电偶电动势进行采 样、放大,并在单片机内采用一定算法实现对热电偶的线性化处理并通过液晶屏显 示相应测量数据。 关键词:传感器 热电偶 模/数转换器 液晶屏
热电偶与热电阻
电偶一般用于中高温的测量,而热电阻主要是低温的测量。
采用何种,具体看看下面的介绍:热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
热电偶温度传感器设计报告
热电偶温度传感器设计报告热电偶温度传感器是一种将温度变化转化为电能输出的装置,其设计的主要目标是实现温度的准确测量和控制。
本设计报告将详细介绍热电偶温度传感器的设计过程,包括原理分析、材料选择、结构设计、制造工艺以及测试验证等方面。
热电偶温度传感器是基于塞贝克效应(Seebeck effect)工作的。
塞贝克效应是指两种不同材料组成的闭合回路中,当两个接触点处的温度不同时,回路中会产生电动势。
热电偶温度传感器就是利用这一原理,将温度变化转化为电动势变化,从而实现温度的测量。
热电偶温度传感器的主要材料包括热电偶丝和连接导线。
热电偶丝是实现温度测量的关键元件,需要具备高灵敏度、良好的稳定性和抗氧化性等特性。
常见的热电偶丝有镍铬合金、铜镍合金和铂等。
连接导线主要用于连接热电偶丝和测量仪表,应具备耐高温、抗氧化和良好的导电性能等特性。
热电偶温度传感器的结构设计应考虑测量范围、精度和稳定性等因素。
常见的热电偶温度传感器结构有铠装式和非铠装式两种。
铠装式结构具有较高的抗振性和耐磨性,适用于恶劣环境下的温度测量。
非铠装式结构则具有较小的体积和重量,适用于实验室和工业生产中的温度测量。
热电偶温度传感器的制造工艺主要包括焊接、保护涂层和校准等环节。
焊接工艺应保证热电偶丝和连接导线之间的可靠连接;保护涂层能够有效保护传感器免受腐蚀和氧化;校准环节则确保了传感器的测量精度和稳定性。
为了验证热电偶温度传感器的性能指标是否达到设计要求,需要进行一系列的测试验证。
这些测试包括灵敏度测试、线性度测试、重复性测试和稳定性测试等。
通过这些测试,可以评估传感器的测量精度、响应时间和长期稳定性等性能指标。
本文对热电偶温度传感器的设计进行了详细的介绍和分析。
通过原理分析、材料选择、结构设计、制造工艺以及测试验证等方面的探讨,我们成功地设计出一款具有高灵敏度、良好稳定性和抗氧化性的热电偶温度传感器。
该传感器能够广泛应用于各种温度测量场合,为工业自动化、实验室研究和环境监测等领域提供重要的技术支持。
马弗炉中的热电偶有 型、 型等等不同规格 以下是有关热电偶的小知识
马弗炉中的热电偶有K型、S型、R型等等不同规格,以下是有关热电偶的小知识。
热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:1. 测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
2. 测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
3. 构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应该注意以下基本概念:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这热电偶的热电势仅是工作端温度的单值函数。
常用热电偶丝材及其性能:1、铂铑10-铂热电偶(S型,也称为单铂铑热电偶)Orton使用的就是这种热电偶该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂;它的特点是:热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;精度高,它是在所有热电偶中,准确度等级最高的,通常用作标准或测量较高的温度;使用范围较广,均匀性及互换性好;主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。
热电偶与热电阻的区别pt100与cu50的区别
热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
热电偶测温的原理与应用
热电偶测温的原理与应用作者:牛刚来源:《华东科技》2012年第12期【摘要】从热电偶的原理、测温的优缺点、日常应用及测量准确的方法等进行了简明阐述。
【关键词】热电偶;原理;准确性;稳定性热电偶作为测量温度常用的一次元件,因为其测量范围宽,原理简单、安装方便等,在电力生产行业及其他工业领域有着较为广泛的应用。
在整个生产流程控制过程中,对温度的监视、调整与控制方面所起的作用功不可没。
1 热电偶的测温原理热电偶测温的基本原理是根据热电效应原理。
把任意两种不同的金属导体(或半导体)连接成闭合回路,如果两接点的温度不相等,在测量回路中就会产生热电动势,形成一定电流,这就是热电效应。
热电偶就是用两种不同的金属材料一端焊接而成的。
焊接的一端叫作测量端(热端),未焊接的一端叫作参考端(冷端)。
如果参考端温度恒定不变,则热电势的大小和方向只与两种材料的特性和测量端的温度有关,且热电势与被测温度之间有固定的函数关系,利用这个对应关系,只要测量出热电势的大小,就可达到测量相应温度的目的。
热电偶产生热电势的两个条件是:(1)必须有两种性质不同且符合一定热电特性要求的导体或半导体组成;(2)热电偶测量端和参比端之间必须有相应的温度差。
2 热电偶测温的优点热电偶测温根据其在各个工业场所的应用,大体有以下几点优点。
(1)测温准确度比较高。
应用相对较多的k分度热电偶,其I级误差范围在±0.4%t左右,II级误差范围也能达到±0.75%t,其他测量精度较高的如S分度等测量准确度更高。
(2)结构相对简单,便于维修;其工作原理决定了其结构简单化和维护的方便。
其元件组成包括电极、接线端子、绝缘子、护套等。
(3)动态响应速度较快;由于其结构构成,使其在测温过程中不会产生过大的热惯性,最终使其在整个动态测量过程中响应速度较快。
(4)测量温度范围比较宽;常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃。
k型热电偶测温实验结论
k型热电偶测温实验结论随着工业发展的不断发展,测量和检测温度变化变得越发重要,而K型热电偶正是用于进行温度测量的最常用的传感器之一。
的特点是精度高,范围宽,价格便宜,抗干扰能力强,简单可靠地测量温度,因此受到越来越多的欢迎。
K型热电偶是一种双极热电偶,由热电材料、金属材料及电缆组成。
电材料采用不同的金属元素和熔合物混合制成,金属材料可以是铜、铁、钛、银等,电缆是将热电偶的两个极细尖线连接在一起的电缆,采用PTFE、金属护套、橡胶等外观材料,它的工作原理主要是热电材料受温度影响由接头处的温度产生的电压,测量该电压即可得到热电偶的测量温度。
K型热电偶的优点是精度高,范围宽,价格便宜,抗干扰能力强,可以简单可靠地测量温度,是工业温度测量中使用最广泛的热电偶之一。
精度可以达到±2℃,范围宽,可以测量-200到1200的温度,使用的价格也很实惠,是实现实时的远程温度检测的最佳选择。
于其采用防水防潮的设计,可以在极端恶劣的环境中精确测量温度,例如湿度高,温度高,有腐蚀性气体等环境,可以使用非常长的时间。
K型热电偶是工业测温领域中,一种传感器可以解决许多温度测量问题。
具有精度高,范围宽,价格低廉,抗干扰能力强等特点,使它成为实时远程温度检测的最佳选择,应用非常广泛。
但K型热电偶也有缺点,例如受加热物体的热量影响,测量结果会有一定的偏差;此外,测量结果受外界温度的影响也很大,这也需要用户当心。
K型热电偶的测量结果准确可靠,可以解决很多温度检测问题。
的特点是精度高,范围宽,价格低廉,抗干扰能力强,使用方便,实用性强,是目前使用最广泛的一种热电偶之一。
为了提高K型热电偶测量温度的准确性,除了采用正确的接线方式和技术参数外,还需要尽量减少传感器与物体的热量影响,减少温度的误差以及外界温度的影响,这样才能有效的提高K型热电偶测量的温度精度。
综上所述,K型热电偶的测温性能特点为精度高,范围宽,价格低廉,抗干扰能力强,使用方便,实用性强,是目前使用最广泛的一种热电偶,且可用于极端环境中的温度检测。
温度元件介绍
温度元件介绍专业:热控姓名:宋吉琦2008/3/30一、热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电势的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
分度号代表温度范围,且代表每种分度号的热电偶具体多少温度输出多少伏特的电压或者毫伏的电压。
热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电偶是工业上最常用的温度检测元件之一。
其优点是:
①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成
(1)热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶
我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结
构要求如下:
①组成热电偶的两个热电极的焊接必须牢固;
②两个热电极彼此之间应很好地绝缘,以防短路;
③补偿导线与热电偶自由端的连接要方便可靠;
④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。
因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。
温度测量仪表的分类
温度测量仪表按测温方式可分为接触式和非接触式两大类。
通常来说接触式测温仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用
于很高的温度测量。
非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。
热电阻的应用原理
热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
1.热电阻测温原理及材料
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。
2.热电阻的结构
(1)精通型热电阻
从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。
为消除引线电阻的影响同般采用三线制或四线制,
(2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm,最小可达φmm。
与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
(3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。
它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。
(4)隔爆型热电阻
隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。
隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。
3.热电阻测温系统的组成
热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。
必须注意以下两点:①热电阻和显示仪表的分度号必须一致
②为了消除连接导线电阻变化的影响,必须采用三线制接法
(2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。
与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热
惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
(3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。
(4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。