四川省绵阳市涪城区2020年中考数学二模试卷及参考答案

合集下载

四川省绵阳市2019-2020学年中考二诊数学试题含解析

四川省绵阳市2019-2020学年中考二诊数学试题含解析

四川省绵阳市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.函数y =113x x +--自变量x 的取值范围是( ) A .x≥1B .x≥1且x≠3C .x≠3D .1≤x≤32.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .3.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径为6,则GE+FH 的最大值为( )A .6B .9C .10D .124.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DEBC 的值为( )A .13B .14C .15D .255.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =2,BC =5,则△ABC 的周长为( )A .16B .14C .12D .106.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个7.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠09.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定10.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 11.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小 12.单项式2a 3b 的次数是( ) A .2B .3C .4D .5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不相等的实根,则实数k 的取值范围是_____. 14.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.15.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数 16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.16.某个“清涼小屋”自动售货机出售A 、B 、C 三种饮料.A 、B 、C 三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A 饮科的数量(单位:瓶)是B 饮料数量的2倍,B 饮料的数量(单位:瓶)是C 饮料数量的2倍.某个周六,A 、B 、C 三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug ,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元. 17.若1+23x x --x 的范围是_____. 18.二次函数22y x mx m =++-的图象与x 轴有____个交点 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)下表给出A 、B 、C 三种上宽带网的收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min ) A 30 25 0.05 B50500.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?20.(6分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(6分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.22.(8分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移5个单位长度得到点B,判断四边形OABC的形状并证明你的结论.23.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).24.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件1800 510 250 210 150 120数人数 1 1 3 5 3 2(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.25.(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.26.(12分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A 、B ,A 公司有铵肥3吨,每吨售价750元;B 公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b (单位:元/千米)与运输重量a (单位:吨)的关系如图所示.(1)根据图象求出b 关于a 的函数解析式(包括自变量的取值范围);(2)若农场到B 公司的路程是农场到A 公司路程的2倍,农场到A 公司的路程为m 千米,设农场从A 公司购买x 吨铵肥,购买8吨铵肥的总费用为y 元(总费用=购买铵肥费用+运输费用),求出y 关于x 的函数解析式(m 为常数),并向农场建议总费用最低的购买方案.27.(12分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.2.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.3.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 4.B【解析】【分析】根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【详解】解:∵13 ADDB=,∴14 ADAB=,∵DE∥BC,∴△ADE∽△ABC,∴14 DE ADBC AB==,故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.5.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键. 6.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.7.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.8.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.9.B【解析】【分析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.10.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.12.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.k>3 4【解析】【分析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>34,故答案为k>34.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.14.54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.15.0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.950【解析】【分析】设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x﹣19x=10.1x元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C 饮料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期间一天的销售收入为:19×50=950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.17.x≤1.【解析】【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.18.2【解析】【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,即当y=0时,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,即二次函数y=x2+mx+m-2的图象与x轴有2个交点,故答案为:2.【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(I)见解析;(II)见解析;(III)见解析.【解析】【分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.20.(1)117;(2)答案见图;(3)B;(4)30.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.【解析】【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.122.(1)2y x= (2)﹣1<x <0或x >1.(3)四边形OABC 是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为k y x =(k >0),然后根据条件求出A 点坐标,再求出k 的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)首先求出OA 的长度,结合题意CB ∥OA 且5OABC 是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为k y x =(k >0) ∵A (m ,﹣2)在y=2x 上,∴﹣2=2m ,∴解得m=﹣1.∴A (﹣1,﹣2).又∵点A 在k y x=上,∴k 21-=-,解得k=2., ∴反比例函数的解析式为2y x =. (2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为﹣1<x <0或x >1. (3)四边形OABC 是菱形.证明如下:∵A (﹣1,﹣2),∴22OA 125+=.由题意知:CB∥OA且CB=5,∴CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴22OC215=+=.∴OC=OA.∴平行四边形OABC是菱形.23.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.24.(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件【解析】试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;(2)把月销售额320件与大部分员工的工资比较即可判断.(1)平均数件,∵最中间的数据为210,∴这组数据的中位数为210件,∵210是这组数据中出现次数最多的数据,∴众数为210件;(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.考点:本题考查的是平均数、众数和中位数点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.25.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用. 26.(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析.【解析】 【分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论. 【详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x )-8]×2m =-7mx +64m 元,因此农场购买铵肥的总费用y =50x +5600-7mx +64m =(50-7m )x +5600+64m (1≤x≤3),分一下两种情况进行讨论; ①当50-7m≥0即m≤507时,y 随x 的增加而增加,则x =1使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买1吨,从B 公司购买7吨, ②当50-7m <0即m >507时,y 随x 的增加而减少,则x =3使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买3吨,从B 公司购买5吨. 【点睛】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式. 27.见解析 【解析】 【分析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE . 【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC . 即∠BAC=∠DAE , 在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ). ∴BC=DE . 【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .。

绵阳市中考数学二模考试试卷

绵阳市中考数学二模考试试卷

绵阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·永州模拟) 在,-1,-3,0这四个实数中,最小的是()A .B . -1C . -3D . 02. (2分)下列结论中错误的是()A . 四边形的内角和等于它的外角和B . 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0)C . 方程x2+x-2=0的两根之积是-2D . 函数y= 的自变量x的取值范围是x>33. (2分)数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是()A . -6B . 2C . -6或2D . 都不正确4. (2分)(2019·高新模拟) 有意义,那么x的取值范围是()A . x≥5B . x>-5C . x≥-5D . x≤-55. (2分)(2017·北仑模拟) 下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分)(2019·高新模拟) 下列计算正确的是()A . x2+x2=x4B . x2•x3=x5C . x6÷x2=x3D . (2x)3=6x37. (2分)(2019·高新模拟) 五名同学的数学成绩分别为85,92,92,77,90.这组数据的众数和中位数分别是()A . 92,85B . 90,85C . 92,90D . 92,928. (2分)(2019·高新模拟) △ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1∶2,已知△ABC的面积是10,则△A′B′C′的面积是()A . 10B . 20C . 40D . 809. (2分)(2018·株洲) 关于的分式方程解为,则常数的值为()A .B .C .D .10. (2分)(2019·高新模拟) 函数y=的大致图象为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)(2019·陇南模拟) 如图是一个几何体的三视图,这个几何体的全面积为________.(π取3.14)12. (1分) (2016七上·孝义期末) 如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为________.13. (1分)(2018·衢州) 定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。

备战2020中考【6套模拟】绵阳市中考第二次模拟考试数学试卷含答案

备战2020中考【6套模拟】绵阳市中考第二次模拟考试数学试卷含答案

备战2020中考【6套模拟】绵阳市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.C(第4题)1ABDE已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上) 11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度.(第9题)BADCEF16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分)先化简,再求值:121a aaa a--⎛⎫÷-⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=,∠DAC=30°,求△ABC的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?AB D CFE24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠6 6.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x。

四川绵阳涪城区中考数学二诊试卷(含答案解析)

四川绵阳涪城区中考数学二诊试卷(含答案解析)

年四川省绵阳市涪城区中考数学二诊试卷一.选择题(共12小题,满分36分,每小题3分)1.的算术平方根是()A.2 B.4 C.±2 D.±42.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.843.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012kmC.95×1011km D.9.5×1011km4.已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)的值为()A.0 B.﹣1 C.1 D.(﹣3)5.下列不等式变形正确的是()A.由a<b,得a﹣2>b﹣2 B.由a<b,得3a<3bC.由a<b,得﹣2a<﹣2b D.由a<b,得|a|<|b|6.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.77.已知关于x的一元二次方程x2﹣kx﹣6=0的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm9.无人机在A处测得正前方河流两岸B、C的俯角分别为α=70°、β=40°,此时无人机的高度是h,则河流的宽度BC为()A.h(tan50°﹣tan20°)B.h(tan50°+tan20°)C.D.10.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′,点B′恰好落在BC边土,B′C′和CD交于点P,则∠B′PD的度数是()A.105°B.120°C.130°D.135°12.如图,每个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中有3个黑点,第②个图形中有14个黑点,第③个图形中有33个黑点,按此规律,则第⑦个图中黑点的个数是()A.189 B.190 C.245 D.246二.填空题(共6小题,满分18分,每小题3分)13.多项式x2﹣4x+m分解因式的结果是(x+3)(x﹣n),则=.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=.15.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.16.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为.17.如图,菱形ABCD中,∠BAD=60°,E是BD上一点,∠AEF=60°.DE=1,BF=,则菱形的边长为.18.如图,AB是半圆的直径,E是弦AC上一点,过点E作EF⊥EB,交AB于点F,过点A 作AD∥EF,交半圆于点D.若C是的中点,=,则的值为.三.解答题(共7小题,满分86分)19.(16分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣.(2)先化简,再求值:(﹣x+1)÷,其中x=﹣2.20.(11分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?21.(11分)某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=(1)工人甲第几天生产的产品数量为80件?(2)设第x天(0≤x≤15)生产的产品成本为P元/件,P与x的函数图象如图,工人甲第x天创造的利润为W元.①求P与x的函数关系式;②求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?22.(11分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y 轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.23.(11分)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求sin∠AED的值;(3)如果BD=10,求半径CD的长.24.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.25.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.年四川省绵阳市涪城区中考数学二诊试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.【分析】由三视图可知该几何体是一个三棱柱,先根据勾股定理得到主视图三角形等边的长,再根据三棱柱的全面积=2个底面积+3个侧面积,列式计算即可求解.【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.【点评】考查了由三视图判断几何体,由三视图求几何体的表面积,关键是由三视图得到数据的对应量.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9500 000 000 000km用科学记数法表示是9.5×1012km,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值4.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.【解答】解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,则(a+b)的值为:1.故选:C.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.【分析】根据不等式的3个性质找到变形正确的选项即可.【解答】解:A、由a<b,得a﹣2<b﹣2,错误;B、由a<b,得3a<3b,正确;C、由a<b,得﹣2a>﹣2b,错误;D、由a<b,|a|与|b|不能确定大小,错误;故选:B.【点评】考查不等式性质的应用;用到的知识点为:不等式的两边加上或减去同一个数或式子,不等号的方向不变;乘以或除以同一个不为0的正数,不等号的方向不变;乘以或除以同一个不为0的负数,不等号的方向改变.6.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:D.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.7.【分析】把x=3代入可求得k的值,再解方程即可.【解答】∵关于x的一元二次方程x2﹣kx﹣6=0的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3或x=﹣2,故选:A.【点评】本题主要考查方程根的定义,由方程根的定义求得k的值是解题的关键.8.【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.【点评】此题考查垂径定理,关键是根据垂径定理得出OE的长.9.【分析】利用角的三角函数定义求出CD,BD,从而可得BC.【解答】解:过A作CB延长线的高,垂足为D,由题意可知∠ABD=α,∠ACB=β,AD=h,∴BD=h•tan20°,CD=h•tan50°,∴BC=CD﹣BD=h(tan50°﹣tan20°).故选:A.【点评】本题考查了解三角形的应用,关键是利用角的三角函数定义求出CD,BD.10.【分析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x =﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c <0,而a+b+c=0,则a﹣2b+c=﹣3b,由b>0,于是可对④进行判断.【解答】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).11.【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数,然后根据三角形的外角的性质即可得到结论.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠AB′C′=∠B=75°,∠C=180°﹣75°=105°.∴∠PB′C=180°﹣2×75°=30°,∴∠B′PD=∠PB′C+∠C=135°,故选:D.【点评】主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.【分析】根据已知图形得出第n个图形中黑点的个数为3n+(2n﹣1)2﹣1,据此求解可得.【解答】解:∵第①个图形中黑点的个数3=3×1+12﹣1,第②个图形中黑点的个数14=3×2+32﹣1,第③个图形中黑点的个数33=3×3+52﹣1,……∴第⑦个图形中黑点的个数为3×7+132﹣1=189,故选:A.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中黑点的个数为3n+(2n﹣1)2﹣1.二.填空题(共6小题,满分18分,每小题3分)13.【分析】根据题意列出等式,利用多项式相等的条件求出m与n的值,代入原式计算即可求出值.【解答】解:根据题意得:x2﹣4x+m=(x+3)(x﹣n)=x2+(3﹣n)x﹣3n,∴3﹣n=﹣4,m=﹣3n,解得:m=﹣21,n=7,则原式=﹣3,故答案为:﹣3【点评】此题考查了因式分解﹣十字相乘法,熟练掌握因式分解的方法是解本题的关键.14.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.15.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.16.【分析】利用旋转的性质画出旋转前后的图形,然后写出A′点的坐标,则可判断点A′在平面直角坐标系中的位置.【解答】解:如图,线段OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为(﹣3,2),点A′在第二象限.故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.【分析】根据菱形性质得出AD=AB,推出△ADB是等边三角形,推出AD=AB=BD,∠ADE=∠ABE=60°,设AD=BD=x,求出∠DAE=∠FEB,证△ADE∽△EBF,推出=,代入取出即可.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=AB=BD,∠ADE=∠ABE=60°,设AD=BD=x,∵∠AEF=60°,∴∠DAE+∠DEA=180°﹣60°=120°,∠DEA+∠FEB=180°﹣60°=120°,∴∠DAE=∠FEB,∵∠ADE=∠EBF,∴△ADE∽△EBF,∴=,∴=,x=3,故答案为3.【点评】本题考查了等边三角形的性质和判定,三角形的内角和定理,相似三角形的性质和判定,菱形的性质等知识点的综合运用,关键是推出△ADE∽△EBF.18.【分析】作辅助线,构建直角三角形,根据,设AF=a,AE=4a,根据圆周角定理得:∠DAC=∠BAC,由平行线的性质和等腰三角形三线合一的性质得:AG=EG=2a,由勾股定理得:FG=a,证明△ADE∽△AGF,计算AD=,可得结论.【解答】解:延长BE交AD于A',∵AD∥EF,EF⊥BE,∴AA'⊥BA',∴∠AA'B=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴D与A'重合,∵,∴设AF=a,AE=4a,过F作FG⊥AE于G,∵C是的中点,∴,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴,∴=,AD=,∴==,故答案为:.【点评】本题考查了圆周角定理、平行线的性质,也考查了相似三角形的判定与性质,延长BE,证得D、E、B共线是关键.三.解答题(共7小题,满分86分)19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握实数与分式的混合运算顺序和运算法则.20.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.【解答】解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)根据y=80求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.【解答】解:(1)根据题意,得:∵若8x=80,得:x=10>5,不符合题意;若5x+10=80,解得:x=14.答:工人甲第14天生产的产品数量为80件;(2)①由图象知:当0≤x≤5时,P=40;当5<x≤15时,设P=kx+b,将(5,40),(15,50)代入得:,∴,∴P=x+35,综上,P与x的函数关系式为:P=;②当0≤x≤5时,W=(65﹣40)×8x=200x,当5<x≤15时,W=(65﹣x﹣35)(5x+10)=﹣5x2+140x+300,综上,W与x的函数关系式为:W=;当0≤x≤5时,W=200x,∵200>0,∴W随x的增大而增大,∴当x=5时,W最大为1000元;当5<x≤15时,W=﹣5(x﹣14)2+1280,当x=14时,W最大值为1280元,综上,第14天时,利润最大,最大利润为1280元.【点评】本题考查一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=售价﹣成本,学会利用函数的性质解决最值问题.22.【分析】(1)由点A在反比例函数图象上,用待定系数法确定反比例函数的解析式;(2)由反比例函数解析式先求出点B的坐标,过B作BE⊥AD于E,可得到AE、BE间的长度关系,从而得到∠BAE的度数,再根据∠BAC的度数求出∠DAC,从而得到tan∠DAC 的值,根据tan∠DAC的值及线段的和差关系,求得点C的坐标,从而确定一次函数AC 的解析式;(3)设M的横坐标为m,可知道M、N点的坐标,利用三角形的面积公式得到关于m的二次函数,利用二次函数的性质,得到△MNC的最大面积.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(2,1)∴=1,∴k=2;(2)∵k=2,所以反比例函数解析式为y=∵点B(1,a)在反比例函数y=的图象上,∴a==2,∴点B(1,2)过B作BE⊥AD于E,则AE=BE=2﹣1.∴∠ABE=∠BAE=45°又∵∠BAC=75°,∴∠DAC=30°∴tan∠DAC=tan30°=∴DC=AD==2,∴OC=2﹣1=1,∴C(0,﹣1)设直线AC的解析式为y=kx+b∴,解得∴直线AC的解析式为y=x﹣1(3)设M(m,)(0<m<2),则N(m, m﹣1)则MN=﹣(m﹣1)=﹣m+1∴S△CMN=(﹣m+1)•m=﹣m2+m+=﹣(m﹣)2+当m=时,△CMN的面积有最大值,最大值为【点评】本题考查了待定系数法确定反比例函数、一次函数的解析式,等腰三角形的性质,二次函数的最大值等知识点.综合性比较强.掌握待定系数法及二次函数最大值的求法是关键.做BE⊥AD得到等腰三角形难点.23.【分析】(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,DF=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由正弦函数的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k •(10+5k),解此方程即可求得答案.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2,∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA,∵ED为⊙C直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点;(2)解:连接DM,设EF=4k,DF=3k,则ED==5k,∵AD•EF=AE•DM,∴DM==k,∴ME==k,∴sin∠AED==;(3)解:∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA,∴AE:BE=CE:AE,∴AE2=CE•BE,∴(5k)2=k•(10+5k),整理得:25k2=50k,∵k>0,∴k=2,∴CD=k=5.【点评】此题考查了相似三角形的判定与性质、圆周角定理、等腰三角形的判定与性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.24.【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)讨论:当以AB为对角线,利用EA=EB和四边形AFBE为平行四边形得到四边形AFBE 为菱形,则点F也在对称轴上,即F点为抛物线的顶点,所以F点坐标为(﹣1,﹣4);当以AB为边时,根据平行四边形的性质得到EF=AB=4,则可确定F的横坐标,然后代入抛物线解析式得到F点的纵坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,线段MN取最大值,最大值为.(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3).综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)注意分类思想的运用.25.【分析】(1)由比例中项知=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知=,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知=,求得AM=,由=求得MN=;(3)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【解答】解:(1)∵AE是AM和AN的比例中项∴=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴=,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴=,∴AM=,∵=,∴AN=,∴MN=;(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE===,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.【点评】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.。

四川省绵阳市中考数学二模考试试卷

四川省绵阳市中考数学二模考试试卷

四川省绵阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八上·郑州开学考) 下列说法正确的是()A . 1的立方根是±1B . =±2C . 的平方根是±3D . 0没有平方根2. (2分) (2020八下·九江期末) 观察下列图形,是中心对称图形的是()A .B .C .D .3. (2分)下列说法中,正确的是()A . 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 掷一枚硬币,正面朝上的概率为D . 若 0.1, 0.01,则甲组数据比乙组数据稳定4. (2分) (2020八下·湘桥期末) 若一组数据2,2,x,5,7,7的众数为7,则这组数据的x为()A . 2B . 5C . 6D . 75. (2分) (2019八下·淅川期末) 若分式的值为零,则的值为()A .B .C .D .6. (2分)下列计算正确的是()A .B .C .D .7. (2分)(2017·市北区模拟) 如图所示,左边的正方形与右边的扇形面积相等,扇形的半径和正方形的边长都是2cm,则此扇形的弧长为()cm.A . 4B . 4πC . 8D . 8﹣π8. (2分)(2019·大埔模拟) 如图,直线y1=x+b与y2=kx﹣1相交于点P ,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .9. (2分) (2020九下·郑州月考) 如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P的坐标是()A . (2020,0)B . (3030,0)C . ( 3030,)D . (3030,﹣)10. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c >0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)点A在数轴上的位置如图所示,则点A表示的数的相反数是________.12. (1分)(2018·无锡模拟) 去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为________元.13. (1分) (2018八上·嘉峪关期末) 分解因式 ________.14. (1分) (2016九上·姜堰期末) 若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF 的面积比为________.15. (1分) (2019九上·宝安期中) 如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为________.16. (1分)如图,在平面直角坐标系中,矩形OABC的顶点A.C的坐标分别为(10,0),(0,3),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.三、解答题 (共9题;共87分)17. (10分)已知x1 , x2是关于x的方程(x﹣2)(x﹣3)=(n﹣2)(n﹣3)的两个实数根.则:(1)两实数根x1 , x2的和是________;(2)若x1 , x2恰是一个直角三角形的两直角边的边长,那么这个直角三角形面积的最大值是________.18. (5分)(2019·株洲模拟) 计算:19. (10分) (2019七下·武昌期中) 如图,△ABC的顶点都在网格点上,其中A(2,﹣1),B(4,3),C(1,2)(1)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,ABC的对应点分别为A′B′C′,画出△A′B′C′,并写出A′B′C′的坐标;(2)求△ABC的面积.20. (10分) (2019八下·南县期中) 如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△AB C满足什么条件时,四边形DBEF是菱形;为什么.21. (10分) (2020八上·青山期末) 某学校是乒乓球体育传统项目学校为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元购买10副横拍球拍比购买5副直拍球拍多花费1600元。

2020届绵阳二诊 理科数学试题(解析版)

2020届绵阳二诊 理科数学试题(解析版)

2020届绵阳二诊理科数学一、选择题:本大题共12小题,每小题5分,共60分. 1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A. ()1,2B. ()2,+∞C. (][)0,12,+∞D. [)2,+∞【答案】D 【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥. 故选:D .2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A. 2i - B. 2i + C. 12i - D. 2i - 【答案】A 【详解】由题意122iz i i+==-. 故选:A .3.已知两个力()11,2F =,()22,3F =-作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力3F ,则3F =( ) A. ()1,5- B. ()1,5-C. ()5,1-D. ()5,1-【答案】A【详解】根据力的合成可知()()()12+1,22,31,5F F =+-=- 因为物体保持静止,即合力为0,则123+0F F F += 即()31,5F =- 故选:A4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A.18B.14C. 38D.12【答案】B【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P ==. 故选:B .5.已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要【答案】B【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin 3α=”的必要不充分条件. 故选:B .6.若51ax x ⎛⎫- ⎪⎝⎭的展开式中各项系数的和为1,则该展开式中含3x 项的系数为( )A. -80B. -10C. 10D. 80【答案】A【详解】因为51ax x ⎛⎫- ⎪⎝⎭的展开式中各项系数的和为1令1x =代入可得()511a -=,解得2a = 即二项式为512x x ⎛⎫- ⎪⎝⎭展开式中含3x 的项为()()41143355122180C x C x x x ⎛⎫-=-=- ⎪⎝⎭所以展开式中含3x 项的系数为80- 故选:A7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( ) A. 产品的销售额与广告费用成正相关 B. 该回归直线过点()2,22C. 当广告费用为10万元时,销售额一定为74万元D. m 的值是20 【答案】C【详解】因为回归直线方程中x 系数为6.5>0,因此,产品的销售额与广告费用成正相关,A 正确; 又0123425x ++++==,∴ 6.52922y =⨯+=,回归直线一定过点(2,22),B 正确;10x =时, 6.510974y =⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C 错误; 由10153035225m y ++++==,得20m =,D 正确.故选:C.8.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( ) B. 2D. 3【答案】B【详解】由题意(c,0)F ,渐近线方程by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -, ∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B .9.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进行了4次游戏,记小明4次游戏得分之和为X ,则X 的期望为( ) A. 1 B. 2C. 3D. 4【答案】C【详解】进行“手心手背”游戏,3人出现的所有可能情况如下所示: (心,心,心), (心,心,背),(心,背,心),(背,心,心) (心,背,背),(背,心,背),(背,背,心),(背,背,背) 则小明得1分的概率为34,得0分的概率为14进行4次游戏,小明得分共有5种情况:0分,1分,2分,3分,4分 由独立重复试验的概率计算公式可得:()4041104256P XC ⎛⎫===⎪⎝⎭()13143112144256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()22243154244256P XC ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭()313431108344256P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()44438144256P XC ⎛⎫===⎪⎝⎭则得分情况的分布列如下表所示:则X 的期望()154108811+2+3+4=3256256256256E X =⨯⨯⨯⨯ 故选:C10.已知圆C :2268110x y x y +---=,点M ,N 在圆C 上,平面上一动点P 满足PM PN =且PM PN ⊥,则PC 的最大值为( )A. 4B. 42C. 6D. 62【答案】D【详解】圆C :2268110x y x y +---= 化成标准方程可得()()223436x y -+-= 所以圆C 的半径为6r =因为点M ,N 在圆C 上,动点P 满足PM PN =且PM PN ⊥ 所以P 位于以MN 为直径的圆上,位置关系如下图所示:则PMC PNC ∆≅∆,即45MPC NPC ∠=∠=在三角形PMC ∆中,由正弦定理可得sin sin 45MCPC PMC =∠ sin 22PC PMC =∠则62PC PMC =∠ 因为sin 1PMC ∠≤ 所以PC 的最大值为62故选:D11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A. 1,22⎛⎫ ⎪⎝⎭B. ()0,2C. ()10,1,22⎛⎫ ⎪⎝⎭D. ()2,+∞【答案】A【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-,令()sin g x x x =-,则'()1cos 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=, ∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A .12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( )A. 11,32⎛⎫⎪⎝⎭B. [)3,+∞C. ()[)1,23,+∞D. [)2,3【答案】D【详解】函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则()l g 21o 0a f =-,lo 1g 31a f a ⎛⎫⎪=-⎝⎭由二次函数的图像与对数函数的图像可知,函数零点至多有两个.且因为恰有一个零点,所以满足()()110log 2log 3a a --≤且1log 20a -=与1log 30a -=在10,a ⎡⎤⎢⎥⎣⎦上不同时成立.解不等式()()110log 2log 3a a --≤可得23a ≤≤当3a =时,函数()()()2361log 32f x x x =--+,区间为10,3⎡⎤⎢⎥⎣⎦且满足()301log 20f =->,310046log f =-⎛⎫<⎪⎝⎭,311303log f =-⎛⎫= ⎪⎝⎭所以在10,6⎛⎫ ⎪⎝⎭内有一个零点, 13x =为一个零点.故由题意可知,不符合要求 综上可知, a 的取值范围为[)2,3 故选:D二、填空题:本大题共4小题,每小题5分,共20分.13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2. 【详解】由题意(1)1463a a -+-=≠-,解得2a =. 故答案为:2.14.法国数学家布丰提出一种计算圆周率π的方法——随机投针法,受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对(),x y ;再统计两数的平方和小于1的数对(),x y 的个数m ;最后再根据统计数m 来估计π的值.已知某同学一次试验统计出156m =,则其试验估计π为______. 【答案】3.12【详解】横、纵坐标都小于1的正实数对(),x y 构成第一象限内的一个正方形, 两数的平方和小于1的数对(),x y 为单位圆在第一象限的部分.其关系如下图所示:则阴影部分与正方形面积的比值为1:14π由几何概型概率计算公式可知115642001π=解得15643.12200π⨯==故答案为: 3.1215.函数()sin0,2y xπωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则()f x在区间[],ππ-上的零点之和为______.【答案】23π.【详解】由题意411()3126Tπππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ,∴()sin(2)6f x xπ=+.由sin(2)06xπ+=得26x kππ+=,212kxππ=-,k Z∈,在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.16.过点()1,0M-的直线l与抛物线C:24y x=交于A,B两点(A在M,B之间),F是抛物线C的焦点,点N满足:5NA AF=,则ABF∆与AMN∆的面积之和的最小值是______.【答案】8【详解】根据题意,画出抛物线及直线方程如下图所示:因为直线l 过点()1,0M - 设直线的方程为1x ty =-则241y x x ty ⎧=⎨=-⎩,化简可得2440y ty -+= 因为有两个不同交点,则216160t ∆=->,解得1t >或1t <- 不妨设1t >,则解方程可得22221,221A B y t t y t t =--=+-因为5NA AF =,则6NF AF = 所以2612121,N A y y t t ==-- 所以()122ABF MBF AMF B A B A S S S y y y y ∆∆∆=-=⨯⨯-=- ()122AMN FMN AMF N A N A S S S y y y y ∆∆∆=-=⨯⨯-=-则ABF AMN B A N A S S y y y y ∆∆+=-+-222221121212221t t t t t t ⎛=+----- ⎝21061t t =-- ,(1t >)令()21061f t t t =--则()2'101f t t =-令()2'1001f t t =-=- 解得54t =当514t <<时, ()'0f t <,所以()f t 在51,4⎛⎫⎪⎝⎭内单调递减 当54t >时, ()'0f t >,所以()f t 在5,4⎛⎫+∞ ⎪⎝⎭内单调递增 即当54t =时()f t 取得最小值. 所以21061ABF AMN S S t t ∆∆+=--2551061844⎛⎫=⨯--= ⎪⎝⎭故答案为:8三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t 的中位数m .(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表男 女 总计附表:.其中:()()()()()22n ad bc K a b c d a c b d -=++++.【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m =.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m 的人数为1000.550⨯=人, 故列联表补充如下:2K 的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关.18.已知等差数列{}n a 的前n 项和为n S ,且满足120a a +=,624S =.各项均为正数的等比数列{}n b 满足1241b b a +=+,34b S =.(1)求n a 和n b ;(2)求和:()()()1121211111n n T b b b b b b -=+++++++++++.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由题意,得1120656242a d a d +=⎧⎪⎨⨯+=⎪⎩,解得112a d =-⎧⎨=⎩, ∴23n a n =-∵等比数列{}n b 的各项均为正数由112168b b q b q +=⎧⎨=⎩解得1122b q =⎧⎨=⎩或121823b q =⎧⎪⎨=-⎪⎩(舍)∴1222n n n b -=⨯=(2)由(1)得,211211122221n nn b b b --+++⋅⋅⋅+=+++⋅⋅⋅+=-()()()1121211111n n T b b b b b b -=++++++⋅⋅⋅++++⋅⋅⋅+()()()231212121n =+-+-++-()()()()12321212121n =-+-+-++-()12122212n n n n +-=-=---.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+. (1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【详解】(1)在ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222ab c bc =++.由余弦定理得2221cos 22b c a A bc +-==-, 结合0A π<<,可知23A π=. (2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅,即2bc a AD =⋅.由已知BC =,可得AD =.在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒, 即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==.∴1sin sin 62B π==.20.已知椭圆C :2212x y +=,直线l 交椭圆C 于A ,B 两点.(1)若点()1,1P -满足0OA OB OP ++=(O 为坐标原点),求弦AB 的长;(2)若直线l 的斜率不为0且过点()2,0,M 为点A 关于x 轴的对称点,点(),0N n 满足MN NB λ=,求n 的值.【详解】(1)设()11,A x y ,()22,B x y由0OA OB OP ++=,且点()1,1P -,得121x x =+,121y y +=-.① ∴线段AB 的中点坐标为11,22⎛⎫-⎪⎝⎭,其在椭圆内 由222222111212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2222212102x x y y -+-=,整理得2221222112y y x x -=--,即()()()()2121212112y y y y x x x x +-=-+-.将①代入,得212112AB y y k x x -==-.∴直线AB 方程为111222y x ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭,即2430x y --=. 联立22122430x y x y ⎧+=⎪⎨⎪--=⎩消去x 得2242410y y ++=,由韦达定理得121y y +=-,12124y y =. ∴AB ==. (2)设直线AB 的方程为2x ty =+,由题意得()11,M x y -,由已知MN NB λ=,可知M ,N ,B 三点共线,即MN MB k k =.∴()()1211210y y y n x x x ----=--,即121121y y y n x x x +=--, 解得()121121y x x n x y y -=++.将112x ty =+,222x ty =+,代入得121222ty y n y y =++.②联立222202x y x ty ⎧+-=⎨=+⎩消去x 得()222420t y ty +++=由韦达定理得12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),当()()21f x f x -的最大值为32ln 22-时,求实数a 的取值范围.【详解】(1)()()2'220x ax x a x x xf x -+=+-=>.令()22g x x ax =-+,则28a ∆=-.①当0a ≤或0∆≤,即a ≤,得()'0f x ≥恒成立, ∴()f x 在()0,∞+上单调递增.②当0a >⎧⎨∆>⎩,即a >,由()'0f x >,得02a x <<或2a x +>由()'0f x <,x <<∴函数()f x在0,2a ⎛ ⎪⎝⎭和2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛+⎪⎝⎭上单调递减. 综上所述,当a ≤时,()f x 在()0,∞+上单调递增;当a >,()f x 在0,2a ⎛⎫- ⎪ ⎪⎝⎭和2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >,()f x 有两极值点1x ,2x (其中21x x >). 由(1)得1x ,2x 为()220x a g x x =-+=的两根,于是12x x a +=,122x x =.∴()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=-2211122lnx x x x x x =-+. 令()211x t t x =>,则()()()2112ln f x f x h t t t t-==-+. ∵()()22222121211'0t t t t t t th t ---+-=--==<, ∴()h t 在()1,+∞上单调递减.由已知()()()21h f x t f x -=的最大值为32ln 22-, 而()132ln 22l 2222n 2h =-+=-. ∴2t =.设t 的取值集合为T ,则只要满足[)2,T ⊆+∞且T 中的最小元素为2的T 集合均符合题意.又()()221212122x x a t t T x x t+==++∈,易知()12x t t ϕ=++在[)2,+∞上单调递增,结合a >可得a 与t 是一一对应关系. 而当2t =,即212x x =时,联合122x x =, 解得22x =,11x =,进而可得3a =. ∴实数a 的取值范围为[)3,+∞.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分. 22.在平面直角坐标系中,曲线1C 参数方程为1cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫ ⎪⎝⎭,曲线2C 的直角坐标方程为221x y -=.(1)求曲线1C 的普通方程,曲线2C 的极坐标方程;(2)若()1,A ρα,2,6B πρα⎛⎫- ⎪⎝⎭是曲线2C 上两点,当0,4πα⎛⎫∈ ⎪⎝⎭时,求2211OA OB +的取值范围.【详解】(1)将1C 的参数方程化为普通方程为()2221x y r -+=.由cos x ρθ=,sin y ρθ=, 得点2,3P π⎛⎫ ⎪⎝⎭的直角坐标为(,代入1C ,得23r =, ∴曲线1C 的普通方程为()2213x y -+=.2C 可化为2222cos sin 1ρθρθ-=,即()222cos sin 1ρθθ-=,∴曲线2C 的极坐标方程为2cos 21ρθ=. (2)将点()1,A ρα,2,6B πρα⎛⎫-⎪⎝⎭代入曲线2C 的极坐标方程, 得21cos 21ρα=,22cos 213πρα⎛⎫-= ⎪⎝⎭,∴22222111cos 2cos 1123OAOBπααρρ⎛⎫=++-+= ⎪⎝⎭3cos 22223πααα⎛⎫==+ ⎪⎝⎭. 由已知0,4πα⎛⎫∈ ⎪⎝⎭,可得52,336πππα⎛⎫+∈ ⎪⎝⎭,232πα⎛⎛⎫+∈⎪ ⎝⎭⎝. 所以2211OAOB+的取值范围是⎝.23.已知关于x 的不等式12121log x x a +--≤,其中0a >.(1)当4a =时,求不等式的解集;(2)若该不等式对x ∈R 恒成立,求实数a 的取值范围. 【详解】(1)由4a =时,12log 2a =-.原不等式化为1212x x +--≤-,当12x ≥时,()1212x x +--≤-,解得4x ≥,综合得4x ≥; 当112x -<<时,1212x x ++-≤-,解得23x ≤-,综合得213x -<≤-;当1x ≤-时,()1212x x -++-≤-,解得0x ≤,综合得1x ≤-. ∴不等式的解集为2|43x x x ⎧⎫≤-≥⎨⎬⎩⎭或. (2)设函数()2,111213,1212,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=-≤<⎨⎪⎪-+≥⎪⎩, 画图可知,函数()f x 的最大值为32.由123log 2a ≤,解得20a <≤。

2020届绵阳二诊 文科数学试题(解析版)

2020届绵阳二诊 文科数学试题(解析版)

2020届绵阳二诊 文科数学试题一、选择题:本大题共12小题,每小题5分,共60分. 1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A. ()1,2B. ()2,+∞C. (][)0,12,+∞D. [)2,+∞【答案】D 【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥. 故选:D .2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A. 2i - B. 2i + C. 12i - D. 2i - 【答案】A 【详解】由题意122iz i i+==-. 故选:A .3.已知高一(1)班有学生45人,高一(2)班有50人,高一(3)班有55人,现在要用分层抽样的方法从这三个班中抽30人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( ) A. 10B. 12C. 13D. 15【答案】A 【详解】设高一(2)被抽取x 人,则5030455055x =++,解得10x =. 故选:A .4.已知向量()1,2a =,()1,b x =-,若//a b ,则b =( )B.52D. 5【答案】C【详解】∵//a b ,∴12(1)0x ⨯-⨯-=,2x =-,∴2(1)b =-=. 故选:C .5.已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要【答案】B【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin α=”的必要不充分条件. 故选:B .6.已知()2,0M ,P 是圆N :224320x x y ++-=上一动点,线段MP 的垂直平分线交NP 于点Q ,则动点Q 的轨迹方程为( )A. 22195x y +=B. 22159x y -=C. ,? a c ==D. 22195x y -=【答案】A【详解】由题意圆标准方程为22(2)36x y ++=,圆心为(2,0)N -,半径为6, ∵线段MP 的垂直平分线交NP 于点Q ,∴QP QM =, ∴6QM QN QP QN PN +=+==4MN >=, ∴Q 点轨迹是以,M N 为焦点,长轴长为6的椭圆,∴3,2a c ==,b = ∴其轨迹方程为22195x y +=.故选:A .7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( ) A. 产品的销售额与广告费用成正相关 B. 该回归直线过点()2,22C. 当广告费用为10万元时,销售额一定为74万元D. m值是20【答案】C【详解】因为回归直线方程中x 系数为6.5>0,因此,产品的销售额与广告费用成正相关,A 正确; 又0123425x ++++==,∴ 6.52922y =⨯+=,回归直线一定过点(2,22),B 正确;10x =时, 6.510974y =⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C 错误; 由10153035225m y ++++==,得20m =,D 正确.故选:C .8.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A .18B.14C. 38D.12【答案】B【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P ==. 故选:B .9.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( )B. 2D. 3【答案】B【详解】由题意(c,0)F ,渐近线方程为by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -,∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B .10.已知圆C :22280x y x +--=,直线l 经过点()2,2M,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A. 220x y B. 260x y +-= C. 220x y --= D. 260x y +-=【答案】D【详解】圆C 标准方程为22(1)9x y -+=,圆心为(1,0)C ,半径为3r =,直线l 交圆于,A B 两点,设AOB θ∠=(0)θπ<≤,如图,则直线l 分圆所成两部分中较小部分面积为22111sin 22S r r θθ=-,较大部分面积为22211(2)sin 22S r r πθθ=-+,∴这两部分面积之差的绝对值为22221sin 9(sin )S S S r r r πθθπθθ=-=-+=-+,'9(1cos )0S θ=-+≤,∴9(sin )S πθθ=-+是减函数,θ最小时,S 最大.在CAB ∆中,2222218cos 218r AB AB rθ--==,∴AB 最小时,cos θ最大,从而θ最小.∵AB 经过点M ,∴由圆的性质知当CM AB ⊥时,AB 取得最小值.此时112AB CMk k =-=-,∴直线l 方程为12(2)2y x -=--,即260x y +-=. 故选:D .11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A. 1,22⎛⎫ ⎪⎝⎭B. ()0,2C. ()10,1,22⎛⎫ ⎪⎝⎭D. ()2,+∞【答案】A【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-, 令()sin g x x x =-,则'()1cos 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=, ∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A .12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( )A. 11,32⎛⎫⎪⎝⎭B. (][)1,23,+∞C. ()[)1,23,+∞D. [)2,3【答案】D【详解】(1)若由1(0)()0f f a<得(1log 2)(1log 3)0a a--<,lg 2lg 3(1)(1)0lg lg a a --<, (lg lg 2)(lg lg3)0a a --<,lg 2lg lg3a <<,∴23a <<.设2()(21)g x ax =-,()log (2)a h x ax =+,∵23a <<,∴()h x 在定义域内是增函数, 作出()g x ,()h x 的示意图,如图.1(0)()1g g a ==,(0)log 21a h =<,1()log 31a h a =>,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(2)若(0)0f =,则1log 20a -=,2a =.如(1)中示意图,2()log (22)h x x =+是增函数,只是(0)(0)1h g ==,而11()(0)1()h h g a a >==,∴()g x 与()h x 的图象在1[0,]a上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意. (3)若1()0f a=,则1log 30a -=,3a =,如(1)中示意图,3()log (32)h x x =+是增函数,此时11()()1h g a a==,但(0)1g =,而3(0)log 21(0)h g =<=,因此在1(0,)2a 上()g x 与()h x 的图象还有一个交点,即()f x 在1[0,]a上有两个零点,不合题意.综上,a 的取值范围是[2,3). 故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2. 【详解】由题意(1)1463a a -+-=≠-,解得2a =. 故答案为:2.14.某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.【答案】30.8.【详解】五个数据分别是:110,114,119,121,126,其平均值为1101141191211261185x ++++==,方差为2222221[(110118)(114118)(119118)(121118)(126118)]5s =-+-+-+-+-30.8= 故答案为:30.815.函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()f x 在区间[],ππ-上的零点之和为______.【答案】23π. 【详解】由题意411()3126T πππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ,∴()sin(2)6f x x π=+.由sin(2)06x π+=得26x k ππ+=,212k x ππ=-,k Z ∈, 在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.16.过点()1,0M -的直线l 与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,若4MBF MAF S S ∆∆=,则ABF ∆的面积为______. 【答案】3.【详解】不妨设,A B 在第一象限,如图,设1122(,),(,)A x y B x y ,由题意(1,0)F ,∵4MBF MAF S S ∆∆=,∴2111422MF y MF y =⨯,∴214y y =. 又,,M A B 共线,∴121211y yx x =++,即122212111144y y y y =++,把214y y =代入得: 112211414114y yy y =++,显然10y ≠,解得11y =,∴24y =, ∴12112MAF S ∆=⨯⨯=,4MBF S ∆=,∴413FAB MBF MAF S S S ∆∆∆=-=-=.故答案为:3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t 的中位数m .(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表附表:其中:()()()()()22n ad bcKa b c d a c b d-=++++.【答案】(1)10;(2)不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m=.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m的人数为1000.550⨯=人,故列联表补充如下:2K的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关.18.已知等差数列{}n a 的公差2d =,30a >,且-4a 与7a 的等比中项.数列{}n b 的通项公式为32n a n b +=.(1)求数列{}n b 的通项公式;(2)记)*n n c a n N=∈,求数列{}nc 的前n 项和nS.【详解】(1)由题意得41136a a d a =+=+,711612a a d a =+=+.∴(()()211612a a -=+⋅+,解得13a =-或115a =-.又31220a a =+⨯>,得14a >-,故13a =-. ∴()32125n a n n =-+⋅-=-. ∴32222n a n n b +-==.(2)由(1)可知,1252n n n c a n -==-+.12n n S c c c =+++()123112512n n -=--+++-+⎡⎤⎣⎦-()325212n n n -+-=+-2241n n n =+--.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+. (1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【详解】(1)ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222a b c bc =++. 由余弦定理得2221cos 22b c a A bc +-==-, 结合0A π<<,可知23A π=.(2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅,即2bc a AD =⋅.由已知BC =,可得AD =.在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒,即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==. ∴1sin sin62B π==. 20.已知椭圆C :2212x y +=,动直线l 过定点()2,0且交椭圆C 于A ,B 两点(A ,B 不在x 轴上). (1)若线段AB 中点Q 的纵坐标是23-,求直线l 的方程; (2)记A 点关于x 轴的对称点为M ,若点(),0N n 满足MN NB λ=,求n 的值.【详解】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+. 由22222x ty x y =+⎧⎨+=⎩消去x 得()222420t y ty +++=.220t ∆=->,解得t >t <. 由韦达定理得12242t y y t -+=+,12222y y t =+.① ∵AB 中点Q 的纵坐标是23-, ∴1243y y +=-,代入①解得1t =或2t =.又t >t <2t =.∴直线l 的方程为220x y --=.(2)由题意得()11,M x y -,由MN NB λ=,知M ,N ,B 三点共线,即MN MB k k =.∴()()1211210y y y n x x x ----=--, 即121121y y y n x x x +=--,解得()121121y x x n x y y -=++. 将112x ty =+,222x ty =+,代入得121222ty y n y y =++.② 由①有12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =.21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),求()()21f x f x -的最大值.【详解】(1)()()2'220x ax x a x x xf x -+=+-=>. 令()22g x x ax =-+,则28a ∆=-. ①当0a ≤或0∆≤,即a ≤时,得()'0f x ≥恒成立,∴()f x 在()0,∞+上单调递增.②当00a >⎧⎨∆>⎩,即a > 由()'0f x >,得0x <<或x >由()'0f x <x <<∴函数()f x在0,2a ⎛ ⎪⎝⎭和2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛+ ⎪⎝⎭上单调递减.综上所述,当a ≤()f x 在()0,∞+上单调递增;当a >()f x在0,2a ⎛ ⎪⎝⎭和,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >()f x 有两极值点1x ,2x (其中21x x >).则1x ,2x 为()220x a g x x =-+=的两根, ∴12x x a +=,122x x =.()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=- 2211122ln x x x x x x =-+. 令()211x t t x =>, 则()()()2112ln f x f x h t t t t-==-+. 由3a ≥,得()22121219222x x a t x x t +==++≥, 即22520t t -+≥,解得2t ≥.∵()()22222121211'0t t t t t t t h t ---+-=--==<,∴()h t 在[)2,+∞上单调递减,∴()()max 322ln 22h t h ==-. 即()()21f x f x -的最大值为32ln 22-.(二)选考题:共10分。

2o20绵阳二诊数学试题及答案

2o20绵阳二诊数学试题及答案

2o20绵阳二诊数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填入题后的括号内。

)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(2) \)的值。

A. -1B. 1C. 3D. 5解:将\( x = 2 \)代入函数\( f(x) \)中,得\( f(2) = 2^2 - 4 \times 2 + 3 = 4 - 8 + 3 = -1 \)。

故选A。

2. 若\( a \),\( b \)是方程\( x^2 + 2x + 1 = 0 \)的两个实数根,则\( a^2 + a + b \)的值为多少?A. -1B. 0C. 1D. 2解:根据根与系数的关系,\( a + b = -2 \),又因为\( a \)是方程的根,所以\( a^2 = -2a - 1 \)。

代入求\( a^2 + a + b \),得\( a^2 + a + b = -2a - 1 + a - 2 = -a - 3 \)。

由于\( a = -1 \),所以\( a^2 + a + b = -(-1) - 3 = -2 \)。

故选B。

(以下选择题依此类推,每题给出一个解题过程及答案)二、填空题(本题共5小题,每小题4分,共20分。

请将答案直接填入题后的横线上。

)1. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是________。

解:圆心到直线的距离小于半径,所以直线与圆相交。

2. 若\( \sin \alpha = \frac{3}{5} \),且\( \alpha \)为锐角,则\( \cos \alpha \)的值为________。

解:根据勾股定理,\( \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5} \)。

2020年四川省绵阳市涪城区中考数学二诊试卷(解析版)

2020年四川省绵阳市涪城区中考数学二诊试卷(解析版)

2020年四川省绵阳市涪城区中考数学二诊试卷一、选择题:本大题共12个小题每小题3分,共36分,每个小题只有一个选项最符合题目要求. 1.﹣5的倒数是()A.B.﹣C.﹣5D.52.下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.近几年绵阳交通快速发展现根据规划又将建设成绵复线高速,新建复线全长约127公里,总投资约331亿元,若将“331亿”用科学记数法表示应为()A.33.1x109B.3.31×1011C.3.31×1010D.0.331×10114.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④5.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()A.35°B.30°C.25°D.15°6.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9B.m≥9C.m<﹣9D.m≤﹣97.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm10.如图,正方形ABCD.AB=4,点E为BC边上点,连接AE延长至点F连接BF,若tan∠FAB =tan∠EBF=,则AF的长度是()A.B.C.D.11.如图,▱ABCD中,AB=3,AD=5,AC⊥AB,E、F为线段BD上两动点(不与端点重合)且EF=BD连接AE,CF,当点EF运动时,对AE+CF的描述正确的是()A.等于定值5﹣B.有最大值C.有最小值D.有最小值12.如图,由小矩形组成的系列图形中第一个有1个矩形,第2个图形包含3个矩形,第三个包含6个矩形,按此规律则第99个图形包含()个矩形.A.4950B.4960C.5061D.5120二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上. 13.因式分解:a3b﹣ab=.14.如图在平面直角坐标系xOy中,△OAB是等腰直角三角形,∠OBA=90°,A(6,0),点B 位于第一象限,则点B关于原点的对称点B′的坐标是.15.使代数式+有意义,则x的取值范围是.16.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出两个小球,标号均为单数的概率为.17.如图,半径为13的等圆⊙O1和⊙O2相交与A,B两点,延长O1O2与⊙O1交于点D,连接BD 并延长与⊙O2交于点C,若AB=24,则CD=.18.如图,△ABC中,∠A=90°,∠ABD=∠ACB,AD=AC,sin∠ABD=.三、解答题:本大题共7个小题,共86分.解答应写出文字说明证明过程或演算步骤19.(16分)(1)计算:(2)先化简,再求值:,其中x=220.(11分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?21.(11分)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A.根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时,y=2.6;x=3时,y=3.6产品乙:y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨,请设计方案,应怎样分配给甲、乙两种产品组织生产,才能使得最终两种产品的所获利润最大.22.(11分)如图在平面直角坐标系xOy中,一次函数y=2x﹣2的图象与函数y=(k≠0)的图象有交点为A(m,2),与y轴交于点B(1)求反比例函数的解析式;(2)若函数y=在第一象限的图象上有一点P,且△POB的面积为6,求点P坐标.23.(11分)如图,BC为⊙O的直径,A,D是⊙O上两点,弧AC=弧AD,AB与CD交于点M,延长BD至点E,且与CA的廷长线交于点E.(1)求证:BE=BC;(2)若tan∠BCA=,AC=3,求DM的长度.24.(12分)已知抛物线y=ax2﹣4x+3(a≠0)与x轴交于点A(1,0),B两点,与y轴交于点C.(1)求抛物线解析式;(2)若点P为抛物线上点,当PB=PC时,求点P坐标;(3)若点M为线段BC上点(不含端点),且△MAB与△ABC相似,求点M坐标.25.(14分)如图,在平面直角坐标系xOy中,△PEF是边长为5的正三角形,P、E在x轴上,点F位于x轴上方,其中P(a,0)(﹣5≤a<5).四边形OABC是边长为5的正方形,A、C 均在坐标轴上,且B(5,5),M为AB边上点,且AM=OE,N为点M关于直线OB对称的点.(1)求证:OP=AE;(2)如图1,当△PEF沿x轴运动使得N、F、E三点在同一条直线上时,求此时△MNE与正方形OABC重叠部分的面积;(3)当△PEF从最左边沿x轴向右运动,到达(2)所在位置时停止,在这一过程中用y表示四边形MNFE面积,求y与a的函数关系式.2020年四川省绵阳市涪城区中考数学二诊试卷参考答案与试题解析一、选择题:本大题共12个小题每小题3分,共36分,每个小题只有一个选项最符合题目要求. 1.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:B.【点评】本题考查的是倒数,熟知乘积是1的两数互为倒数是解答此题的关键.2.【分析】根据轴对称图形的概念与中心对称的概念即可作答.【解答】解:A、B、D都是中心对称也是轴对称图形,C、是轴对称,但不是中心对称.故选:C.【点评】此题由复合图形组成,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“331亿”用科学记数法表示应为3.31×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】主视图是从物体正面看,所得到的图形.【解答】解:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【解答】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°﹣30°=15°.故选:D.【点评】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.6.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴(﹣6)2﹣4×1•m<0,解得m>9,∴m的取值范围是m>9.故选:A.【点评】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.7.【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【解答】解:∵sin∠CAB==,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°==,解得:B′C′=3.故选:B.【点评】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.8.【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.9.【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【解答】解:L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为=4(cm).故选:C.【点评】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.10.【分析】由三角函数得出BE=,由勾股定理求出AE==,证出△BEF∽△FBA,得出===,设EF=x,则BF=3x,AF=9x,由AF=AE+EF得出方程,解方程得出EF的长,即可得出AF的长.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵tan∠FAB==tan∠EBF=,AB=4,∴BE=,∠FAB=∠EBF,∴AE==,又∵∠F=∠F,∴△BEF∽△FBA,∴===,设EF=x,则BF=3x,AF=9x,∵AF=AE+EF,∴9x=+x,解得:x=,∴AF=AE+EF=+=;故选:D.【点评】本题考查了正方形的性质、勾股定理、三角函数、相似三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.11.【分析】由平行四边形的性质得出OB=OD,OA=OC,得出OB=EF=OD,BE=OF,OE=DF,由勾股定理求出AC==4,OB==,当BE=O时,AE+CF的值最小,E为OB的中点,由直角三角形的性质得出AE=OB,同理:CF=OD,即可得出结果【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵EF=BD,∴OB=EF=OD,∴BE=OF,OE=DF,∵AB=3,AD=5,AC⊥AB,∴AC==4,∴OA=2,∴OB==,当BE=OE时,AE+CF的值最小,E为OB的中点,∴AE=OB,同理:CF=OD,∴AE+CF=OB=,即AE+CF的最小值为;故选:D.【点评】本题考查了平行四边形的性质、直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的性质和勾股定理是解题的关键.12.【分析】由于图1矩形有1个,图2矩形有2+1=3个,图3矩形有3+2+1=6个,由此即可得到第99个图形中矩形的个数.【解答】解:由分析可知第99个包含99+98+97+…+3+2+1=4950个,故选:A.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上. 13.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案为:ab(a+1)(a﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【分析】如图,过点B作BC⊥AC于点C,根据等腰直角三角形的性质求得点B的坐标,然后结合“两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y)”求得答案.【解答】解:如图,过点B作BC⊥AC于点C,∵△OAB是等腰直角三角形,∠OBA=90°,∴OC=AC=3,BC=OC=3.∴B(3,3).∴点B关于原点的对称点B′的坐标是(﹣3,﹣3).故答案是:(﹣3,﹣3).【点评】考查了等腰直角三角形和关于原点对称的点的坐标特征.根据等腰直角三角形的性质求得点B的坐标是解题的关键.15.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使代数式+有意义,则,解得:﹣<x≤.故答案为:﹣<x≤.【点评】此题主要考查了二次根式有意义的条件,正确解不等式是解题关键.16.【分析】画出树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有20中等可能结果,其中标号均为单数的有6种结果,所以标号均为单数的概率为=,故答案为:.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】连接O1A,把O1O2向两方延长,交⊙O1于M、N,由相交两圆的性质得:AE=BE=AB=12,AB⊥O1O2,由勾股定理求出O1E=O2E=5,得出DE=13﹣5=8,O1D=O2M=3,由勾股定理求出BD==4,再由相交弦定理即可得出CD的长.【解答】解:连接O1A,把O1O2向两方延长,交⊙O1于M、N,如图所示:∵半径为13的等圆⊙O1和⊙O2相交与A,B两点,∴AE=BE=AB=12,AB⊥O1O2,∴O1E=O2E==5,∴DE=13﹣5=8,O1D=O2M=13﹣2×5=3,∴BD===4,∵DM=3+13=16,DN=13﹣3=10,由相交弦定理得:BD×CD=DM×DN,∴CD==;故答案为:【点评】本题考查了相交两圆的性质、勾股定理、相交弦定理等知识;熟练掌握相交两圆的性质,由相交弦定理求出CD是解题的关键.18.【分析】根据相似三角形的判定和性质得出AB,进而利用三角函数解答即可.【解答】解:∵∠A=90°,∠ABD=∠ACB,∴△ABD∽△ACB,∴,∵AD=AC,∴AB=,∴BD=,∴sin∠ABD=,故答案为:.【点评】此题考查解直角三角形问题,关键是根据相似三角形的判定和性质得出AB.三、解答题:本大题共7个小题,共86分.解答应写出文字说明证明过程或演算步骤19.【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)=1+4×﹣2+﹣1=1+2﹣2+﹣1=;(2)===,当x=2时,原式==1.【点评】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值,解答本题的关键是明确它们各自的计算方法.20.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.21.【分析】(1)代入已知的两对变量值,用待定系数法求出a、b便可;(2)设产品甲生产了x吨,需要原料A2x吨,则可分配给新产品乙的原材料A有(22﹣2x)吨,则生产乙吨,再求出总利润关于x的二次函数,运用二次函数的最值求法解答.【解答】解:(1)根据题意得,,解得,,∴产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系:y=x(x≥0);(2)设产品甲生产了x吨,需要原料A2x吨,则可分配给新产品乙的原材料A有(22﹣2x)吨,则生产乙吨,设甲、乙两种产品总的利润为w,则w=﹣,整理得,w=﹣,即当且仅当生产甲吨时,利润达到最大.=13吨,20﹣13=7吨,答:20吨材料A应分配给甲13吨,分配给乙7吨时,最终所获利润最大.【点评】本题是二元一次方程组的应用与二次函数的应用的综合题,主要考查了列二元一次方程组解应用题,列二次函数解应用题,关键是根据题目中的数量关系列出方程组和函数解析式.22.【分析】(1)通过一次函数求出m,即求出A的坐标;然后通过把A坐标代入反比例函数,求反比例函数解析式;(2)先确定△POB的面积以OB为底,CP为高;OB的长是固定的,只需要CP的长度;点P在=反比例函数图象上,将它代入反比例函数,从而求出P(x,)即CP=x;从而列出S△POB ==6,即x=6,并求出y值,从而确定P的坐标;【解答】解:(1)由已知得点A(m,2)在函数y=2x﹣2图象上,故2m﹣2=2,解得m=2,即A(2,2)并且点A(2,2)也在函数y=的图象上,∴2=解得k=4,∴所以反比例函数y=(2)过点P作CP⊥y轴;△POB的面积以OB为底,CP为高;在函数y=2x﹣2中,当x=0时,y=﹣2即OB=2,设函数y=(x>0)图象上点P(x,)===6∴S△POB解得:x=6,则y=∴此时点p(6,).【点评】这题主要考查:反比例函数、一次函数、三角形的面积公式等;当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.23.【分析】(1)根据圆心角、弧、弦的关系和等腰三角形的性质解答即可;(2)根据三角函数和相似三角形的判定和性质解答即可.【解答】证明:(1)∵BC为⊙O的直径,A,D是⊙O上两点,∴BA⊥CE,BD⊥CD,设∠ABE=α,可得:∠AEB=90°﹣α,∵,∴∠ABC=∠ABE=α,∴∠ACB=90°﹣α,∵∠AEB=90°﹣α,∴∠AEB=∠ACB,∴△BCE是等腰三角形,∴BE=BC;(2)∵,∴∠ABE=∠ABC=∠ACD=α,可得:∠AMC=∠ACB,∴tan∠AMC=tan∠ACB=,tan∠AMC=,解得:AM=,由(1)得BE=BC,且BA⊥CE于点A,∴EA=AC=3,∴EC=EA+AC=6,∵在Rt△CDE中,tan∠CED=tan∠BCA=,tan∠CED=,设DE=x,则CD=x,由EC2=DE2+CD2,可得:,解得:x=,∴DE=,CD=×,∵∠ACM=∠DCE,∠EDC=∠MAC=90°,∴Rt△ACM∽Rt△DCE,∴,即,解得:CM=,∴DM=CD﹣CM=.【点评】此题考查圆周角定理,关键是根据圆心角、弧、弦的关系和等腰三角形的性质以及相似三角形的判定和性质解答.24.【分析】(1)将点A的坐标代入抛物线表达式,即可求解;(2)PB=PC时,则点P在线段BC的垂直平分线上,即可求解;(3)M为线段BC上点(不含端点),且△MAB与△ABC相似,利用,则MB=,即可求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=a﹣4+3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①,令x=0,则y=3,令y=0,则x=1或3,故点C(0,3)、点B(3,0);(2)PB=PC时,则点P在线段BC的垂直平分线上,线段BC的中点坐标为(,),则BC中垂线的k值为1,过点(,),则其表达式为:y=x…②,①②联立并求解得:x=,则点P坐标为(,)或(,);(3)M为线段BC上点(不含端点),且△MAB与△ABC相似,则△MAB∽△ACB,即:,则MB=,过点M分别作x、y轴的垂线交于点H、G,∵OB=OC=3,∴∠CBO=45°,则MH=MG=MB×=,OH=OB﹣BH=,即点M(,).【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似、线段的垂直平分线等知识,难度不大.25.【分析】(1)根据等边三角形和正方形的性质可得:PE=OA=5,得OP=AE;(2)如图1,分别表示DM和BN的长,根据三角形的面积公式可得:△MNE与正方形OABC重叠部分的面积=△DMN的面积;(3)如图2,作辅助线,构建高线,将四边形FNME的面积分成两个三角形的面积进行计算,可得结论.【解答】(1)证明:∵△PEF是边长为5的正三角形,∴PE=5,∵四边形OABC是边长为5的正方形,∴OA=5,∴OA=PE,∴OP+AP=AP+AE,∴OP=AE;(2)如图1,Rt△ADE中,∠DEA=60°,∴∠ADE=30°,∵AE=OP=a,∴AD=a,∵AM=OE=,∴BM=BN=5﹣=,∴DM=AM﹣AD=﹣a,Rt△DBN中,BD=5﹣a,∴BN=BD•tan30°=,∴=,a=,=DM•BN==﹣∴△MNE与正方形OABC重叠部分的面积=S△DMN+25;(3)如图2,延长线段EF与直线BC交于点Q1,过点N作NQ⊥Q1E于点Q,延长NM与x轴交于点H1,作EH⊥NH1于点H,连接EN,则NQ是△EFN中EF边上的高,EH是△MNE中MN边上的高,∴OE=PE﹣OP=5﹣(﹣a)=5+a,同理得:OD=OE=(5+a),∴CD =5﹣OD =5﹣(5+a )=5﹣5﹣a , ∴CQ 1==﹣a , ①Q 1(a +,5),N (,5), 所以Q 1N =﹣(a +)=﹣+, 在Rt △Q 1NQ 中,∠QQ 1N =60°,∴QN =Q 1N •sin60°=(﹣)=﹣a +, ∴S △EFN ===﹣; ②在Rt △MAH 1中,∠MH 1A =45°,∴AH 1=AM =,∴OH 1=OA +AH 1=5+=,∴EH 1=OH 1﹣OE =﹣(a +5)=, 在Rt △EHH 1中,∠HH 1E =45°,∴EH =EH 1•sin45°==, 易得MN =BM =,∴S △EMN =MN •EH =•=, 故由①②得:y =S △ENF +S △EMN ═﹣+=;即y =(﹣5≤a <).【点评】本题是四边形的综合题,考查了正方形的性质,直角三角形的性质,三角形面积,应用直角三角函数解直角三角形,勾股定理的应用,等腰三角形的性质等,利用参数表示线段的长是本题的关键.。

中考数学模拟试卷2

中考数学模拟试卷2


解:(1)把点 A(2,6)代入 y=mx ,得 m=12,则 y=1x2.把点 B(n,1)代入 y=1x2,得 n
=12,则点 B 的坐标为(12,1).由直线 y=kx+b 过点 A(2,6)、B(12,1),得122kk++bb==61,,
解得k=-12, b=7,
则所求一次函数的解析式为 y=-12x+7.
A. 5×1010千克 B. 50×109千克
C. 5×109千克 D. 0.5×101C1千克
3.如图,这个切角长方体的左视图是( )

4 页
4.如图,已知AD与BC相交于点O,AB∥CD,如果∠B=20°, ∠D=40°C,那么∠BOD为( )
A.40°
B.50°
C.60°
D.70°
A
5.下列图形中,既是轴对称图形又是中心对称图形的是( )
B.60 2n km
C.30 3n km
D.30 2n km

7 页
10.如图,在平面内有一等腰直角△ABC,∠ACB=90°,点
A在直线l上.过点C作CE⊥l于点E,过点B作BF⊥l于点F,
测量得CE=3,BF=2,则AF的长为
B
()
A.5
B.4
C.8
D.7

8 页
11.如图,正方形 ABCD 中,M 为 BC 上一点,ME⊥AM,ME 交 AD 的延长
路路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.

1 6 页
21.(本题满分 11 分)星光厨具店购进电饭煲和电压锅两种电器进行销售,其进
价与售价如表:
进价(元/台)
售价(元/台)
电饭煲

四川省绵阳市2019-2020学年中考第二次模拟数学试题含解析

四川省绵阳市2019-2020学年中考第二次模拟数学试题含解析

四川省绵阳市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .2.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧;其中正确说法的个数为( )A .4B .3C .2D .13.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= ) ①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯② 2525⋅=③ ④若12390∠∠∠++=o ,则它们互余 A .4 B .14 C .3- D .134.如图,在△ABC 中,cosB =22,sinC =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .215.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A.70°B.110°C.130°D.140°6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm7.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=kx(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤209.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13 14 15 25 28 30 35 其他人数30 533 17 12 20 9 2 3A.平均数B.众数C.方差D.标准差10.下列各式中,不是多项式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1)C.(x﹣1)2D.2(x﹣2)11.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于()A.10 B.9 C.8 D.612.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2的平方根是_________.14.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.15.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE平分∠BDC交BC 于点E,则=.17.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是.18.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.20.(6分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.21.(6分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?22.(8分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y(只)与生产时间x(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y(只)与生产时间x(分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.23.(8分)解不等式组:3(2)421152x xx x≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.24.(10分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.25.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)26.(12分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.27.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴即,∴OE=,∴BE=OB+OE=2+∴S△ABE=BE?OA=×(2+)×2=2+故答案为C.2.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.3.D【解析】【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可.【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确; 2525⋅=③,错误;④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=, m 1n 3-=, 故选D .【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值.4.A【解析】【分析】根据已知作出三角形的高线AD ,进而得出AD ,BD ,CD ,的长,即可得出三角形的面积. 【详解】解:过点A 作AD ⊥BC ,∵△ABC 中,cosB=22,sinC=35,AC=5, ∴2=BD AB , ∴∠B=45°,∵sinC=35=AD AC =5AD , ∴AD=3,∴2253-,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.5.D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.6.A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.A。

四川省绵阳市 中考数学模拟试卷(二)含答案解析

四川省绵阳市 中考数学模拟试卷(二)含答案解析

四川省绵阳市中考数学模拟试卷(二)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.﹣3的相反数是()A.﹣3 B.﹣C.D.32.点A(2,﹣5)关于x轴的对称点B的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(5,﹣2)3.如图所示,正四棱锥的俯视图为()A.B.C.D.4.“大嘴猴”童装店最近销售了某种夏装30件,销售量如下表所示:则所销售夏装尺码的中位数是()尺码(厘米)100 105 110 115 120 125 130销售量(件)1 2 5 11 7 3 1A.105 B.110 C.115 D.1205.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm6.已知实数a在数轴上的位置如图,则化简|a﹣1|﹣的结果为()A.﹣1 B.1 C.2a﹣1 D.1﹣2a7.如图,在300m高的峭壁上测得一塔的塔顶与塔基的俯角分别为30°和60°,则塔高CD为()A.200m B.180m C.150m D.100m8.如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5 B. C.D.139.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14米B.15米C.16米D.17米10.如图,点P、Q是反比例函数y=(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x 轴于点M,QB⊥y轴于点B,连接PB、QM,记S△ABP=S1,S△QMN=S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.无法判定11.绵阳到某地相距n千米,提速前火车从绵阳到某地要t小时,提速后行车时间减少了0.5小时,提速后火车的速度比原来速度快了()A.B.C.﹣D.﹣12.小王把一张矩形纸片沿BC折叠,顶点A落在点A′,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是()A.24 B.30 C.60 D.90二、填空题(本大题共6小题,每小题3分,共18分)13.2a2•a3的结果是.14.中共中央国务院2015年1月9日上午在北京举行国家科学技术奖励大会,氢弹元勋于敏获得最高科技奖,最高科技奖是中国科技界的最高荣誉,奖金额为500万元人民币,数字500万用科学记数法表示为.15.如图,已知AB∥CD,∠BAE=40°,∠ECD=70°,EF平分∠AEC,则∠AEF的度数是.16.在□a2□2ab□b2的三个空格中,顺次填上“+”或“﹣”,恰好能构成完全平方式的概率是.17.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为.18.如图,在三角形各顶点作半径为1的圆19.(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|(2)解方程:=﹣1.20.近两年来,绵阳房产市场呈现下滑势头,市民观望情绪严重,某楼盘开业后,发现销售形势不够理想,于是委托了专业机构对绵阳市民进行“理想房价”调查,得到如下统计图(表),请结合统计图(表)回答问题:绵阳市理想房价调查(元/平方米)百分比3000~4000 m4000~5000 30%5000~6000 18%6000~7000 7%7000~8000 3%(1)该机构调查的总人数是人,其中m=,认为“理想房价”在6000~7000范围内的人数n=.在扇形统计图中,认为“理想房价”在5000~6000的扇形的圆心角是.(2)公司销售部门分析图(表)后发现,目前楼盘开盘均价为4800元/平方米,若购房者的“实际单价”(实际单价指消费者在得到各种优惠措施后实际支出单价)为4000元/平方米时,则打破买方的心理防线,获得大多数人的认可,故提出两种促销措施,供公司领导研究采用:①9折并送购房税(绵阳目前购房契税为总价的4%)②降价9%并返装修款(绵阳目前装修均价约为400元/平方米)请问哪种方式能让“实际单价”降到4000元以下?21.已知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数根,求k的取值范围;(2)若以方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值.22.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.23.“美乐”超市欲购进A、B两种品牌的水杯共400个.已知两种水杯的进价和售价如下表所示.设购进A种水杯x个,且所购进的两种水杯能全部卖出,获得的总利润为W元.品牌进价(元/个)售元(元/个)A 45 65B 37 55(1)求W关于x的函数关系式;(2)如果购进两种水杯的总费不超过16000元,那么该商场如何进货才能获得最大利润?并求出最大利润.24.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.25.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC 于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).四川省绵阳市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.﹣3的相反数是()A.﹣3 B.﹣C.D.3【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:﹣3的相反数是3.故选:D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.点A(2,﹣5)关于x轴的对称点B的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(5,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图所示,正四棱锥的俯视图为()A.B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看物体得到的图形,得到正四棱锥的俯视图,结合选项得到答案.【解答】解:∵正四棱锥的底是正方形,从上向下看,可以看到四条棱.故选:D.【点评】本题考查了几何体的三种视图,掌握三视图的定义是解题的关键,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.“大嘴猴”童装店最近销售了某种夏装30件,销售量如下表所示:则所销售夏装尺码的中位数是()尺码(厘米)100 105 110 115 120 125 130销售量(件)1 2 5 11 7 3 1A.105 B.110 C.115 D.120【考点】中位数.【分析】根据中位数的概念求解.【解答】解:∵共有30件服装,∴第15和16件服装尺码的平均数为中位数,则中位数为:(115+115)÷2=115.故选C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm【考点】等腰三角形的性质;三角形三边关系.【分析】因为边为3cm和7cm,没说是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当3cm为底时,其它两边都为7cm;3cm、7cm、7cm可以构成三角形,周长为17cm;当3cm为腰时,其它两边为3cm和7cm;3+3=6<7,所以不能构成三角形,此种情况不成立;所以等腰三角形的周长是17cm.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6.已知实数a在数轴上的位置如图,则化简|a﹣1|﹣的结果为()A.﹣1 B.1 C.2a﹣1 D.1﹣2a【考点】二次根式的性质与化简;实数与数轴.【分析】先根据点a在数轴上的位置判断出a及a﹣1的符号,再把代数式进行化简即可.【解答】解:∵由图可知,0<a<1,∴a﹣1<0,∴原式=1﹣a﹣a=1﹣2a.故选D.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.7.如图,在300m高的峭壁上测得一塔的塔顶与塔基的俯角分别为30°和60°,则塔高CD为()A.200m B.180m C.150m D.100m【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】构造AD为斜边的直角三角形,利用直角三角形的性质及相应的三角函数求得CE,DE长,进而求解.【解答】解:延长CD交过A的水平线于点E.∵在300m高的峭壁上测得一塔的塔基的俯角分别为60°.∴BC=.易得AE=,CE=AB=300.∵在300m高的峭壁上测得一塔的塔顶的俯角分别为30°,且BC=.∴DE=100∴CD=200.故选A.【点评】本题考查仰角、俯角的概念,以及解直角三角形方法.8.如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5 B. C.D.13【考点】菱形的性质;轴对称-最短路线问题.【分析】连结DE交AC于点P,连结BP,根据菱形的性质推出AO是BD的垂直平分线,推出PE+PB=PE+PD=DE且值最小,根据勾股定理求出DE的长即可.【解答】解:如图,连结DE交AC于点P,连结BP,作EM⊥BD于点M,∵四边形ABCD是菱形,∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,∴PD=PB∴PE+PB=PE+PD=DE且值最小∵E是AB的中点,EM⊥BD,AC=16,BD=12,∴EM=AO=AC=4,BM=BO=BD=3∴DM=DO+OM=6+3=9∴DE==故答案为:B.【点评】本题考查了轴对称﹣最短问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出DE=PE+PB,题目比较典型,综合性比较强,主要培养学生的计算能力.9.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转,某一指令规定:机器人先向前行走2米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()A.14米B.15米C.16米D.17米【考点】多边形内角与外角.【分析】第一次回到原处正好转了360°,正好构成一个正八边形.【解答】解:机器人转了一周共360度,360°÷45°=8,共走了8次,机器人共走了8×2=16米.故选:C.【点评】本题考查了多边形的外角,是一个实际问题,要理解“回到原处”就是转了360度.10.如图,点P、Q是反比例函数y=(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x 轴于点M,QB⊥y轴于点B,连接PB、QM,记S△ABP=S1,S△QMN=S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.无法判定【考点】反比例函数系数k的几何意义.【分析】设p(a,b),Q(m,n),根据三角形的面积公式即可求出结果.【解答】解;设p(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.故选C.【点评】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.11.绵阳到某地相距n千米,提速前火车从绵阳到某地要t小时,提速后行车时间减少了0.5小时,提速后火车的速度比原来速度快了()A.B.C.﹣D.﹣【考点】列代数式(分式).【专题】计算题.【分析】根据速度等于路程除以时间可分别表示出提速前后火车的速度,然后求它们的差.【解答】解:提速后火车的速度比原来速度快了(﹣)千米/小时.故选C.【点评】本题考查了列代数式(分式):把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.注意代数式的正确书写:出现除号的时候,用分数线代替.12.小王把一张矩形纸片沿BC折叠,顶点A落在点A′,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是()A.24 B.30 C.60 D.90【考点】翻折变换(折叠问题).【分析】首先连接AA′,交BC于点O,由折叠的性质可得:AO=AA′,又由DE∥BC,可得△ABC∽△ADE,AC:AE=AO:AA′=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得答案.【解答】解:连接AA′,交BC于点O,由折叠的性质可得:AO=AA′,∵DE∥BC,∴△ABC∽△ADE,AC:AE=AO:AA′=1:2,∴=()2=,∵AB=4,AC=3,∴S△ABC=AB•AC=×4×3=6,∴S△ADE=4S△ABC=24.故选A.【点评】此题考查了折叠的性质以及相似三角形的判定与性质.注意掌握折叠前后图形的对应关系.二、填空题(本大题共6小题,每小题3分,共18分)13.2a2•a3的结果是2a5.【考点】单项式乘单项式.【分析】本题需根据单项式乘以单项式的法则进行计算,即可求出答案.【解答】解:2a2•a3=2a5.故答案为2a5【点评】本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.14.中共中央国务院2015年1月9日上午在北京举行国家科学技术奖励大会,氢弹元勋于敏获得最高科技奖,最高科技奖是中国科技界的最高荣誉,奖金额为500万元人民币,数字500万用科学记数法表示为 5.0×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将500万用科学记数法表示为5.0×106.故答案为:5.0×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.15.如图,已知AB∥CD,∠BAE=40°,∠ECD=70°,EF平分∠AEC,则∠AEF的度数是55°.【考点】平行线的性质.【分析】过点E作AB的平行线,运用平行线的性质和角平分线的定义求∠AEF的度数.【解答】解:过点E作EH∥AB,∵AB∥CD,∴EH∥AB∥CD;∴∠AEH=∠BAE=40°,∠CEH=∠ECD=70°,∴∠AEC=∠AEH+∠CEH=110°;∵EF平分∠AEC,∴∠AEF=∠AEC=55°.故答案为:55°.【点评】本题考查的是平行线的性质以及角平分线的性质,根据题意作出平行线是解答此题的关键.16.在□a2□2ab□b2的三个空格中,顺次填上“+”或“﹣”,恰好能构成完全平方式的概率是.【考点】列表法与树状图法;完全平方式.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好能构成完全平方式的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有8种等可能的结果,恰好能构成完全平方式的有4种情况,∴恰好能构成完全平方式的概率是:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为.【考点】圆周角定理;等腰直角三角形.【分析】首先连接OA,OB,由∠C=45°,易得△AOB是等腰直角三角形,继而求得答案.【解答】解:连接OA,OB,∵∠C=45°,∴∠AOB=2∠C=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴OA=AB•cos45°=2×=.故答案为:.【点评】此题考查了圆周角定理以及等腰直角三角形性质.注意准确作出辅助线是解此题的关键.18.如图,在三角形各顶点作半径为1的圆19.(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|(2)解方程:=﹣1.【考点】实数的运算;负整数指数幂;解分式方程.【专题】计算题.【分析】(1)原式第一项利用立方根定义计算,第二项利用乘方的意义及负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3﹣(﹣1)×4﹣(﹣1)=3+4﹣+1=8﹣;(2)去分母得:1+x=3x﹣x2﹣1+x2,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.近两年来,绵阳房产市场呈现下滑势头,市民观望情绪严重,某楼盘开业后,发现销售形势不够理想,于是委托了专业机构对绵阳市民进行“理想房价”调查,得到如下统计图(表),请结合统计图(表)回答问题:绵阳市理想房价调查(元/平方米)百分比3000~4000 m4000~5000 30%5000~6000 18%6000~7000 7%7000~8000 3%(1)该机构调查的总人数是600人,其中m=42%,认为“理想房价”在6000~7000范围内的人数n=140.在扇形统计图中,认为“理想房价”在5000~6000的扇形的圆心角是64.8°.(2)公司销售部门分析图(表)后发现,目前楼盘开盘均价为4800元/平方米,若购房者的“实际单价”(实际单价指消费者在得到各种优惠措施后实际支出单价)为4000元/平方米时,则打破买方的心理防线,获得大多数人的认可,故提出两种促销措施,供公司领导研究采用:①9折并送购房税(绵阳目前购房契税为总价的4%)②降价9%并返装修款(绵阳目前装修均价约为400元/平方米)请问哪种方式能让“实际单价”降到4000元以下?【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.【分析】(1)根据6000﹣7000的人数是600,所占的百分比是30%,即可求得总数,然后利用1减去其它组的百分比即可求得m的值,利用百分比的意义求得n的值,利用360°乘以对应的百分比求得认为“理想房价”在5000~6000的扇形的圆心角;(2)根据两种促销方案分别求得促销后的价格,然后与4000进行比较即可.【解答】解:(1)该机构调查的总人数是:600÷30%=2000(人),m=1﹣30%﹣18%﹣7%﹣3%=42%,认为“理想房价”在6000~7000范围内的人数n=2000×7%=140(人),认为“理想房价”在5000~6000的扇形的圆心角是360°×18%=64.8°;(2)①4800×0.9×(1﹣4%)=4147.2>4000;②4800×(1﹣9%)﹣400=3968<4000.则方式②能让“实际单价”降到4000元以下.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数根,求k的取值范围;(2)若以方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值.【考点】根的判别式;根与系数的关系;反比例函数图象上点的坐标特征.【专题】计算题.【分析】(1)根据△的意义得到4(k﹣3)2﹣4(k2﹣4k﹣1)≥0,然后解不等式得到k≤5;(2)设方程的两根分别为x1、x2,根据根与系数的关系得到x1•x2=k2﹣4k﹣1,再根据反比例函数图象上点的坐标特点得m=x1•x2=k2﹣4k﹣1,配方得到m=(k﹣2)2﹣5,再根据非负数的性质得到(k﹣2)2﹣5≥0,于是m的最小值为﹣5.【解答】解:(1)根据题意得4(k﹣3)2﹣4(k2﹣4k﹣1)≥0,解得k≤5,所以k的取值范围为k≤5;(2)设方程的两根分别为x1、x2,则x1•x2=k2﹣4k﹣1,∵方程两个根为横坐标、纵坐标的点恰在反比例函数的图象上,∴m=x1•x2=k2﹣4k﹣1=(k﹣2)2﹣5,∵(k﹣2)2≥0,∴(k﹣2)2﹣5≥﹣5,即m的最小值为﹣5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的根与系数的关系以及反比例函数图象上点的坐标特点.22.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.【考点】垂径定理;勾股定理.【专题】计算题;证明题.【分析】(1)要证明:E是OB的中点,只要求证OE=OB=OC,即证明∠OCE=30°即可.(2)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.【解答】(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴,∴AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,,∴,∴点E为OB的中点;(2)解:在Rt△OCE中,AB=8,∴,又∵BE=OE,∴OE=2,∴,∴.【点评】解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.23.“美乐”超市欲购进A、B两种品牌的水杯共400个.已知两种水杯的进价和售价如下表所示.设购进A种水杯x个,且所购进的两种水杯能全部卖出,获得的总利润为W元.品牌进价(元/个)售元(元/个)A 45 65B 37 55(1)求W关于x的函数关系式;(2)如果购进两种水杯的总费不超过16000元,那么该商场如何进货才能获得最大利润?并求出最大利润.【考点】一次函数的应用.【分析】(1)根据总利润=A水杯的利润+B水杯的利润就可以表示出W与x之间的数量关系.(2)由购买A种水杯的费用+购买B种水杯的费用不超过16000元建立不等式求出x的取值,再根据(1)的解析式由一次函数的性质就可以求出其W的最值.【解答】解:由题意,得W=(65﹣45)x+(55﹣37)(400﹣x)=2x+7200.∴W关于x的函数关系式:W=2x+7200;(2)由题意,得45x+37(400﹣x)≤16000,解得:x≤150.∵W=2x+7200,∴k=2>0,∴W随x的增大而增大,∴当x=150时,W=7500.最大∴进货方案是:A种水杯购买150个,B种水杯购买250个,才能获得最大利润,最大利润为7500元.【点评】本题考查了一次函数的解析式的运用,一元一次不等式的运用,一次函数的性质的运用,解答时求出函数的解析式并运用其性质求解是关键.24.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A、B两点坐标代入函数解析式列方程组求解即可求得系数b、c,把一般式变形为顶点式可求得顶点坐标;(2)求出线段BC、BD、CD的长,判断△BCD的形状;(3)分别从当AB为边时,只要PQ∥AB,且PQ=AB=4即可以及当AB为对角线时,只要线段PQ与线段AB互相平分即可,分别求出即可.【解答】解:(1)把A(﹣1,0)、B(3,0)两点代入y=x2+bx+c得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,4);(2)如图1,连接BC、CD、BD,DM⊥x轴,DN⊥y轴,垂足分别为M、N,∵y=x2﹣2x﹣3与y轴的交点C(O,﹣3),A(﹣1,0)、B(3,0),D(1,4),∴BC==3,CD==,BD==2,∵(3)2+()2=(2)2∴BC2+CD2=BD2∴△BCD是直角三角形;(3)如图2,①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4, 当x=﹣4时,y=21;当x=4时,y=5;所以此时点P1的坐标为(﹣4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y 轴交于Q点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=﹣3,∴这是有符合条件的点P3(2,﹣3),∴所以符合条件的点为:P1的坐标为(﹣4,21),P2的坐标为(4,5);P3(2,﹣3).【点评】此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.25.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC 于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).【考点】平行四边形的判定与性质;等腰三角形的性质.【分析】(1)如图1,先根据两组对边分别平行的四边形是平行四边形得出四边形AEDF是平行四边形,则DE=AF.再根据平行线及等腰三角形的性质得出∠FDB=∠B,由等角对等边得到DF=FB,从而证明DE+DF=AF+FB=AB;(2)当点D在直线BC上时,分三种情况:①当点D在CB延长线上时,如图2①,先证明四边形AEDF是平行四边形,则DE=AF,再证明∠FDB=∠FBD,由等角对等边得到DF=FB,从而证明AB=AF﹣BF=DE﹣DF;②当点D在线段BC上时,如图1,AB=DE+DF;③当点D在BC的延长线上时,如图2②,先证明四边形AEDF是平行四边形,则DF=AE,再证明∠CDE=∠DCE,由等角对等边得到CE=DE,再证明从而证明AB=AC=AE﹣CE=DF﹣DE;(3)如图3,先证明四边形AEDF是平行四边形,则DF=AE,再证明∠EGC=∠C,由等角对等边得到DE+DG=CE,从而证明AB=AC=EC+AE=DE+DG+DF.【解答】解:(1)DE+DF=AB.理由如下:如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.∵DF∥AC,∴∠FDB=∠C,∵AB=AC,∴∠C=∠B,∴∠FDB=∠B,∴DF=FB,∴DE+DF=AF+FB=AB;(2)当点D在直线BC上时,分三种情况:①当点D在CB延长线上时,如图2①,AB=DE﹣DF;②当点D在线段BC上时,如图1,AB=DE+DF;③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;(3)如图3,AB=DE+DG+DF.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,综合性较强,难度适中.(2)中分情况讨论是解题的关键.。

绵阳市中考第二次模拟考试数学试卷含答案

绵阳市中考第二次模拟考试数学试卷含答案

绵阳市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果是x 5的为A .x 2•x 3B .x 6-xC .x 10÷x 2D .(x 3)2 2.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的 形状不可能是A .B .C .D .3.2581256的值等于A .15116B .±15116C .16116D .±16116 4.点P (m ,n )在平面直角坐标系中的位置如图所示,则坐标(m +1,n -1)对应的点可能是A .AB .BC .CD .D5.完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m ,n 的大长方形,则图中阴影部分的周长是A .4mB .4nC .2m +nD .m +2n6.如图,□OABC 的周长为14,∠AOC =60°,以O 为原点,OC 所在直线为x 轴建立直角坐标系,函数y =k x (x >0)的图像经过□OABC 的顶点A 和BC 的中点M ,则k 的值为 A .2 3 B .4 3 C .6D.12(第2题)A B C D P O y x (第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.已知某种纸一张的厚度为0.008 7 cm .用科学记数法表示0.0087是 ▲ .8.分解因式2x 2-4xy +2y 2的结果是 ▲ .9.若式子1-2x 在实数范围内有意义,则x 的取值范围是 ▲ .10.计算(6-18)×13+2 6 的结果是 ▲ .11.若x 1,x 2是一元二次方程x 2-2x -4=0的两个实数根,则x 1+x 2-x 1x 2= ▲ .12.如图,点I 为△ABC 的重心,过点I 作PQ ∥BC 交AB 于点P ,交AC 于点Q .若AB =6,AC =4,BC =5,则PQ 的长为 ▲ .13.已知甲、乙两组数据的折线图如图所示,则甲的方差 ▲ 乙的方差(填“>”、“=”或“<”).14.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2, ⌒AC的长为π,则∠ADC 的大小是 ▲ °.15.如图,将边长为8正方形纸片ABCD 沿着EF 折叠,使点C 落在AB 边的中点M 处,点D落在点D '处,MD '与AD 交于点G ,则△AMG 的内切圆半径的长为 ▲ .16.若关于x 的不等式组⎩⎪⎨⎪⎧2x +12+3>-1x <m 的所有整数解的和是-7,则m 的取值范围是 ▲ .(第14题) (第15题)D D 序号 (第13题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)先化简,再求值:(1x 2-4+1x +2)÷x -1x -2,其中-2≤x ≤2,且x 为整数,请你选一个合适的x 值代入求值.18.(7分)解方程23x -1-1=36x -2.19.(8分)如图,在菱形ABCD 中,∠ABC =60°,E 是CD 边上一点,作等边△BEF ,连接AF .(1)求证:CE =AF ;(2)EF 与AD 交于点P ,∠DPE =48°,求∠CBE 的度数.20.(8分)某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):(1)该公司营销员销售该品牌电脑的月销售平均数是 ▲ 台,中位数是 ▲ 台,众数是 ▲ 台.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?说明理由.B C D A E F P (第19题)21.(8分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是 ▲ ;(2)任选两名同学打第一场,求恰好选中甲、乙两位同学的概率.22.(7分)如图,已知M 为△ABC 的边BC 上一点,请用圆规和直尺作出一条直线l ,使直线l 过点M ,且B 关于l 的对称点在∠A 的角平分线上(不写作法,保留作图痕迹).23.(8分)某校学生步行到郊外春游.一班的学生组成前队,速度为4 km/h ,二班的学生组成后队,速度为6 km/h .前队出发1 h 后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为a km/h .若不计队伍的长度,如图,折线A ﹣B ﹣C 、A ﹣D ﹣E 分别表示后队、联络员在行进过程中,离前队的路程y (km)与后队行进时间x (h)之间的部分函数图像.(1)联络员骑车的速度a = ▲ ;(2)求线段AD 对应的函数表达式;(3)求联络员折返后第一次与后队相遇时的时间?(第22题)y (第23题)24.(8分)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,点E 在BC 的延长线上,且∠DEC =∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB =12,CE =3时,求AC 的长.25.(8分)如图,A 、B 、C 三个城市位置如图所示,A 城在B 城正南方向180 km 处,C 城在B 城南偏东37°方向.已知一列货车从A 城出发匀速驶往B 城,同时一辆客车从B 城出发匀速驶往C 城,出发1小时后,货车到达P 地,客车到达M 地,此时测得∠BPM =26°,两车又继续行驶1小时,货车到达Q 地,客车到达N 地,此时测得∠BNQ =45°,求两车的速度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,sin26°≈25,cos26°≈910,tan26°≈12)(第25题)A(第24题)26.(8分)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =x 2+mx +n 的图像上,当x 1=1、x 2=3时,y 1=y 2.(1)若P (a ,b 1),Q (3,b 2)是函数图象上的两点,b 1>b 2,则实数a 的取值范围是( ▲ )A .a <1B .a >3C .a <1或a >3D .1<a <3(2)若抛物线与x 轴只有一个公共点,求二次函数的表达式.(3)若对于任意实数x 1、x 2都有y 1+y 2≥2,则n 的范围是 ▲ .27.(11分)如图1,在四边形ABCD 中,∠BAD =∠BDC =90°,AB =AD ,∠DCB =60°,CD=8.(1)若P 是BD 上一点,且PA =CD ,求∠PAB 的度数.(2)①将图1中的△ABD 绕点B 顺时针旋转30°,点D 落在边BC 上的E 处,AE 交BD于点O ,连接DE ,如图2,求证:DE 2=DO •DB ;②将图1中△ABD 绕点B 旋转α得到△A 'BD '(A 与A ',D 与D '是对应点),若CD '=CD ,则cos α的值为 ▲ .A CD O (图2) AD (图1)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.8.7×10-3 8.2(x -y )2 9.x ≤1210.2+ 6 11.6 12.103 13.>14.135° 15.43 16.-3<m ≤-2或2<m ≤3 三、解答题(本大题共11小题,共88分)17.(本题7分)解: (1x 2-4+1x +2)÷x -1x -2=1+x -2(x +2)(x -2)⋅x -2x -1 =x -1(x +2)(x -2)⋅x -2x -1=1x +2. ································································································································ 5分 当x =0时,原式=10+2=12或当x =-1时,原式=1-1+2=1. ·································· 7分 18.(本题7分)解: 23x -1-1=36x -2两边同时乘以2(3x -1),得4-2(3x -1)=3 ··············································································································· 2分 4-6x +2 =3-6x =-3x =12 ············································································································· 5分检验:当x =12时,2(3x -1)=2×(3×12-1)≠0.所以,x =12是原方程的解. ····························································································· 7分19. (本题8分)(1)证明:∵ 四边形ABCD 是菱形,∴ AB =BC .∵ △BEF 是等边三角形,∴ BF =BE ,∠FBE =∠FEB =60°.∵ ∠ABC =60°,∴ ∠ABC =∠FBE ,∴ ∠ABC -∠ABE =∠FBE -∠ABE ,即∠EBC =∠FBA .∴ △EBC ≌△FBC (SAS ).∴ CE =AF . ············································································································ 4分(2)解:∵ 四边形ABCD 是菱形,∴ AD ∥BC ,∠D =∠ABC =60°.∴ ∠C =180°-∠D =120°.在△PDE 中,∠D +∠DPE +∠PED =180°,∴ ∠DEP =72°.由(1)得,∠FEB =60°,∴ ∠BED =∠DEP +∠BEP =72°+60°=132°.∴ ∠CBE =∠BED -∠C =132°-120°=12°. ····················································· 8分20.(本题8分)(1)90,80,80. ··············································································································· 6分(2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务. ················································································································································· 8分21.(本题8分)解:(1)13 . ···················································································································· 2分(2)随机选两位同学打第一场比赛,可能出现的结果有12种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙),(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙),(丁,丙)、并且它们出现的可能性相等.恰好选中甲、乙两位同学(记为事件A )的结果有2种,即(甲,乙)、(乙,甲),所以P (A )=212=16. ···································································· 8分22.(本题7分)略 ········································································································································ 7分23.(本题8分)解:(1)12. ······················································································································ 2分(2)设线段AD 所表示的y 与x 之间的函数表达式为y =kx +b .因为y =kx +b 的图像过点(0,4)与(12,0),所以⎩⎪⎨⎪⎧b =4,12k +b =0. 解方程组,得⎩⎨⎧k =-8,b =4. 所以线段AD 所表示的y 与x 之间的函数表达式为y =-8x +4. ··················· 5分(3)根据题意,联络员出发12h 后与第一次追上一班,此时,联络员与二班相距3 km ,折返后需要312+6=16(h),因为12+16=23, 所以,联络员出发23h 后与第一次后队相遇. ···················································· 8分24.(本题8分)证明:(1)如图,连接BD ,交AC 于点F .∵ ∠BAD =90°, ∴ BD 是直径.∴ ∠BCD =90°. ∴ ∠DEC +∠CDE =90°.∵ ∠DEC =∠BAC , ∴ ∠BAC +∠CDE =90°.∵ ∠BAC =∠BDC , ∴ ∠BDC +∠CDE =90°.∴ ∠BDE =90°,即 BD ⊥DE .∵ 点D 在⊙O 上,∴ DE 是⊙O 的切线. ·················································································· 4分(2)∵ DE ∥AC ,∠BDE =90°,∴ ∠BFC =90°.∴ CB =AB =12,AF =CF =12AC ,∵ ∠CDE +∠BDC =90°,∠BDC +∠CBD =90°.∴ ∠CDE =∠CBD .∵ ∠DCE =∠BCD =90°, ∴ △BCD ∽△DCE ,∴ BC CD =CD CE , ∴ CD =6.∴ BD =65.同理:△CFD ∽△BCD ,∴ CF BC =CD BD , ∴ CF =1255.∴ AC =2AF =2455. ·························································································· 8分25.(本题8分)解:设货车、客车的速度分别为x km/h 、y km/h ,由题意,得AP =PQ =x km ,BM =MN =y km.如图,过点M 作ME ⊥AB ,垂足为E .在Rt △BME 中, ∵ sin B =ME BM中学数学二模模拟试卷一、选择题(共10小题,每小题3分,计30分.1.9的平方根为( ) A .3 B .-3 C .±32.如图的几何体,它的俯视图是( ) A (第24题)A .B .C .D .3.下列运算正确的是( ) A .(-3mn )2=-6m2n2 B .4x4+2x4+x4=6x4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a2-b24.如图,AE ∥CD ,△ABC 为等边三角形,若∠CBD=15°,则∠EAC 的度数是( )A .60°B .45°C .55°D .75°5.已知正比例函数y=kx (k≠0)的图象经过点A (a-2,b )和点B (a ,b+4),则k 的值为( )A .12B .-12C .2D .-26.如图,△ABC 中,∠A=25°,∠B=65°,CD 为∠ACB 的平分线,CE ⊥AB 于点E ,则∠ECD 的度数是( )A .25°B .20°C .30°D .15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是( )A .将l1向下平移2个单位得到l2B .将l1向右平移2个单位得到l2C .将l1向左平移1个单位,再向下平移2个单位得到l2D .将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD 为菱形ABCD 的一条对角线,E 、F 在BD 上,且四边形ACEF 为矩形,若EF=12BD ,则AEAD 的值为( )A.B .25C .12D.9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接OC 、BD ,若∠AOC=110°,则∠BCD 的度数是( )A .35°B .46°C .55°D .70°10.关于x 的二次函数y=mx2+(m-4)x+2(m <0),下列说法:①二次函数的图象开口向下;②二次函数与x 轴有两个交点;③当x <-13,y 随x 的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是( ) A .①②③B .①③④C .①②④D .②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442x x ->-的最小整数解为12.如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度13.若直线y=-x+m 与双曲线y=nx (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为 .14.如图,等腰直角△ABC 中,∠C=90°,,E 、F 为边AC 、BC 上的两个动点,且CF=AE ,连接BE 、AF ,则BE+AF 的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan 602-︒⎛⎫-+ ⎪⎝⎭ 16.解方程:13222x xx --=-- 17.如图,已知四边形ABCD 中,AD <BC ,AD ∥BC ,∠B 为直角,将这个四边形折叠使得点A 与点C 重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB ∥CD ,且AB=CD ,连接BC ,在线段BC 上取点E 、F ,使得CE=BF ,连接AE 、DF .求证:AE ∥DF .19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是 ;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC 中,∠ACB=90°,∠A=60°,点O 为AB 上一点,且3AO=AB ,以OA 为半径作半圆O ,交AC 于点D ,AB 于点E ,DE 与OC 相交于F . (1)求证:CB 与⊙O 相切; (2)若AB=6,求DF 的长度.24.已知抛物线L :y=ax2+bx+3与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的函数表达式及顶点D 的坐标;(2)若将抛物线L 沿y 轴平移后得到抛物线L′,抛物线L′经过点E (4,1),与y 轴的交点为C′,顶点为D′,在抛物线L′上是否存在点M ,使得△MCC′的面积是△MDD′面积的2倍?若存在,求出点M 的坐标;若不存在,请说明理由.25.发现问题:如图1,直线a ∥b ,点B 、C 在直线b 上,点D 为AC 的中点,过点D 的直线与a ,b 分别相交于M 、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为 ;探究问题:如图2,Rt △ABC 中,∠DAC=13∠BAC ,DA=2,求△ABC 面积的最小值;拓展应用:如图3,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE=2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)参考答案与试题解析1. 【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:.故选:C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2. 【分析】找到从几何体的上面看所得到的图形即可.【解答】解:这个几何体的俯视图为故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【解答】解:A、(-3mn)2=9m2n2,故错误;B、4x4+2x4+x4=7x4,故错误;C、正确;D、(a-b)(-a-b)=-(a2-b2)=b2-a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.4. 【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【解答】解:如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选:B.【点评】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 【分析】由正比例函数y=kx可得k=yx,将点A与B代入可得42b ba a+=-,求出b=2a-4,再将A点代入即可求解.【解答】解:由正比例函数y=kx可得k=y x,∵图象经过点A(a-2,b)和点B(a,b+4),∴42b ba a+=-,∴b=2a-4,∴A(a-2,2a-4),将点A代入y=kx可得2a-4=k(a-2),∴k=2,故选:C.【点评】本题考查正比例函数的性质;能够根据已知点建立方程求出b=2a-4是解题的关键.6. 【分析】根据∠ECD=∠DCB-∠ECB,求出∠DCB,∠ECB即可.【解答】解:∵∠ACB=180°-∠A-∠B=90°,又∵CD平分∠ACB,∴∠DCB=12×90°=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°-65°=25°,∴∠ECD=45°-25°=20°.故选:B.【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【分析】设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【解答】解:设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,∴-y=-12(2-x)+1,∴直线l2的解析式为:y=-12(x-2)+1,∴将l1向右平移2个单位得到l2,故选:B.【点评】本题考查了一次函数图象与几何变换,求得直线l2的解析式是解题的关键.8. 【分析】由菱形的性质可知对角线垂直且互相平分,由矩形的性质可知对角线又互相平分且相等,再加上EF=12BD,可以得到OA=OC=OE=OF=12OB=14BD,设OA=x,用勾股定理可以表示出AE、AD,进而求出他们的比值,再做出选择.【解答】解:连接AC交BD于点O,∵菱形ABCD,∴AC⊥BD,AB=BC=CD=DA,OA=OC=12AC,OB=OD=12BD,∵AFCE是矩形,∴AC=EF=2OF=2OE,又∵EF=12BD,∴OA=OF,OB=2OA,设OA=x,则OE=x,OB=2x,在Rt△AOE和Rt△AOB中,AEAE ABAD====∴==;,故选:A.【点评】考查菱形的性质、矩形的性质、直角三角形的勾股定理等知识,合理的转化以及设参数是解决问题常用方法.9. 【分析】连接BC,根据圆周角定理求得∠ABC的度数,然后根据直角三角形的锐角互余即可求解.【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=12∠AOC═55°,∵CD⊥AB,∴∠BEC=90°,∴∠BCD=90°-55°=35°,故选:A.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.10. 【分析】①由m<0即可判断出①;②令y=mx2+(m-4)x+2=0,求出根的判别式△>0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①∵m<0,∴二次函数的图象开口向下,故①正确,②令y=mx2+(m-4)x+2=0,求△=(m-8)2-48,∵m<0,∴△=(m-8)2-48>0,∴二次函数与x轴有两个交点,故②正确,③抛物线开口向下,对称轴42mxm-=-,∵41120 236m mm m---+=<,∴4123 mm--<-,所以当42mxm--<时,y随x的增大而增大,故③错误,④y=mx2+(m-4)x+2,∵2242(4)(4)60 44m m mm m⨯--+-=-…,∴242(4)64m mm⨯--…,∴二次函数图象顶点的纵坐标大于等于6,故④正确,正确的结论有①②④, 故选:C . 【点评】本题主要考查二次函数的性质,解答本题的关键是熟练掌握抛物线的图象以及二次函数的性质,此题难度一般.11. 【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最小整数解即可.【解答】解:442x x->-,x-4>8-2x , 3x >12 x >4,故不等式442x x->-的最小整数解为5.故答案为:5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 12. 【分析】根据正五边形的性质和内角和为540°,得到△ABC ≌△AED ,AC=AD ,AB=BC=AE=ED ,先求出∠BAC 和∠DAE 的度数,再求∠CAD 就很容易了. 【解答】解:根据正五边形的性质,△ABC ≌△AED ,∴∠CAB=∠DAE=12(180°-108°)=36°,∴∠CAD=108°-36°-36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.13【分析】根据反比例函数图象上点的坐标特征和一次函数图象上点的坐标特征得出2244nm n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,解方程组即可求得m 、n 的值,从而求得mn 的值.【解答】解:由题意得2244n m n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,①-②得,4n=2,解得n=8,把n=8代入①求得m=6, ∴mn=48, 故答案为48.【点评】本题考查了一次函数和反比例函数的交点问题,根据题意得到关于m 、n 的方程组是解题的关键. 14.【分析】如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .想办法证明AF=DE=EH ,BE+AF 的最小值转化为EH+EB 的最小值. 【解答】解:如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .∵CA=CB ,∠C=90°, ∴∠CAB=∠CBA=45°, ∵C ,D 关于AB 对称,∴DA=DB ,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°, ∴∠CAD=∠CBD=∠ADC=∠C=90°, ∴四边形ACBD 是矩形, ∵CA=CB ,∴四边形ACBD 是正方形,∵CF=AE ,CA=DA ,∠C=∠EAD=90°, ∴△ACF ≌△DAE (SAS ), ∴AF=DE ,∴AF+BE=ED+EB ,∵CA 垂直平分线段DH , ∴ED=EH ,∴AF+BE=EB+EH , ∵EB+EH≥BH ,∴AF+BE 的最小值为线段BH 的长,=,∴AF+BE 的最小值为故答案为【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,轴对称最短问题等知识,解题的关键是学会学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 15. 【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式()+8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:1-x-2x+4=3,解得:x=23,经检验x=23是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17. 【分析】由折叠可得,折痕所在直线垂直平分对称点的连线AC ,故作线段AC 的垂直平分线EF ,则EF 即为所求.【解答】解:如图所示,连接AC ,作线段AC 的垂直平分线EF ,则EF 即为所求.【点评】本题主要考查了利用轴对称变换作图,利用轴对称的性质是解决问题的关键. 18. 【分析】根据平行线的性质可得∠C=∠B ,再根据等式的性质可得CF=BE ,然后利用SAS 判定△AEB ≌△DFC ,根据全等三角形对应边相等可得∠AEB=∠DFC 即可解决问题. 【解答】证明:∵AB ∥CD , ∴∠C=∠B , ∵CE=BF ,∴CE+EF=FB+EF , 即CF=BE ,在△AEB 和△DFC 中AB CD B C EB CF ⎧⎪⎪⎩∠∠⎨===,∴△AEB ≌△DFC (SAS ), ∴∠AEB=∠DFC , ∴AE ∥DF . 【点评】此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 19. 【分析】(1)由B 组人数为100且A 、B 两组捐款人数的比为1:5可得a 的值,用A 、B 组人数和除以其所占百分比可得总人数; (2)先求出C 组人数,继而可补全图形;(3)先求出抽查的500名学生的平均捐款数,再乘以总人数可得.【解答】解:(1)a=100×15=20,本次调查样本的容量是:(100+20)÷(1-40%-28%-8%)=500, 故答案为:20,500;(2)∵500×40%=200, ∴C 组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)∵A 组对应百分比为20500×100%=4%,B 组对应的百分比为100500×100%=20%,∴抽查的500名学生的平均捐款数为5×4%+15×20%+25×40%+35×28%+50×8%=27(元), 则估计此次活动可以筹得善款的金额大约为2000×27=54000(元).【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 【分析】作BH ⊥AC 于H ,根据含30°的直角三角形的性质求出BH ,根据等腰直角三角形的性质求出BC .【解答】解:作BH ⊥AC 于H ,由题意得,∠BAC=30°,∠ABC=105°, ∴∠C=180°-105°-30°=45°, ∵∠AHB=90°,∠BAC=30°,∴BH=12AB=1,在Rt △BCH 中,∠C=45°,∴,答:点C与点B千米.【点评】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21. 【分析】(1)y与x之间的函数关系是分段函数关系,当0<x≤200时,y与x是正比例函数,当x>200时,y与x是一次函数,可分别用待定系数法求出其函数关系式;(2)根据题意,可以确定自变量的取值范围,在自变量的取值范围内,依据函数的增减性确定种植面积和最小值的问题.【解答】解:(1)当0<x≤200时,y与x是正比例函数,由于过(200,24000)∴k=120∴y与x之间的函数关系式为:y=120x (0<x≤200),当x>200时,y与x是一次函数,由于过(200,24000),(300,32000)设y=kx+b,代入得:2002400030032000k bk b⎨⎩++⎧==,解得:k=80,b=8000,∴y与x之间的函数关系式为:y=80x+8000 (x≥200),答:y与x之间的函数关系式为:y=120?020080()(8000?200)x xx x⎩≤+⎧⎨<>.(2)由题意得:()20021200xx x≥≤-⎧⎨⎩,解得:200≤x≤800,又∵y=80x+8000 (x≥200),∴y随x的增大而增大,当x=200时,y最小=200×80+8000=24000元,此时,甲花卉种200m2,乙花卉种1000m2,答:甲花卉种200m2,乙花卉种1000m2,才能使种植费用最少,最少费用为24000元.【点评】考查一次函数的性质,待定系数法求函数的关系式,一元一次不等式组应用等知识,正确地掌握这些知识,是解决问题的前提和基础.22. 【分析】(1)根据概率公式计算即可得出答案;(2)画出树状图,然后根据概率公式列式进行计算即可得解.【解答】解:(1)甲抽到不是自己带来的礼物的概率为:3 4;故答案为:3 4;(2)设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,∴甲、乙2人抽到的都不是自己带来的礼物的概率为7 12.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23. 【分析】(1)过O作OH⊥BC与H,根据直角三角形的性质得到OH=12OB,证得OH=OA,于是得到结论;(2)解直角三角形得到BC=,根据相似三角形的性质即可得到结论.【解答】(1)证明:过O作OH⊥BC与H,∵∠ACB=90°,中学数学二模模拟试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.9的平方根为()A.3 B.-3 C.±3 D.2.如图的几何体,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.(-3mn)2=-6m2n2 B.4x4+2x4+x4=6x4C.(xy)2÷(-xy)=-xy D.(a-b)(-a-b)=a2-b24.如图,AE∥CD,△ABC为等边三角形,若∠CBD=15°,则∠EAC的度数是()A.60°B.45°C.55°D.75°5.已知正比例函数y=kx(k≠0)的图象经过点A(a-2,b)和点B(a,b+4),则k的值为()A.12B.-12C.2 D.-26.如图,△ABC中,∠A=25°,∠B=65°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD 的度数是()A.25°B.20°C.30°D.15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是()A.将l1向下平移2个单位得到l2B.将l1向右平移2个单位得到l2C.将l1向左平移1个单位,再向下平移2个单位得到l2 D.将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD为菱形ABCD的一条对角线,E、F在BD上,且四边形ACEF为矩形,若EF=1 2BD,则AEAD的值为()A.5B .25C .12D.29.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接OC 、BD ,若∠AOC=110°,则∠BCD 的度数是( )A .35°B .46°C .55°D .70°10.关于x 的二次函数y=mx2+(m-4)x+2(m <0),下列说法:①二次函数的图象开口向下;②二次函数与x 轴有两个交点;③当x <-13,y 随x 的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是( ) A .①②③B .①③④C .①②④D .②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442x x->-的最小整数解为12.如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度13.若直线y=-x+m 与双曲线y=n x (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为 .14.如图,等腰直角△ABC 中,∠C=90°,,E 、F 为边AC 、BC 上的两个动点,且CF=AE ,连接BE 、AF ,则BE+AF 的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan 602-︒⎛⎫-+ ⎪⎝⎭ 16.解方程:13222x xx --=-- 17.如图,已知四边形ABCD 中,AD <BC ,AD ∥BC ,∠B 为直角,将这个四边形折叠使得点A 与点C 重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB ∥CD ,且AB=CD ,连接BC ,在线段BC 上取点E 、F ,使得CE=BF ,连接AE 、DF .求证:AE ∥DF .19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC中,∠ACB=90°,∠A=60°,点O为AB上一点,且3AO=AB,以OA为半径作半圆O,交AC于点D,AB于点E,DE与OC相交于F.(1)求证:CB与⊙O相切;(2)若AB=6,求DF的长度.。

2o20绵阳二诊数学试题及答案

2o20绵阳二诊数学试题及答案

2o20绵阳二诊数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+c,且f(1)=0,则c的值为()。

A. 3B. 4C. 5D. 6答案:B2. 已知等差数列{an}的前三项分别为a1=1,a2=4,a3=7,则该数列的公差d为()。

A. 2B. 3C. 4D. 5答案:B3. 计算复数z=1+i的模长|z|为()。

A. 1B. √2C. 2D. √3答案:B4. 已知圆心在(2,3),半径为5的圆的方程是()。

A. (x-2)^2+(y-3)^2=25B. (x+2)^2+(y-3)^2=25C. (x-2)^2+(y+3)^2=25D. (x+2)^2+(y+3)^2=25答案:A5. 若函数f(x)=x^3-3x,f'(x)=3x^2-3,则f'(1)的值为()。

A. 0B. 1C. 2D. 3答案:A6. 已知向量a=(1,2),b=(3,4),则向量a与向量b的点积为()。

A. 10B. 11C. 12D. 14答案:B7. 已知直线l: y=2x+3与直线m: y=-x+1的交点坐标为()。

A. (-1,2)B. (1,1)C. (2,5)D. (4,5)答案:B8. 已知函数f(x)=x^2-6x+8,x∈[2,5],则f(x)的最大值为()。

A. 3B. 5C. 8D. 10答案:D9. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为()。

A. 1B. 2C. 3D. 4答案:B10. 已知函数y=x^2-6x+8,当x=3时,y的值为()。

A. 1B. 3C. 5D. 8答案:B二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x,求f'(x)=____。

答案:3x^2-312. 已知等比数列{an}的前三项分别为a1=2,a2=4,a3=8,则该数列的公比q为____。

答案:213. 已知向量a=(2,-3),b=(4,-6),则向量a与向量b的夹角为____。

四川省绵阳市2020年中考数学试卷(II)卷

四川省绵阳市2020年中考数学试卷(II)卷

四川省绵阳市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在-(-2),,(-2)2 , -2这4个数中,负数的个数是()A . 1B . 2C . 3D . 42. (2分)据科学家估计,地球的年龄大约是46亿年,46亿这个数用科学记数法表示为()A . 4.6×108B . 46×108C . 4.6×109D . 0.46×10103. (2分)(2019·扬中模拟) 如图,几何体的左视图是()A .B .C .D .4. (2分)(2020·定安模拟) 在一个不透明的盒子中装有10个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A . 4B . 5C . 6D . 75. (2分) (2019七下·余杭期中) x2·x3的结果是()A . x5B . x6C . 5xD . 2x26. (2分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误的是()A . 若通话时间少于120分,则A方案比B方案便宜20元B . 若通话时间超过200分,则B方案比A方案便宜12元C . 若通讯费用为60元,则B方案比A方案的通话时间多D . 若两种方案通讯费用相差10元,则通话时间是145分或185分7. (2分) (2020七上·遂宁期末) 如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A . ∠α+∠β=95°B . ∠β﹣∠α=95°C . ∠α+∠β=85°D . ∠β﹣∠α=85°8. (2分) (2017七下·威远期中) 若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A . 2B . 4C .D . 129. (2分)二次函数的图象经过三点,则它的解析式为()A .B .C .D .10. (2分)(2019·蒙自模拟) 观察下图“d”形中各数之间的规律,根据观察到的规律得出n的值为()A . 241B . 113C . 143D . 271二、填空题 (共6题;共7分)11. (1分)(2011·苏州) 因式分解:a2﹣9=________.12. (1分) (2016七上·利州期末) 两个角的大小之比是7:3,他们的差是72°,则这两个角的关系是________﹙选填:相等或互余或互补﹚13. (1分) (2018九上·潮南期末) 如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为________.14. (2分) (2017八上·淅川期中) 如图,在△ABC和△DEF中,点B,E,C,F在同一直线上,请你再下列4个条件(①~④)中选3个条件作为题设,余下的1个作为结论,写出一个真命题,并证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.题设:________.结论:________.(填序号)15. (1分)(2020·无锡模拟) 如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是________.16. (1分) (2019七下·揭西期末) 汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为s=________.三、解答题 (共8题;共63分)17. (5分)(2019·福州模拟) 计算:|﹣3|+ •tan30°﹣(3.14﹣π)018. (3分)(2016·福田模拟) 景新中学为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为________;(2)在扇形统计图中,喜欢“体育书籍”的所占的圆心角度数为________;(3)如果全校共有学生1500名,请估计该校最喜欢“科普书籍”的学生约有________人.19. (5分)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为多少km/h,他在乙地休息了多少小时.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.20. (5分)(2020·淮安模拟) 已知二次函数的顶点坐标为,且其图象经过点,求此二次函数的解析式.21. (10分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)22. (10分)(2020·宁波) 图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm, .(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:,, )23. (10分)(2018·遵义) 如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.24. (15分)“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:可供使用人数(人/条)价格(元/条)长条椅3160弧形椅5200景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共63分)17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。

2020年四川省绵阳市涪城区中考数学二诊试卷(附答案详解)

2020年四川省绵阳市涪城区中考数学二诊试卷(附答案详解)

2020年四川省绵阳市涪城区中考数学二诊试卷一、选择题(本大题共12小题,共36.0分)1.−2的相反数是()A. −2B. 2C. −12D. 122.在平面直角坐标系xOy中,A、B两点关于y轴对称,若A的坐标是(2,−8),则点B的坐标是()A. (8,2)B. (2,8)C. (−2,8)D. (−2,−8)3.随着经济社会发展,各地机动车保有量持续上升,据统计四川省2019年机动车保有量约有1150万辆,若将该数字用科学记数法表示应是()A. 1.15×107B. 1.15×108C. 11.5×106D. 11.5×1074.一个几何体的三视图如图所示,则这个几何体是()A. 圆锥B. 长方体C. 圆柱D. 球5.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A. 100°B. 120°C. 130°D. 150°6.下列计算正确的是()A. (x−2y)2=x2−2xy+4y2B. (x+y)(x2+y2)=x3+y3C. (−4x)(2x2+3x−1)=8x3−12x2−4xD. (−4a−1)(4a−1)=1−16a27.如图,从A处观测铁塔顶部的仰角是30°,向前走30米到达B处,观测铁塔的顶部的仰角是45°,则铁塔高度是()米A. 15√3+1B. 30√3+12C. 30√3−12D. 15√3+158. 关于x 的方程x−m x−1+2m1−x =2的解为正数,则m 的取值范围是( ) A. m <23B. m >23 C. m <23且m ≠13 D. m <23且m ≠0 9. 在同一平面直角坐标系中,函数y =ax +b 与y =ax 2−bx 的图象可能是( )A. B.C. D.10. 如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB =12cm ,高BC =8cm ,则这个零件的表面积是( )A. 192πcm 2B. 196πcm 2C. 228πcm 2D. 232πcm 211. 如图,在平行四边形ABCD 中,AB =4,AD =6,∠ABC =60°,E 、F 是BC 、CD边上点,且BE =14BC ,DF =13CD ,AE 、AF 分别交BD 于点M ,N ,则MN 的长度是( )A. 11+22√310B. 11√1910C. 134D. 8√13512.如图,将1、√2、√3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(5,4)与(51,30)表示的两个数的积是()A. √6B. √3C. √2D. 1二、填空题(本大题共6小题,共24.0分)13.因式分解:a2−ab=______.14.若代数式2√a+2在实数范围内有意义,则实数a的取值范围是______.15.在一个口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6随机地摸出一个小球后然后放回,再随机地摸出一个小球,则两次摸出的小球的标号的和等于5的概率为______.16.如图,在平面直角坐标系xOy中,A、B为x轴上点,C、D为抛物线y=−x2+2x+3上两点,且四边形ABCD是正方形,则正方形ABCD的面积是______.17.如图,将等边三角形ABC绕点A顺时针旋转得到等边三角形ADE,若AD与BC交于点F,且CF=13BC,则tan∠ACE的值是______.18.如图,在平面直角坐标系xOy中,与y轴相切的⊙M与x轴交于A、B两点,AC为⊙M直径,AC=10,AB=6,连接BC,点P为劣弧BC⏜上点,点Q为线段AB上点,且MP⊥MQ,MP与BC交于点N.则当NQ平分∠MNB时,点P坐标是______.三、解答题(本大题共7小题,共56.0分)19.(1)计算:(12)−2−(π−√7)0+|√3−2|+4tan60°;(2)解方程:2x2x−5−22x+5=1.20.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率..下21.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?22.如图,一次函数y=ax+b与反比例函数y=k相交于P(2,4),Q两点,与x轴、yx轴分别交于点A、B两点,且AB=2PB.(1)求该反比例函数解析式;(2)求点Q坐标.23.如图,AB为⊙O直径,C、D是⊙O上点,连接CB并延长与AD所在直线交于点F,EF⊥AB,垂足为点E,连接CE,且CE=EF.(1)证明:CE与⊙O相切;(2)若AE=8,tan∠BCE=1,求AD的长度.224.如图,在平面直角坐标系xoy中,A(−3,0),B(4,0),C(0,4),E,M为线段AC上两个不重合的动点(点E在点M上方,且均不与端点重合),EF//AB,与BC交于点F,四边形EMNF为平行四边形,连接BN.(1)求直线AC与直线BC的解析式;(2)若设点F的横坐标为x,点M的纵坐标为y,当四边形EMNF为菱形时,请求y关于x的函数解析式及相应x的取值范围;(3)请求出当△BNF为等腰三角形时,平行四边形EMNF面积的最大值.25.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(−3,0)、B两点,与y轴交点C的坐标为(0,−6),D为抛物线顶点,连接AD,点M为线段AD上动点(不含端点),BM与y轴交于点N.(1)求抛物线解析式;(2)是否存在点M使得△CMN与△OBN相似,若存在请求出点M的坐标,若不存在,请说明理由;(3)求当BM将四边形ABCM分为面积相等的两部分时,ON的长度.答案和解析1.【答案】B【解析】解:−2的相反数是:−(−2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】D【解析】解:∵A、B两点关于y轴对称,A的坐标是(2,−8),∴点B的坐标是(−2,−8),故选:D.根据关于y轴的对称点的坐标特点可得答案.此题主要考查了关于y轴的对称点的坐标,关键是掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.【答案】A【解析】解:1150万=1150×104=1.15×107,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.根据主视图与左视图,主视图与俯视图的关系,可得答案.本题考查了由三视图判断几何体,利用主视图与左视图,主视图与俯视图的关系是解题关键.5.【答案】C【解析】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°−∠AOD=180°−50°=130°,故选:C.根据圆周角定理求出∠AOD即可解决问题.本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】D【解析】解:A、(x−2y)2=x2−4xy+4y2,故A错误;B、(x+y)(x2+y2)=x3+xy2+yx2+y3,故B错误;C、(−4x)(2x2+3x−1)=−8x3−12x2+4x,故C错误;D、(−4a−1)(4a−1)=(−1)2−(4a)2=1−16a2,故D正确.故选:D.分别按照完全平方公式、多项式乘以多项式、单项式乘以多项式及平方差公式计算验证即可.本题考查了整式的混合运算,熟练掌握整式乘法的相关公式及运算法则是解题的关键.7.【答案】D【解析】解:设铁塔的高度为x 米,在Rt △BCD 中,∵∠DBC =45°,∴BC =CD =x ,在Rt △ACD 中,∵∠DAC =30°,∴DC AC =tan30°=√33, ∴AC =√3x ,∵AB =30米,∴√3x −x =30,解得:x =15(√3+1)米,即铁塔的高度为15(√3+1)米,故选:D .设铁塔的高度为x 米,在Rt △BCD 中,根据仰角为45°可得BC =CD =x 米,然后在Rt △ACD 中用x 表示出AC 的长度,根据AB =30米,求出x 的值即可.本题考查了解直角三角形的应用−仰角俯角问题,解答本题的关键是根据仰角构造直角三角形,并解直角三角形.8.【答案】C【解析】解:两边都乘以x −1,得:x −m −2m =2(x −1),解得x =2−3m ,∵方程x−m x−1+2m 1−x =2的解为正数,∴2−3m >0,且2−3m ≠1,解得m <23,且m ≠13,故选:C .解分式方程得出x =2−3m ,再根据分式方程的解为正数得出2−3m >0,且2−3m ≠1,解之可得.本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用,属于中档题.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−>0,应在y轴的右侧,故不合题意,图形错误;bx来说,对称轴x=b2aB.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而图中的抛物线y=ax2−bx图象开口向下,a<0,产生矛盾,所以图形错误;故选C.10.【答案】A【解析】解:易得圆锥的底面半径为6cm,∵高为8cm,∴圆锥的母线长为10cm,圆锥的侧面积=π×6×10=60π,圆柱的侧面积=12π×8=96π,圆柱的底面积=π×36=36π,∴零件的表面积=60π+96π+36π=192πcm2.故选:A.零件的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的一个底面积,把相关数值代入即可求解.考查了圆锥的计算及圆柱的计算的知识,关键是得到零件表面积的组成,难点是利用勾股定理求得圆锥的母线长.【解析】解:过点B作AD垂线交DA延长线于H,∵∠ABC=60°,AB=4,∴AH=2,BH=√AH2+BH2=2√3,∵AD=6,∴HD=AH+AD=8,∴BD=√BH2+HD2=2√19,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴△AMD∽△EMB,△ABN∽△FDN,∵BE=14BC,DF=13CD,∴BM=15BD,DN=14BD,∴MN=BD−(BM+DN)=1120BD=11√1910.故选:B.过点B作AD垂线交DA延长线于H,由∠ABC=60°,AB=4,AD=6可求出BD,再由平行四边形性质得AD//BC,AB//CD,故△AMD∽△EMB,△ABN∽△FDN,从而有BM=15BD,DN=14BD,再利用MN=BD−(BM+DN)=1120BD求出MN即可.本题主要考查了平行四边形的性质、相似三角形的判定与性质,解决本题的关键是作AD垂线BH求出BD、利用相似求出MN=1120BD.12.【答案】A【解析】解:由题意可得,每三个数一循环,分别为1、√2、√3.第一排有1个数,第二排有2个数,第三排有3个数,…第n排有n个数,且每一排的数是从右往作排列的.∴(5,4)表示第5排第4列的数,(51,30)表示第51排第30列的数,∵前4排共有1+2+3+4=10个数,∴第5排第4列的数是第10+4=14个,∵14÷3=4…2,∴(5,4)表示的数是√2;前50排共有1+2+3+4+⋯+50=(1+50)×50÷2=1275个数,∴第51排第30列的数是第1275+30=1305个,∵1305÷3=435,∴(51,30)表示的数是√3,∴(5,4)与(51,30)表示的两个数的积是√2×√3=√6.故选:A.由题意可得,每三个数一循环,分别为1、√2、√3.第一排有1个数,第二排有2个数,第三排有3个数,…第n排有n个数,且每一排的数是从右往作排列的.从而可得(5,4)与(51,30)表示的是第几排第几列的数,再根据循环规律可得它们分别表示的数,最后计算乘积即可.本题考查了数字规律的变化,观察分析从而找到题中的循环规律是解题的关键.13.【答案】a(a−b)【解析】解:a2−ab=a(a−b).故答案为:a(a−b).直接找出公因式再提取公因式分解即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【答案】a>−2【解析】解:由题意得,a+2>0,解得a>−2.故答案为:a>−2.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.【答案】19【解析】解:画树状图得:∵共有36种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是436=19.故答案为:19.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】24−8√5【解析】解:设C点的横坐标为m,∵抛物线y=−x2+2x+3的对称轴为直线x=−22×(−1)=1,∴CD=2(m−1),BC=−m2+2m+3.∵ABCD为正方形,CD=BC.∴2m−2=−m2+2m+3,解得m=±√5.∵点C在对称轴的右侧,∴m>1,∴m=√5,∴CD=2(√5−1),∴CD2=24−8√5.∴正方形ABCD的面积为24−8√5.设C点的横坐标为m,首先用含m的代数式表示出线段AB、AD的长,然后利用正方形ABCD的AB=CD得到有关m的等式求得m的值,即可求得正方形的面积.本题考查了二次函数图象是点的坐标特征,正方形的性质,得出2m−2=−m2+2m+ 3是解题的关键.17.【答案】√21+2√33【解析】解:过点A作AM⊥BC于M,AN⊥DE于N,设DE交BC于J,连接AJ.设BC=6a,则CF=2a,BF=4a,BM=CM=3a,FM=a.可得AM=AN=3√3a,AF=2√7a,由对称性可知,AJ平分∠FAC,CJ=JD,∴FJ:JC=AF:AC=2√7a:6a=√7:3,∴CJ=DJ=√7+3×2a=3(3−√7)a,∴JN=3a−3(3−√7)a=(3√7−6)a,∴tan∠AJN=ANFN =√3a(3√7−6)a=√21+2√33,∵∠ACJ=∠AEF=60°,∴A,E,C,J四点共圆,∴∠AJE=∠ACE,∴tan∠ACE=√21+2√33过点A作AM⊥BC于M,AN⊥DE于N,设DE交BC于J,连接AJ.设BC=6a,则CF=2a,BF=4a,BM=CM=3a,FM=a.求出tan∠AJN即可解决问题.本题考查旋转的性质,等边三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.18.【答案】(495,13 5)【解析】解:设⊙M与y轴相切于E,连接EM并延长交BC于H,过P作PF⊥x轴于F,延长FP交EH于D,∵AC为⊙M直径,∴BC⊥AB,∵AC=10,AB=6,∴BC=8,∵⊙M与y轴相切,∴EM⊥y轴,∴四边形OEDF是矩形,∴OE=BH=DF,ED=OF,ED//OF,∵AM=CM,∴MH=12AB=3,BH=DF=4,∵MP⊥MQ,NQ平分∠MNB,∴MN=BN,设MN=BN=x,∴NH=4−x,∵MH2+HN2=MN2,∴x2=32+(4−x)2,解得:x=258,∴MN=BN=258,∴HN=78,∵HN//PD,∴△MHN∽△MDP,∴MHMD =HNPD=MNMP,∴3MD =78PD=2585,∴MD =245,PD =75, ∴DE =EM +MD =495,PF =DF −PD =135, ∴点P 坐标是(495,135),故答案为:(495,135).设⊙M 与y 轴相切于E ,连接EM 并延长交BC 于H ,过P 作PF ⊥x 轴于F ,延长FP 交EH 于D ,根据勾股定理得到BC =8,根据切线的性质得到EM ⊥y 轴,由矩形的性质得到OE =BH =DF ,ED =OF ,ED//OF ,根据角平分线的性质得到MN =BN ,设MN =BN =x ,根据勾股定理得到MN =BN =258,根据相似三角形的性质即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,勾股定理,角平分线的性质,正确的作出辅助线是解题的关键.19.【答案】解:(1)原式=4−1+2−√3+4√3=−5+3√3;(2)去分母得:2x(2x +5)−2(2x −5)=4x 2−25,整理得:4x 2+10x −4x +10=4x 2−25,解得:x =−356,经检验x =−356是分式方程的解.【解析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及实数的运算,熟练掌握运算法则及分式方程的解法是解本题的关键.20.【答案】解:(1)该班全部人数:12÷25%=48人;(2)48×50%=24,折线统计如图所示:(3)648×360°=45°;(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P =416=14.【解析】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;21.【答案】解:(1)设淡季每间的价格为x 元,酒店豪华间有y 间,{x(y −10)=24000x(1+13)y =40000, 解得,{x =600y =50, ∴x +13x =600+13×600=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x 元,日总收入为y 元,y =(800+x)(50−x 25)=−125(x −225)2+42025, ∴当x =225时,y 取得最大值,此时y =42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元. 【解析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.22.【答案】解:(1)将点P 的坐标代入反比例函数表达式得:4=k2,解得:k =8, 故反比例函数解析式为:y =8x ①,(2)过点P 作PM ⊥x 轴于点M ,则Rt △AOB∽Rt △AMP ,∴OB PM =AB AP =2PB 2PB+PB =23,即OB 4=23,解得:OB =83,设直线AP 的表达式为:y =mx +83,将点A 的坐标代入上式得:4=2m +83,解得:m =23,故直线AP 的表达式为:y =23x +83②,联立①②并解得:x =2(舍去)或−6,故点Q 的坐标为(−6,−43). 【解析】(1)将点P 的坐标代入反比例函数表达式,即可求解;(2)Rt △AOB∽Rt △AMP ,求出OB =83,进而求出直线AP 的表达式为:y =23x +83②,联立①②即可求解.本题考查了反比例函数与一次函数的交点,利用三角形相似求出OB 的长度是解题的关键.23.【答案】(1)证明:连接OC ,∵AB 为⊙O 直径,∴∠ACB =90°,∵EF ⊥AB ,∴∠AEF =90°,∴∠ACB =∠AEF ,∵∠ABC =∠EBF ,∴∠CAB =∠DFB ,∵CE =EF ,∴∠ECF =∠EFC ,∴∠CAB =∠ECF ,∵OC =OA ,∴∠OAC =∠ACO ,∴∠ACO =∠ECF ,∴∠ACO +∠BCO =∠BCO +∠ECF =90°,∴∠OCE =90°,∴CE 与⊙O 相切;(2)解:∵∠CAB =∠BCE ,∴tan∠BCE =tan∠CAB =BC AC =12,∵∠CEA =∠AEC ,∴△ACE∽△CBE ,∴CE AE =BC AC =12,∵AE =8,∴CE =4,∴EF =CE =4,∵∠EFB =∠CAB ,∴BE EF =12, ∴BE =12×EF =2,∴AB =AE −BE =6,连接BD ,∵AB 为⊙O 直径,∴∠ADB =90°,∴tan∠BAD =BD AD =EF AE =12, ∴设AD =2k ,BD =k ,∴AB =√5k =6,∴k =6√55, ∴AD =2k =12√55.【解析】(1)连接OC ,根据圆周角定理和等腰三角形的性质以及切线的判定定理即可得到结论;(2)根据三角函数的定义得到tan∠BCE =tan∠CAB =BC AC =12,根据相似三角形的性质得到CE =4,求得EF =CE =4,得到AB =AE −BE =6,连接BD ,设AD =2k ,BD =k ,根据勾股定理即可得到结论.本题考查了切线的判定,解直角三角形,相似三角形的判定和性质,正确的作出辅助线构造直角三角形是解题的关键.24.【答案】解:(1)设直线AC 的解析式为:y =k 1x +b 1,将A(−3,0),C(0,4)代入得, {−3k 1+b 1=0b 1=4,解得:{k 1=43b 1=4, 所以,直线AC 的解析式为:y =43x +4,设直线BC 的解析式为:y =k 2x +b 2,将B(4,0),C(0,4)代入得,{4k 2+b 2=0b 2=4,解得:{k 2=−1b 2=4, 所以,直线BC 的解析式为:y =−x +4;(2)∵点F的横坐标为x,点F在直线BC上,∴F(x,−x+4),∵点M的纵坐标为y,点M在直线AC上,∴M(34y−3,y),∵EF//AB,∴E,F的纵坐标相同,点E在直线AC上,∴E(−34x,−x+4),∵四边形EMNF为菱形,∴EM=EF,∴EM2=EF2,∴[y−(−x+4)]2+(34y−3+34x)2=(x+34x)2,整理得:[(x+y)−4]2=4925x2,∵点E在点M上方,即点E纵坐标大于点M纵坐标,∴−x+4>y,即x+y<4,又∵x>0,∴[(x+y)−4]2=4925x2两边开方得:4−(x+y)=75x,整理得:y=−125x+4,由题知,0<y<3,即0<−125x+4<3,解得:512<x<53,∴y关于x的函数解析式为y=−125x+4,x的取值范围为512<x<53;(3)由题意当BF=FN或FN=BN时,点N在△ABC外,不符合题意,当BF=BN时,作DN⊥EF交EF于点D,设F(a,4−a),N(b,y N),则EF =74a ,DF =a −b ,DN =43(a −b),∴y N =4−7a−4b 3, ∴N(b,4−7a−4b 3),设FN 的中点为点G ,又F(a,4−a),∴G(a+b 2,4−5a−3b 3),∵在△BNF 中,BF =BN ,∴FN ⊥BG ,∴K FN ⋅K BG =−1,又K BG =−34,∵G(a+b 2,4−5a−3b 3),B(4,0), ∴K BG =4−5a−2b 3a+b 2−4=−34, 解得:b =31a−2425,由题意得S ▱EFMN =EF ⋅DN =74a ⋅43(a −31a−2425)=73a(−6a 25+2425)=−1425(a −2)2+5625, ∴当a =2时,平行四边形EMNF 面积有最大值,S ▱EFMN =5625.【解析】(1)利用待定系数法即可求解;(2)利用邻边相等的平行四边形是菱形的判定定理,用字母把邻边表示出来求解即可;(3)首先判断等腰三角形的可能性,设出F ,N 的坐标,列出平行四边形的面积的函数,根据二次函数的性质可得面积的最大值.本题考查了待定系数法求函数解析式,二次函数的最值,菱形的判定及等腰三角形的性质在坐标系中的灵活运用,设出点的坐标并找出其关系是解题的关键.25.【答案】解:(1)∵抛物线y =x 2+bx +c 经过点A(−3,0)、点C(0,−6), ∴{9−3b +c =0c =−6, 解得:{b =1c =−6, ∴抛物线解析式为:y =x 2+x −6;(2)存在.理由:∵y =x 2+x −6=(x +12)2−254, ∴D(−12,−254), 设直线AD 解析式为y =kx +b ,∵A(−3,0),D(−12,−254),∴{−3k +b =0−12k +b =−254,解得:{k =−52b =−152, ∴直线AD 解析式为y =−52x −152, 当△OBN∽△CMN 时,∠BON =∠NCM =90°,OB//CM ,设M(x,−6),代入y =−52x −152,得: −6=−52x −152, 解得:x =−35,∴M(−35,−6);当△OBN∽△MCN 时,∠BON =∠NMC =90°,作直线ME ⊥x 轴于点E ,作直线CF ⊥ME 于点F ,∵∠EMB +∠EBM =∠EMB +∠CMF =90°,∴∠BEM =∠CMF ,∴△EBM∽△FMC ,在y =x 2+x −6中,令y =0,得:x 2+x −6=0,解得:x 1=−3(舍去),x 2=2,∴B(2,0),设M(x,−52x −152), ∵C(0,−6),∴EB =2−x ,CF =−x ,EM =52x +152,MF =−52x −32,∵△EBM∽△FMC ,∴EB EM =FM FC ,∴EB ⋅FC =FM ⋅EM ,∴(2−x)(−x)=(−52x −32)(52x +152),解得:x =−41±2√9429, ∴点M 的坐标为(−41+2√9429,−115−5√9429)或(−41−2√9429,−115+5√9429), 综上所述,当点M 的坐标为(−35,−6),(−41+2√9429,−115−5√9429),(−41−2√9429,−115+5√9429),时,满足题意.(3)作MG//x 轴交BC 于点G ,设直线BC 的解析式为y =k 1x +b 1,将B(2,0),C(0,−6)代入,得:{2k 1+b 1=0b 1=−6, 解得:{k 1=3b 1=−6, ∴直线BC 的解析式为y =3x −6,设M(x,−52x −152),G(a,−52x −152), 将G(a,−52x −152)代入直线BC 的解析式中,得:3a −6=−52x −152, ∴a =−56x −12,∴G(−56x −12,−52x −152), MG =−56x −12−x =−116x −12, ∴S △ABM =12AB ⋅|y M |=12×5⋅(52x +152)=25x+754, S △CBM =12OC ⋅MG =12×6⋅(−116x −12)=−11x−32, 由题意得:25x+754=−11x−32, 解得:x =−8147,∴M(−8147,−15047),设直线BM 的解析式为y =k 2x +b 2,将B(2,0),M(−8147,−15047)代入,得:{2k 2+b 2=0−8147k 2+b 2=−15047, 解得:{k 2=67b 2=−127, ∴N(0,−127), ∴ON =127.【解析】(1)利用待定系数法将A ,C 的坐标代入抛物线解析式解方程组即可;(2)先利用配方法求出顶点坐标,再运用待定系数法求出直线AD 的解析式,由于△CMN 与△OBN 相似,可以分两种情况:△OBN∽△CMN 或△OBN∽△MCN ,分别应用相似三角形性质建立方程求解即可;(3)作MG//x 轴交BC 于点G ,先运用待定系数法求直线BC 的解析式,利用三角形面积建立方程求解,得出点M 的坐标,再利用待定系数法求直线BM 的解析式,从而求得点N 的坐标,即可求得ON .本题考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,三角形面积等知识,属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、二次函数图象和性质等相关知识,并能够灵活运用方程思想和分类讨论思想是解题关键.。

绵阳市高中2020级第二次诊断性考试文科数学答案

绵阳市高中2020级第二次诊断性考试文科数学答案

绵阳市高中2020级第二次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分. DDCAA BCDBA CA二、填空题:本大题共4小题,每小题5分,共20分.1314.1-15.3-16.[1,3)三、解答题:本大题共6小题,共70分.17.解:(1)由23(cos )sin b a C a C -=,及正弦定理可得,3sin 3sin cos sin sin B A C a A C -=, ··············································· 2分 ∵3sin 3sin()3sin cos 3cos sin B A C A C A C =+=+ ······································ 4分 ∴3cos sin sin sin A C a A C =, ······························································· 6分即sin 3cos a A A =,且3A π=,可得a =············································ 8分(2)由2121)cos(-=⋅-=-⋅⋅=⋅b c A b c AC BA π,可得1c b ⋅=, ······················ 10分由余弦定理2222cos 4b c a bc A +=+⋅=. ·················································· 12分18.解:(1)由题意知,2n S =2n a +n a ,① ··············································· 1分当n =1时,21a =21a +1a ,则11a =; ·························································· 2分当2≥n 时,21n S -=21n a -+1n a -,② ····················································· 3分 ①②相减可得,2a n =2n a −21n a -+n a −1n a -, ················································ 4分 ∴a n +1n a -= 2n a −21n a -,则a n -1n a -=1,∴数列{}n a 是以11a =为首项,1为公差的等差数列, ·································· 5分 所以,a n = n (n ∈N ∗). ········································································ 6分 (2)2()3n n n a b n =⋅, ··········································································· 7分设n n n c a b =,则1112232()(1)()()3333n n n n n n c c n n -----=⋅--⋅=⋅, ························ 8分 ∴当3n <时,10n n c c -->,所以1n n c c ->, ··········································· 9分 当3n =时,10n n c c --=,所以1n n c c -=, ············································· 10分当3n >时,10n n c c --<,所以1n n c c -<, ············································· 11分 则12345c c c c c <=>>>,∴存在23或m =,使得对任意的,≤n n m m n N a b a b *∈恒成立. ····················· 12分 19.解:(1)因为0.92<0.99,根据统计学相关知识,2R 越大,意味着残差平方和521ˆ()ii yy =-∑越小,那么拟合效果越好,因此选择非线性回归方程②2ˆˆˆy mx n =+进行拟合更加符合问题实际. ······························································· 4分 (2)令2i i u x =,则先求出线性回归方程:ˆˆˆy mu n =+, ································ 5分∵14916250.8 1.1 1.5 2.4 3.711 1.955=,u y ++++++++===, ····················· 7分 2222221()(111)(411)(911)(1611)(2511)nii uu =-=-+-+-+-+-∑=374, ··········· 9分∴121()()45.1ˆ0.121374()nii i nii uu y y muu ==--==≈-∑∑, ················································ 10分 由ˆ1.90.12111n=⨯+,得ˆ0.5690.57n =≈, 即ˆ0.120.57yu =+, ·········································································· 11分 ∴所求非线性回归方程为:2ˆ0.120.57yx =+. ········································ 12分 20.解:(1)设11()B x y ,,22()C x y ,,直线BC 的方程为:4x my =+,其中1=m k, ······································· 1分联立224143x my x y =+⎧⎪⎨+=⎪⎩,消x 整理得:22(34)24360m y my +++=, ··················· 2分 所以:1222434m y y m -+=+,1223634y y m ⋅=+, ············································ 3分 从而121212121222(6)(6)y y y y k k x x my my ⋅⋅=⋅=++++ 12212126()36y y m y y m y y =+++2222236134361444363434m m m m m +==-+++所以:12k k ⋅为定值14. ······································································ 5分 (2)直线AB 的方程为:)2(211++=x x y y , ············································ 6分 令4x =,得到66261111+=+=my y x y y M , ················································· 7分 同理:2266N y y my =+. ········································································· 8分 从而121266||||||66M N y y MN y y my my =-=-++122121236|||6()36|y y m y y m y y -=+++ ····················································· 9分又12||y y -==212122144|6()36|34m y y m y y m +++=+,···················································· 10分所以||MN = ······································································ 11分 因为:1[34],m k=∈,所以||MN ∈, 即线段MN长度的取值范围为. ············································ 12分 21.解:(1)解:(1) a =2时,2()ln 32f x x x x =+-+,2231(21)(1)()x x x x f x x x -+--'==, ······················································ 2分 由()0f x '>解得:x >1或102x <<;由()0f x '<解得:112x <<. ················ 3分 故f (x )在区间(1),+∞,1(0)2,上单调递增,在区间1(1)2,上单调递减. ·········· 4分 所以f (x )的极大值是13()ln 224f =-,极小值是f (1)=0; ······························ 5分(2)2(1)1(1)(1)()ax a x ax x f x x x -++--'==,且10≥x -, ········································· 6分 ①当≥1a 时,10≥ax -,(1)(1)()0≥ax x f x x--'=, 故f (x )在区间[1,2]上单调递增,所以min ()()0f x h a ==, ···························· 7分 ②当102≤a <时,10ax -≤,(1)(1)()0≤ax x f x x --'=, 故f (x )在区间[1,2]上单调递减, 所以min ()()(2)ln 2102≥a f x h a f ===+-,显然()h a 在区间1(0]2,上单调递增, 故13()()ln 224≤h a h =-<0. ····································································· 9分 ③当112a <<时,由()0f x '>解得:12≤x a <;由()0f x '<解得:11≤x a<. 故f (x )在区间1(2],a 上单调递增,在区间1[1),a 上单调递减. 此时min11()()()ln 22a f x f h a a a a ===--,则222111(1)()0222≥a h a a a a -'=-+=, 故()h a 在区间1(1)2,上单调递增,故h (a )<h (1)=0. ······································· 11分 综上:011()ln 2102211ln 1222,≥,≤,a ah a a aa a a ⎧⎪⎪⎪=+-<⎨⎪⎪--<<⎪⎩,且h (a )的最大值是0.·························· 12分 22.解:(1)①当B 在线段AO 上时,由|OA |‧|OB |=4,则B (2,π)或(2,23π); ②当B 不在线段AO 上时,设B (ρ,θ),且满足|OA |‧|OB |=4,∴A 4(,)θπρ+,············································································ 1分 又∵A 在曲线l 上,则44cos()sin()2θπθπρρ+++=-, ··························· 3分∴2sin 2cos ρθθ=+, ····································································· 4分又∵3≤≤2ππθπ+,即20≤≤πθ. 综上所述,曲线C 的极坐标方程为:2sin 2cos ρθθ=+2(0≤≤)πθ,或32()2=或=πρθπθ=. ·························· 5分 (2)①若曲线C 为:32()2=或=πρθπθ=,此时P ,Q 重合,不符合题意; ②设l 1:θα=2(0≤≤)πθ,又l 1与曲线C 交于点P ,联立2sin 2cos ,,θαρθθ=⎧⎨=+⎩得:2sin 2cos P ραα=+, ··································································· 6分 又l 1与曲线l 交于点Q ,联立sin cos 2,,θαρθρθ=⎧⎨+=-⎩得:2sin cos Q ραα-=+, ······································································ 7分又∵M 是P ,Q 的中点, 1sin cos (0)2sin cos 2≤≤P QM ρρπρααααα+==+-+,······························ 8分令sin cos t αα+=,则)4t πα=+,又∵20≤≤πα,则3444≤≤πππα+,且1≤t ,∴1(1≤M t t t ρ=-,且1M t t ρ=-在1⎡⎣上是增函数, ····················· 9分∴M ρ=42ππα+=时,即4πα=时等号成立. ∴OM 的最大值为22. ··································································· 10分 23.解:(1)由()f x ≤3的解集为[n ,1],可知,1是方程()f x =3的根,∴(1)f =3+|m +1|=3,则m =−1, ····························································· 1分 ∴()f x =|2x +1|+|x −1|,①当x ≤12-时,()f x =−3x ≤3,即x ≥−1,解得:−1≤x ≤12-, ················· 2分②当112x <<时,()f x =x +2≤3,解得:112x -<<, ································ 3分 ③当x ≥1时,()f x =3x ≤3,解得:x =1. ··············································· 4分 综上所述:()f x 的解集为[−1,1],所以m =−1,n =−1. ····························· 5分(2)由(1)可知m =−1,则1222a b+=. ······················································· 6分 令12x a =,2y b =,则12a x=,2b y =,又a ,b 均为正数,则2x y +=(00,x y >>),由基本不等式得,2≥x y =+, ······················································ 7分 ∴1≤xy ,当且仅当,x =y=1时等号成立. 所以有11≥xy,当且仅当,x =y=1时等号成立. ········································ 8分 又22222244164(2)a b a b x y +=+=+8≥xy=(当且仅当,x =y 时等号成立). ········· 9分 ∴22168≥a b +成立,(当且仅当,122,a b ==时等号成立) . ··················· 10分。

四川省绵阳市 中考数学模拟试卷(2)(Word版 含解析)

四川省绵阳市 中考数学模拟试卷(2)(Word版 含解析)

四川省绵阳市中考数学模拟试卷(2)一.选择题(共12小题,满分36分,每小题3分)1.(3分)的算术平方根为()A.B.﹣C.±D.()2 2.(3分)2020年2月11日,联合国及农业组织向全球发出沙漠蝗虫灾害预警,30多个国家遭蝗虫灾难,巴基斯坦当前蝗虫数目约为4000亿只,4000亿用科学记数法表示为()A.4×103亿B.4×107亿C.4×1010亿D.4×1011亿3.(3分)已知一个物体由x个相同的正方体堆成,从它的正面看到的形状图和从左面看到的形状图如图,那么x的最小值、最大值是()A.5,12B.6,11C.7,10D.8,124.(3分)下列交通标志既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列运算正确的是()A.a3+a2=a5B.(a2)3=a5C.x6÷x2=x4D.(3a)2=6a2 7.(3分)如图,某小区有甲、乙两座楼房,在乙楼底部B点测得甲楼顶部D点的仰角为64°,且发现DB正好是∠CDA的角平分线,求站在乙楼顶A点处时测得甲楼顶部D点的仰角为()A.52°B.26°C.38°D.32°8.(3分)如图,四边形ABCD是正方形,以CD为边长向正方形外作等边△CDE,AC与BE相交于点F,则∠AFD的度数为()A.65°B.60°C.50°D.45°9.(3分)甲、乙两人分别从相距600米的A、B两地步行出发,相向而行,各人速度保持不变.若两人同时出发,则他们10分钟之后相遇;若乙比甲先出发3分钟,则甲出发9分钟之后,甲乙两人相遇,则甲的速度为()A.20米/分钟B.30米/分钟C.40米/分钟D.25米/分钟10.(3分)如图,P A是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是()A.4B.2C.1D.11.(3分)将抛物线y=(x﹣2)2+3向下平移k个单位后得到的抛物线恰好与x轴有一个交点,则k的值为()A.﹣2B.2C.﹣3D.312.(3分)如图各正方形中的四个数字之间都有相同的规律,根据这种规律,m的值是()A.74B.104C.126D.144二.填空题(共6小题,满分24分,每小题4分)13.(4分)因式分解:x4•x4﹣x4=.14.(4分)如图,已知CD∥GH,点B在GH上,点A为平面内一点,AB⊥AD,过点A作AF⊥CD,AE平分∠F AD,AC平分∠F AB,若∠ABC+∠GBC=180°,∠ACB=4∠F AE.则∠ABG =.15.(4分)一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是.16.(4分)已知二次函数y=x2﹣2x+b,过点(﹣2,5),则x2﹣2x+b>5的解为.17.(4分)如图,在△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕C点旋转得到△A'B'C,其中点A'在线段AB上,那么∠A'B'B的正切值等于.18.(4分)如图,矩形ABCD中,AB=4,AD=6,点E是边CD上一点,EF⊥AE交BC于点F,则CF长的取值范围是.三.解答题(共7小题,满分90分)19.(16分)(1)计算:(﹣1)2020+cos45°++(1﹣)﹣1;(2)先化简,再求值:,其中x =﹣1.20.(12分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589乙8996918013(1)请计算甲的四项成绩的方差和乙的平均成绩;(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1计算,哪个学生数学综合素质测试成绩更好?请说明理由.21.(12分)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.(1)求直线AB和反比例函数的解析式;(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E 的坐标,并求△BCE的面积.22.(12分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.23.(12分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB 于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若,求.24.(12分)如图,在平面直角坐标系中,抛物线y=ax2+4x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为x=2,点D为抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C,D两点之间的距离是;(3)点E是第一象限内抛物线上的动点,连接BE和CE.求△BCE面积的最大值;(4)平面内存在点Q,使以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q的坐标.25.(14分)【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD =10,则CD=.四川省绵阳市中考数学模拟试卷(2)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)的算术平方根为()A.B.﹣C.±D.()2【解答】解:∵()2=.∴的算术平方根为.故选:A.2.(3分)2020年2月11日,联合国及农业组织向全球发出沙漠蝗虫灾害预警,30多个国家遭蝗虫灾难,巴基斯坦当前蝗虫数目约为4000亿只,4000亿用科学记数法表示为()A.4×103亿B.4×107亿C.4×1010亿D.4×1011亿【解答】解:4000亿=4×103亿,故选:A.3.(3分)已知一个物体由x个相同的正方体堆成,从它的正面看到的形状图和从左面看到的形状图如图,那么x的最小值、最大值是()A.5,12B.6,11C.7,10D.8,12【解答】解:根据从左面看和从正面看的图形可得从上面看的图形,当x最大时,如图,当x最小时,如图,综上,x最大是11,最小是6.故选:B.4.(3分)下列交通标志既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.5.(3分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:不等式组的解集在数轴上表示正确的是:故选:D.6.(3分)下列运算正确的是()A.a3+a2=a5B.(a2)3=a5C.x6÷x2=x4D.(3a)2=6a2【解答】解:A.a3与a2不是同类项,所以不能合并,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.x6÷x2=x4,正确;D.(3a)2=9a2,故本选项不合题意.故选:C.7.(3分)如图,某小区有甲、乙两座楼房,在乙楼底部B点测得甲楼顶部D点的仰角为64°,且发现DB正好是∠CDA的角平分线,求站在乙楼顶A点处时测得甲楼顶部D点的仰角为()A.52°B.26°C.38°D.32°【解答】解:由题意得:∠CBD=64°,∠BCD=90°,∴∠CDB=90°﹣∠CBD=90°﹣64°=26°,∵DB是∠CDA的角平分线,∴∠CDA=2∠CDB=52°,∵∠AED=90°,∴∠DAE=90°﹣∠CDA=90°﹣52°=38°,故选:C.8.(3分)如图,四边形ABCD是正方形,以CD为边长向正方形外作等边△CDE,AC与BE相交于点F,则∠AFD的度数为()A.65°B.60°C.50°D.45°【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFD=60°,故选:B.9.(3分)甲、乙两人分别从相距600米的A、B两地步行出发,相向而行,各人速度保持不变.若两人同时出发,则他们10分钟之后相遇;若乙比甲先出发3分钟,则甲出发9分钟之后,甲乙两人相遇,则甲的速度为()A.20米/分钟B.30米/分钟C.40米/分钟D.25米/分钟【解答】解:根据题意可知,甲、乙两人的速度之和为600÷10=60米/分,设甲的速度为x米/分,则乙的速度为(60﹣x)米/分,根据题意可知,9x+(3+9)×(60﹣x)=600,解得x=40,故选:C.10.(3分)如图,P A是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是()A.4B.2C.1D.【解答】解:连接OA,∵P A为⊙O的切线,∴∠OAP=90°,∵sin P=,OB=1,∴AO=1,则OP=2,故BP=2﹣1=1.故选:C.11.(3分)将抛物线y=(x﹣2)2+3向下平移k个单位后得到的抛物线恰好与x轴有一个交点,则k的值为()A.﹣2B.2C.﹣3D.3【解答】解:将抛物线y=(x﹣2)2+3向下平移k个单位后得到的抛物线的解析式为y =(x﹣2)2+3﹣k,此时抛物线的顶点坐标为(2,3﹣k),因为新抛物线恰好与x轴有一个交点,所以3﹣k=0,解得k=3.故选:D.12.(3分)如图各正方形中的四个数字之间都有相同的规律,根据这种规律,m的值是()A.74B.104C.126D.144【解答】解:由题意可得第二行第二个的规律分别是:3×10,5×12,7×14,∴m=9×16=144,故选:D.二.填空题(共6小题,满分24分,每小题4分)13.(4分)因式分解:x4•x4﹣x4=x4(x2+1)(x+1)(x﹣1).【解答】解:原式=x4(x4﹣1)=x4(x2+1)(x2﹣1)=x4(x2+1)(x+1)(x﹣1).故答案为:x4(x2+1)(x+1)(x﹣1).14.(4分)如图,已知CD∥GH,点B在GH上,点A为平面内一点,AB⊥AD,过点A作AF⊥CD,AE平分∠F AD,AC平分∠F AB,若∠ABC+∠GBC=180°,∠ACB=4∠F AE.则∠ABG =22.5°.【解答】解:延长F A交GB于点M,如图所示:∵CD∥GH,AF⊥CD,∴AM⊥GH,∵AE平分∠F AD,∴∠F AD=2∠F AE,∠F AE=∠DAE,∵AB⊥AD,∴∠F AD+∠MAB=90°,∵∠MAB+∠ABM=90°,∴∠ABM=∠F AD=2∠F AE,∴∠MAB=90°﹣∠ABM=90°﹣2∠F AE,∵AC平分∠F AB,∴∠BAC=∠F AC=∠F AD+∠DAC=2∠F AE+∠DAC,∵∠BAC+∠DAC=90°,∴2∠F AE+∠DAC+∠DAC=90°,整理得:∠DAC=45°﹣∠F AE,∴∠BAC=90°﹣∠DAC=90°﹣(45°﹣∠F AE)=45°+∠F AE,∵∠ACB=4∠F AE,在△ABC中,∠ABC=180°﹣∠BAC﹣∠ACB=180°﹣(45°+∠F AE)﹣4∠F AE=135°﹣5∠F AE,∵∠ABC+∠GBC=180°,∴∠ABC+∠ABC+∠ABG=180°,2∠ABC+∠ABG=180°,2(135°﹣5∠F AE)+2∠F AE=180°,解得:∠F AE=11.25°,∴∠ABG=2∠F AE=22.5°.故答案为:22.5°.15.(4分)一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是.【解答】解:P(数字3)=.故本题答案为:.16.(4分)已知二次函数y=x2﹣2x+b,过点(﹣2,5),则x2﹣2x+b>5的解为x<﹣2或x >4.【解答】解:∵二次函数y=x2﹣2x+b,∴此函数的对称轴为:x=﹣=1,∵二次函数y=x2﹣2x+b,过点(﹣2,5),∴此函数一定过(4,5),∵二次函数中a=1>0,∴图象开口向上,∴x2﹣2x+b>5的解为:x<﹣2或x>4.故答案为:x<﹣2或x>4.17.(4分)如图,在△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕C点旋转得到△A'B'C,其中点A'在线段AB上,那么∠A'B'B的正切值等于.【解答】解:把△ABC绕C点旋转得到△A'B'C,点A'在线段AB上,∴∠ACA'=∠BCB',CA=CA',CB=CB',∴∠A=∠CA'A,∠CBB'=∠CB'B,∴∠A=∠CBB',∴△CAA'∽△CBB',∴,∵∠C=90°,AC=3,BC=4,∴AB===5,∠A+∠CBA=90°,∴∠CBB'+∠CBA=90°,∴∠A'BB'=90°,设A'B=a,则AA'=5﹣a,BB'=,∴,解得,a=(a=5舍去),∴A'B=,∴BB'==,∴tan∠A'B'B==.故答案为:.18.(4分)如图,矩形ABCD中,AB=4,AD=6,点E是边CD上一点,EF⊥AE交BC于点F,则CF长的取值范围是.【解答】解:如图所示:∵EF⊥AE,∴∠AEF=90°,又∵∠AED+∠AEF+∠CEF=180°,∴∠AED+∠CEF=90°,又∵四边形ABCD是矩形,∴∠D=∠C=90°,又∵∠AED+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF,∴,又∵AB=4,AD=6,AB=EC+ED,∴,解得:CF==,又∵0≤CE≤4,∴,故答案为.三.解答题(共7小题,满分90分)19.(16分)(1)计算:(﹣1)2020+cos45°++(1﹣)﹣1;(2)先化简,再求值:,其中x=﹣1.【解答】解:(1)(﹣1)2020+cos45°++(1﹣)﹣1=1+++=1++﹣(1+)=1++﹣1﹣=;(2)=[]•=•===,当x=﹣1时,原式==.20.(12分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲87939185891013乙8996918089(1)请计算甲的四项成绩的方差和乙的平均成绩;(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1计算,哪个学生数学综合素质测试成绩更好?请说明理由.【解答】解:(1)甲的平均成绩=(87+93+91+85)÷4=89;乙的平均成绩(89+96+91+80)÷4=89;甲的方差S甲2=[(87﹣89)2+(93﹣89)2+(91﹣89)2+(85﹣89)2]=×(16+4+4+16)=10;乙的方差S乙2=[(89﹣89)2+(96﹣89)2+(91﹣89)2+(80﹣89)2]=×(0+49+4+81)=33.5;(2)若按4:3:2:1计分,则乙应当选;理由如下:甲的分数=×87+×93+×91+×85=89.4;乙的分数=×89+×96+×91+×80=90.6.故应选乙;故答案为:89;10.21.(12分)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.(1)求直线AB和反比例函数的解析式;(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E 的坐标,并求△BCE的面积.【解答】解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,∵反比例函数的图象过点B(4,1),∴k=4×1=4,把点A(0,﹣1),B(4,1)代入y=ax+b得,解得,∴直线AB解析式为y=,反比例函数的解析式为y=;(2)解得或,∴C(﹣2,﹣2),设直线CD的解析式为y=mx+n,把C(﹣2,﹣2),D(﹣1,0)代入得,解得,∴直线CD的解析式为y=2x+2,由得或,∴E(1,4),∴S△BCE=6×6﹣×3﹣﹣=.22.(12分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.【解答】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,,解得,,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)设购买普通口罩x个,获得的利润为w元,w=(2﹣1)x+(10﹣6)×(1000﹣x)=﹣3x+4000,∴w随x的增大而减小,∵普通口罩的数量不低于N95口罩数量的4倍.∴x≥4×(1000﹣x),解得,x≥800,∴当x=800时,w取得最大值,此时w=1600,1000﹣x=200,答:为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩800个,N95口罩200个,最大利润是1600元.23.(12分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB 于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若,求.【解答】证明:(1)连接OD,∵AB=AC,∴∠B=∠ACB,又∵OC=OD,∴∠ODC=∠ACB,∴∠ODC=∠B,∴OD∥AB,∵EF⊥AB,∴OD⊥EF,又∵OD是圆的半径,∴EF为⊙O的切线;(2)∵tan∠CFD=,∴tan∠CFD==,设AE=3k,EF=4k,则AF=5k,由(1)知OD∥AB,∴△FOD∽△F AE,∴,∴,∴3(5k﹣OA)=5OA,解得OA=,∴AB=AC=,∴BE=AB﹣AE=﹣3k=k,∴.24.(12分)如图,在平面直角坐标系中,抛物线y=ax2+4x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为x=2,点D为抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C,D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE.求△BCE面积的最大值;(4)平面内存在点Q,使以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q的坐标.【解答】解:(1)∵OA=1,∴A(﹣1,0),∵对称轴为x=2,∴B(5,0),将A(﹣1,0),B(5,0)代入y=ax2+4x+c,∴,∴,∴y=﹣x2+4x+5;(2)令x=0,则y=5,∴C(0,5),∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴D(2,9),∴CD=2,故答案为:2;(3)设直线BC的解析式为y=kx+b,∴,∴,∴y=﹣x+5,过点E作EF⊥x轴交直线BC于点F,设E(t,﹣t2+4t+5),则F(t,﹣t+5),∴EF=﹣t2+5t,∴S△BCE=×5×(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△BCE有最大值;(4)设Q(m,n),①当BD为平行四边形对角线时,BD的中点(,),CQ的中点(,),∴=,=,∴m=7,n=4,∴Q(7,4);②当BC为平行四边形对角线时,BC的中点(,),DQ的中点(,),∴=,=,∴m=3,n=﹣4,∴Q(3,﹣4);③当BQ为平行四边形对角线时,BQ的中点(,),CD的中点(1,7),∴=1,=7,∴m=﹣3,n=14,∴Q(﹣3,14);综上所述:Q点坐标为(7,4)或(3,﹣4)或(﹣3,14).25.(14分)【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD =10,则CD=8.【解答】解:(1)如图1,BD=CE.理由:∵∠CAD=∠BAE=90°,∴∠BAD=∠EAC=90°+∠BAC,∵AB=AE,AD=AC,∴△ABD≌△AEC(SAS),∴BD=CE.(2)如图2,在△ABC的外部作Rt△BAE,使∠BAE=90°,AE=AB,连接BE、CE.∵∠ACD=∠ADC=45°,∴∠CAD=90°,AC=AD,∴∠EAC=∠BAD=90°+∠BAC,∴△EAC≌△BAD(SAS),∴EC=BD,∴EC2=BD2,∵∠ABE=∠AEB=45°,∠ABC=45°,∴∠CBE=45°+45°=90°,∵AE=AB=5,∠BAE=90°,∴BE2=AB2+AE2=52+52=50,∵BC=2,∴EC2=BC2+BE2=22+50=54,∴BD2=54.(3)如图3,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,将△ACD绕点C沿逆时针方向旋转60°,得到△BCE,则CE=CD,∠ECD=60°,∴△ECD是等边三角形,∴∠CED=60°,ED=CD,由旋转得∠BEC=∠ADC=30°,BE=AD=6,∴∠BED=30°+60°=90°,∴BD=10,∴ED===8,∴CD=8,故答案为:8.。

四川省绵阳市2019-2020学年中考数学二月模拟试卷含解析

四川省绵阳市2019-2020学年中考数学二月模拟试卷含解析

四川省绵阳市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各数中,最小的数是( ) A .3-B .()2--C .0D .14-2.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( ) 年龄(岁) 12 13 14 15 16 人数 12252A .2,14岁B .2,15岁C .19岁,20岁D .15岁,15岁3.如图,∠AOB =45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( )A .12B .22C .32D .334.设点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是 A .第一象限B .第二象限C .第三象限D .第四象限5.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( ) A .平均数和中位数不变 B .平均数增加,中位数不变 C .平均数不变,中位数增加D .平均数和中位数都增大6.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是( ) A .2B .3C .5D .77.一个正比例函数的图象过点(2,﹣3),它的表达式为( ) A .3y -2x = B .2y 3x =C .3y 2x =D .2y -3x = 8.二次函数y=(2x -1)2+2的顶点的坐标是( )A.(1,2)B.(1,-2)C.(12,2)D.(-12,-2)9.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.10.下列说法正确的是()A.﹣3是相反数B.3与﹣3互为相反数C.3与13互为相反数D.3与﹣13互为相反数11.比较4,17,363的大小,正确的是()A.4<17<363B.4<363<17 C.363<4<17D.17<363<4 12.如图所示的几何体,它的左视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于32,并简要说明点C的位置是如何找到的__________________14.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.15.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.16.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是.17.与直线2y x 平行的直线可以是__________(写出一个即可).18.化简:18=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题: 分组 分数段(分)频数 A 36≤x <41 22 B 41≤x <46 5 C 46≤x <51 15 D 51≤x <56 m E56≤x <6110(1)求全班学生人数和m 的值;(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.20.(6分)一位运动员推铅球,铅球运行时离地面的高度y(米)是关于运行时间x(秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.21.(6分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.22.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B 类的人数有____人.在扇形统计图中,求E 类对应的扇形圆心角α的度数,并补全条形统计图.若将A 、C 、D 、E 这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.23.(8分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 24.(10分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 25.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC =b ,AB =c . 特例探索(1)如图1,当∠ABE =45°,c =2a = ,b = ; 如图2,当∠ABE =10°,c =4时,a = ,b = ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.26.(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?27.(12分)综合与探究:如图1,抛物线y=﹣33x2+233x+3与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣3).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E 为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.2.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.B【解析】【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN ∥OB , ∴∠POM =∠OPN ,∴∠PNE =∠PON+∠OPN =∠PON+∠POM =∠AOB =45°,∴PM PN =2. 故选:B . 【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键. 4.A 【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数ky x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限; ②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 5.B 【解析】 【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数. 【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然2000002250005151a a ++<;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变. 故选B . 【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响. 6.C 【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案. 详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C . 点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键. 7.A 【解析】 【分析】利用待定系数法即可求解. 【详解】设函数的解析式是y=kx , 根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A . 8.C 【解析】试题分析:二次函数y=(2x-1)+2即21222y x ⎛⎫=-+ ⎪⎝⎭的顶点坐标为(,2) 考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系 9.C 【解析】试题解析:左视图如图所示:故选C.10.B【解析】【分析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与13互为倒数,错误;D、3与-13互为负倒数,错误;故选B.【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键.11.C【解析】【分析】根据1617且364363【详解】解:易得:1617364363363417,故选C.【点睛】本题主要考查开平方开立方运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省绵阳市涪城区2020年中考数学二模试卷
一、单选题
1. -2的相反数是( )
A . -2 B . 2 C . D .
2. 在平面直角坐标系中 中,A、B两点关于y轴对称,若A的坐标是
,则点B的坐标是( )
A. B. C.
D.
3. 随着经济社会发展,各地机动车保有量持续上升,据统计四川省2019年机动车保有量约有1150万辆,若将该数字用

(1) 证明:CE与
(2) 若

相切;
,求AD的长度.
24. 如图,在平面直角坐标系 M上方,且均不与端点重合),
中,


,E , M为线段AC上两个不重合的动点(点E在点
,与BC交于点F , 四边形EMNF为平行四边形,连结BN
(1) 求直线AC与直线BC的解析式;
(2) 若设点F的横坐标为x , 点M的纵坐标为y , 当四边形EMNF为菱形时,请求y关于x的函数解析式及相应x的取
班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中 所提供的信息解答下列问题:
(1) 求该班的人数; (2) 请把折线统计图补充完整; (3) 求扇形统计图中,网络文明部分对应的圆心角的度数. 21. 青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨
值范围;
(3) 请求出当
为等腰三角形时,
面积的最大值.
25. 如图,在平面直角坐标系 中,抛物线
与x轴交于
、B两点,与y轴交点C的坐标为
, 为抛物线顶点,连结AD , 点M为线段AD上动点(不含端点),BM与y轴交于点N .
(1) 求抛物线解析式;
(2) 是否存在点M使得

相似,若存在请求出点M的坐标,若不存在,请说明理由;
A.
B.
C. D.
12. 如图,将1、 、 三个数按图中方式排列,若规定 表示第a排第b列的数,则 与
数的积是( )
表示的两个
A. B. C. D.1
二、填空题
13. 因式分解: 14. 若代数式
________. 在实数范围内有意义,则实数a的取值范围________.
15. 在一个口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,球的标号的和等于5的概率为________.
A.
B.
C.
D.
10. 如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高
的圆锥体而得到的,其底面直径
,高
,则这个零件的表面积是( )
A.
B.
C.
D.
11. 如图,在平行四边形ABCD中,


,E、F是BC、CD边上点,且

,AE 、AF分别交BD于点M , N , 则MN的长度是( )
,下表是去年该酒店豪华间某两天
的相关记录:
旺季
淡季
未入住房间数
10
0
日总收入(元)
24 000
40 000
(1) 该酒店豪华间有多少间?旺季每间价格为多少元
(2) 今年旺季来临,豪华间的间数不变。经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;
如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间。不考虑其他因素,该酒店将豪华间的价格上涨多少元
(3) 求当BM将四边形ABCM分为面积相等的两部分时ON的长度.
参考答案
1.
2.
3.
4.
5.
6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
20.
21. 22.
23.
24.
25.
科学记数法表示应是( )
A.
B.
C.
D.
4. 一个几何体的三视图如图所示,则这个几何体是( )
A . 圆锥 B . 长方体 C . 圆柱 D . 球 5. 如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为( )
A . 100° B . 120° C . 130° D . 150°

,连结BC , 点P为劣弧 上点,点Q为线段AB上点,且
, 与 交于点 ,则当 NQ平分

,点P坐标是________.
三、解答题
19. (1) 计算:
(2) 解方程:
.
20. 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,某中学利用 周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全
6. 下列计算正确的是( )
A.
B.
C.
D.
7. 如图,从A处观测铁塔顶部的仰角是30°,向前走30米到达B处,观测铁塔的顶部的仰角是45°,则铁塔高度是( )

A.
B.
C.
D.
8. 关于x的方程
的解为正数,则m的取值范围是( )
A.
B.
C.

D.

9. 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是( )
16. 如图,在平面直角坐标系 中,A、B为x轴上的点,C、D为抛物线y=-x2+2x+3上两点,且四边形ABCD是正方 形,则正方形ABCD的面积是________.
17. 如图,将等边三角形ABC绕点A顺时针旋转得到等边三角形ADE , 若AD与BC交于点F , 且
,则
的值是________.
18. 如图,在平面直角坐标系 中,与y轴相切的 与x轴交于A、B两点,AC为 直径,
时,豪华间的日总收入最高?最高日总收入是多少元?
22. 如图,一次函数
与反比例函数
与相交于
,Q两点,与x轴、y 轴分别交于点A、B两点,且
.
(1) 求该反比例函数解析式; (2) 求点Q坐标. 23. 如图,AB为 直径,C、D是
上点,连结CB并延长与AD所在直线交于点F ,
,垂足为点E ,
连结CE , 且
相关文档
最新文档