直流电动机控制电路的设计
直流电机控制器设计说明书
直流电机控制器设计说明书1.1 设计思想直流电机PWM 控制系统主要功能包括:直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便读出电机转速的大小,能够很方便的实现电机的智能控制。
其间,还包括直流电机的直接清零、启动、暂停、连续功能。
该直流电机系统由以下电路模块组成:振荡器和时钟电路:这部分电路主要由89C51单片机和一些电容、晶振组成。
设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。
设计控制部分:主要由89C51单片机的外部中断扩展电路组成。
设计显示部分:包括液晶显示部分和LED 数码显示部分。
LED 数码显示部分由七段数码显示管组成。
直流电机PWM 控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。
1.2 系统总体设计框图直流电机PWM 调速系统以AT89C51单片机为核心,由命令输入模块、LED 显示模块及电机驱动模块组成。
采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给直流电机驱动芯片发送PWM 波形,H 型驱动电路完成电机正,反转控制;同时单片机不停的将从键盘读取的数据送到LED 显示模块去显示,进而读取其速度。
1.3 程序设计流程图图1-2中断服务流程图2 总体硬件电路设计2.1 芯片介绍2.1.1 89C51单片机结构特点: 8位CPU ;片内振荡器和时钟电路; 32根I/O 线;外部存贮器寻址范围ROM 、RAM64K ; 2个16位的定时器/计数器; 5个中断源,两个中断优先级; 全双工串行口;图1.2 定时中断服务流程图布尔处理器。
图2-1 89C51单片机引脚分布图2.1.2 RESPACK-8排阻RESPACK-8是带公共端的8电阻排,它一般是接在51单片机的P0口,因为P0口内部没有上拉电阻,不能输出高电平,所以要接上拉电阻。
图2-2 RESPACK-8引脚分布图2.1.3 驱动器L298L298是双电源大电流功率集成电路,直接采用TTL逻辑电平控制,可用来驱动继电器,线圈,直流电动机,步进电动机等电感性负载。
直流电动机控制电路
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
直流电动机调压调速可控整流电源设计
直流电动机调压调速可控整流电源设计一、设计目标设计一个可控整流电源,满足直流电动机调压调速的需求。
该电源应具备以下特点:1.输出电压稳定可调;2.输出电流稳定可控;3.满足直流电动机调压调速的要求;4.设计成本低廉;5.性能可靠稳定。
二、设计原理可控整流电源的设计原理主要基于三相桥式可控整流电路。
该电路由6个可控晶闸管组成,分为正半桥和负半桥。
按照正弦交流电源的输入,晶闸管控制引脚接收控制信号,将交流电源的负半周期向直流方向进行整流。
同时,交流电源的正半周期通过极性相反的晶闸管进行整流。
通过控制晶闸管的导通时间,可以调节整流电流的大小和方向,从而实现直流电动机的调压调速需求。
三、设计步骤1.确定直流电动机的额定电压和电流,根据其负载要求确定整流电源的输出电压和电流范围。
2.选择适合的可控晶闸管,根据其额定电压和电流选择合适的型号。
3.根据整流电源输出电压和电流的范围,计算控制晶闸管的导通时间和周期。
4.根据计算结果,设计控制电路,包括控制信号发生器,控制信号的调节电路以及触发电路等。
5.确定整流电源的滤波电路,包括电感和电容等元件。
6.搭建整流电源的实验原型,进行测试和调试,验证设计的可行性。
7.根据实际测试结果进行优化和改进,完善整流电源的性能和稳定性。
四、设计实现1.整流电路:采用三相桥式可控整流电路,由6个可控晶闸管组成。
2.控制电路:采用微控制器或FPGA芯片控制,通过脉宽调制(PWM)的方式生成控制信号,控制晶闸管的导通时间和周期。
3.滤波电路:采用L-C滤波电路,电感和电容组合滤除直流电源中的脉动。
4.保护电路:设计过流保护和过压保护等电路,确保整流电源稳定可靠,避免对电动机的损坏。
5.控制算法:采用PID控制算法,通过测量电动机的转速和负载情况,调节控制信号的占空比,以实现电机的调压调速。
五、设计优化和改进1.优化控制电路:采用先进的数字控制器,改进PWM控制算法,提高整流电源的响应速度和稳定性。
并励直流电动机的基本控制线路
KT
KM3
并励直流电机正反转控制线路
QF L+ L-
反转启动:
合上QF 励磁绕组得电 励磁 线圈KA得电, 动合触头闭合 KT线圈得电, 延时闭合瞬时 断开触头断开
KM1 KM2
M
KA SB3
SB1 KM1 KM2
R
I<
KM3
KM2
SB2 KM1
KM1 KM2
KM1
KM1
KM2
KT KM2
KA
KM1
R
I<
KM3
KM2
SB2 KM1
KM1 KM2
KM1
KM1
KM2
KT KM2
KA
KM1
KM2
KT
KM3
并励直流电机正反转控制线路
QF L+ L-
KT经过整定 时间 KT动断触头 延时闭合, KM3线圈得 电 KM3触头闭 合 切除电阻 电动机全速 运行
KM1 KM2
M
KA SB3
SB1 KM1 KM2
KM1 KM2
QF L+
L
KM3
KM6
KM7
KA RB
R1
SB3
KM3
R2 SB1
KM1
KV KM1
KM1触头 动作
电动机串 联全部电 阻启动
KM2
KM1
M
KV
KM1 KM2
I<
SB2 KM5 KM4 KM2 KM1
KM2 KM2 KM3 KM1 KM4 KM2 KM5
KM1 KM2
QF L+
L
KM1
KM1 KA1
M
KA2
KM1
无刷直流电动机控制系统设计
无刷直流电动机控制系统设计方案第1章概述 (1)1.1 无刷直流电动机的发展概况 (1)1.2 无刷直流永磁电动机和有刷直流永磁电动机的比较 (2)1.3 无刷直流电动机的结构及基本工作原理 (3)1.4 无刷直流电动机的运行特性 (6)1.4.1 机械特性 (6)1.4.2 调节特性 (6)1.4.3 工作特性 (7)1.5 无刷直流电动机的使用和研究动向 (8)第2章无刷直流电动机控制系统设计方案 (10)2.1 无刷直流电动机系统的组成 (10)2.2 无刷直流电动机控制系统设计方案 (12)2.2.1 设计方案比较 (12)2.2.2 无刷直流电动机控制系统组成框图 (13)第3章无刷直流电动机硬件设计 (15)3.1 逆变主电路设计 (15)3.1.1 功率开关主电路图 (15)3.1.2 逆变开关元件选择和计算 (15)3.2 逆变开关管驱动电路设计 (17)3.2.1 IR2110功能介绍 (17)3.2.2 自举电路原理 (19)3.3 单片机的选择 (20)3.3.1 PIC单片机特点 (20)3.3.2 PIC16F72单片机管脚排列及功能定义 (22)3.3.3 PIC16F72单片机的功能特性 (22)3.3.4 PWM信号在PIC单片机中的处理 (23)3.3.5 时钟电路 (23)3.3.6 复位电路 (24)3.4 人机接口电路 (24)3.4.1 转把和刹车 (24)3.4.2 显示电路 (25)3.5 门阵列可编程器件GAL16V8 (27)3.5.1 GAL16V8图及引脚功能 (27)3.6 传感器选择 (28)3.7 周边保护电路 (30)3.7.1 电流采样及过电流保护 (30)3.7.2 LM358双运放大电路 (31)3.7.3 欠电压保护 (32)3.8 电源电路 (32)第4章无刷直流电动机软件设计 (33)4.1 直流无刷电机控制器程序的设计概况 (33)4.2 系统各部分功能在软件中的实现 (33)4.3 软件流程图 (34)结束语 (36)致谢 (37)参考文献 (38)附录1 (39)附录2 (51)第1章概述1.1 无刷直流电动机的发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
汽车直流启动电动机正反转控制器硬件电路设计
汽车直流启动电动机正反转控制器硬件电路设计一、引言直流电动机广泛应用于汽车领域,而其正反转控制是实现汽车启动、停止以及转向等功能的基础。
本文将详细介绍汽车直流启动电动机正反转控制器硬件电路设计的相关内容。
二、背景知识2.1 直流电动机工作原理直流电动机的工作原理是基于电磁感应现象,通过电流在磁场中产生力矩,从而驱动电动机转动。
其正反转即通过改变电流的方向和大小来实现。
2.2 控制器的功能汽车直流启动电动机正反转控制器是电动机驱动的核心部件之一,其作用主要有以下几个方面:1.实现电动机的正反转控制;2.控制电动机的启动、停止;3.调节电动机的转速;4.检测电动机的工作状态和保护电动机。
三、汽车直流启动电动机正反转控制器硬件电路设计方案3.1 控制器整体设计思路汽车直流启动电动机正反转控制器主要由以下模块组成:1.信号输入模块:负责接收外部信号,包括启动、停止、转向等信号;2.电源模块:为各个模块提供电源;3.信号处理模块:对输入信号进行处理,生成相应的控制信号;4.驱动电路模块:根据控制信号驱动电动机;5.保护模块:监测电动机的运行状态,当出现异常情况时进行保护。
3.2 信号输入模块设计信号输入模块主要包括启动、停止和转向信号的接收。
这些信号可以通过按钮、踏板等方式产生。
接收到信号后,经过滤波和放大等处理,送至信号处理模块。
3.3 电源模块设计电源模块负责为各个模块提供稳定的电源。
一般情况下,汽车的电池可以用作电源,并通过电源管理电路进行稳压和滤波等处理,以确保各模块正常工作。
3.4 信号处理模块设计信号处理模块主要对输入信号进行处理,生成相应的控制信号。
例如,当接收到启动信号时,信号处理模块将对应的控制信号发送至驱动电路模块,从而驱动电动机启动。
3.5 驱动电路模块设计驱动电路模块负责根据信号处理模块的控制信号,对电动机进行控制。
一般情况下,采用功率晶体管作为开关元件,通过控制其导通和关闭,实现电动机的正反转控制。
无刷直流电动机驱动控制电路的设计和实现
一
—两— _-J丁s 单片机 :睦 二二二 :—.1垩 亘坠H:: 童:r伫l: 1]
煎亟 I
图 1 无 刷 直 流 电动 机 控 制 系 统 总 体 结 构 框 图
系统 的工 作 原 理 如 下 :图 1中 STC89C52输 出 信号经信号处理 电路产生 6路控制信号 以及 PWM 波 通过 控制 集成 芯 片 IR2130来 间 接控 制 三 相 逆 变 桥 MOS管 的两两 开 断 ,从 而实 现无刷 直 流 电动 机 的 驱 动 。首先 该系统 通 过人机 接 口设定 目标 速度 输入 到单 片机 ,然 后 该 单 片 机 通 过 转 换 成 对 应 的 PWM 经过信号处理电路去控制集成芯片 IR2130,而该集 成芯片的输 出通过合理选择 自举器件 ,具有较好 的 自举功能 ,迅速去控制三相逆变桥的两两开断 ,以实
STC89C52 was taken as control chip,and IR2130 was taken as the pre-drive chip.A three—phase inverter br idge power am— plifier was built with discrete components MOS transistors.In order to achieve closed-loop control of BLDCM ,the photoelec— tric encoder disk was installed to measure the real-time speed.The system stability was improved through PID control algo— rithm .Experimental results show that the power consumption of the drive and control circuit is low ,and the motor has sm ooth operation,low noise,sm all torque ripple and high eff iciency.
基于UC3637的直流电动机PWM控制电路
!机械加工与自动化#基于U C 3637的直流电动机PWM 控制电路海军航空工程学院(264001) 刘陵顺 王亭 尚安利 顾文锦【摘要】根据P WM 控制器U C 3637的工作特点,设计了一种直流电动机P WM 控制电路,该电路已成功地应用于数字化舵机控制系统中。
关键词 U C 3637 直流电动机 P WM 控制 U C 3637是一种直流电动机脉宽调制控制器,可以单电源或双电源工作,双路P WM 输出,具有限流保护、欠压封锁和温度补偿等特点。
适用于开环或带测速发电机反馈的闭环直流调速系统。
同时也可以应用于无刷直流电动机P WM 速度控制、位置控制和步进电动机电流细分控制等。
本文应用U C 3637设计了一种直流电动机P WM 开环控制电路,该电路可以与计算机数字控制系统结合起来,实现舵机的位置控制。
P WM 控制电路设计 应用于舵机控制系统的执行元件是一个额定工作电压27V 、额定工作电流为1A 的永磁直流电动机。
舵机控制系统的目标是:根据不同的要求,控制舵角的变化,以满足系统的性能要求。
根据试验的不同要求,舵机要完成阶跃、正弦等运动。
控制框图如图1所示。
图1 舵机控制系统框图采用高精密电阻电位计检测舵角位置,经A D 转换反馈到计算机中与给定控制信号经过适当的计算机控制算法得到一个输出信号,再由D A 转换送到P WM 控制器,驱动舵机运动到期望的位置。
其中信号的给定、反馈信号取样、控制方程的运算及控制脉冲的输出均由计算机完成;P WM 控制器由本文设计的控制电路完成。
1.脉宽信号产生电路脉宽信号由P WM 专用控制器U C 3637产生,C 3637的典型接线图如图2所示。
其工作原理为:外部电阻对供电电源分压后,产生阈值电压,分别接到(1脚)和(3脚),在2脚和18脚分别接电容和电阻,电容和电阻的另一端分别接地。
通过内部缓冲电路与R T 作用产生恒流,给电容线性充电,产生三角波的上升沿,到达+V TH 后,以恒流线性放电,产生三角波的下降沿。
第七节-直流电动机的控制电路
闭合反转接触器KM2旳主触点,直流
电源反接到电枢两端。因为电枢电
流旳方向发生了变化,转矩也因之
反向,电动机因惯性仍按原方向旋
转,转矩与转向相反而成为制动转
矩,使电动机处于制动状态。
图4-28
他励直流电动机反接制动原理图
直流电动机旳制动控制电路
(2)串励电动机旳反接制动
串励电动机旳反接制动工作原理如图4-29所示,对于串励直流电动机, 因为励磁电流就是它旳电枢电流,在采用电枢反接旳措施来实现反接制 动时,必须注意,经过电枢绕组旳电流和励磁绕组中旳励磁电流不能同 步反向。假如直接将电源极性反接,则因为电枢电流和励磁电流同步反 向,由它们建立旳电磁转矩T旳方向却不变化,不能实现反接制动。所以, 一般只将电枢反接。
第七节 直流电动机旳控制电路
【教学要点】 并励直流电动机旳起动和正、反转控制原理
【教学难点】 他励和串励直流电动机旳起动原理
第七节 直流电动机旳控制电路
直流电动机突出旳优点是有很大旳起动转距和 能在很大旳范围内平滑地调速。直流电动机旳控制 涉及直流电动机旳起动、正反转、调速及制动旳控 制。 按励磁方式可分为他励、并励、串励和复励四 种。并励及他励直流电动机旳性能及控制电路相近, 它们多用在机床等设备中;在牵引设备中,则以串 励直流电动机应用较多。
直流电动机旳正、反转控制电路
1. 变化电枢绕组中旳电流方向
这种措施常用于并励和他励直流电动机 中。因为并励和他励直流电动机励磁绕组旳电 感量大,若要使励磁电流变化方向,一方面, 将励磁绕组从电源上断开时,会产生较大旳自 感电动势,很轻易把励磁绕组旳绝缘层击穿; 另一方面,变化励磁电流方向时,因为中间有 一段时间励磁电流为零,轻易出现“飞车”现 象,使电动机旳转速超出允许旳程度,为此, 一般还需要用接触器在变化励磁电流方向旳同 步切断电枢回路电流。因为以上这些原因,所 以一般情况下,并励和他励直流电动机多采用
直流电机正反转电路控制图
FU SB3
16
1、线号顺序自右 向左,按回路 进行;
2、每个连接点不 超过两根引线。
3、最后接自保触点。
哈哈!
这叫顺藤
1
摸瓜
KM1
SB1
KM2
5
4
3
FR
2
8
7
KM1
9
12
SB2
KM2
KM1
11
10
14
KM2
13
三、接线、检查注意事项
• 按照电路图接线,从头到尾、顺藤摸瓜,后结分叉。 • 通电前检查:按图理线,万用表电阻档检测(分别按住
KM1 KM2 电气互锁
利用复合 按钮的触 点实现互 锁控制称 机械互锁。
含有双重互锁的正反转控制
SB SB1
断开 后闭合
KM1 SB2
闭合 KM2 当电机正转时, 按下反转按钮SBR
KM2 KM1 先断开
KM1 KM2
恢复闭合
停止正转 电机反转
断电 通电
二、从原理图中看控制回路怎样接线
AB C
和松开解除其和按钮测量主回路、控制回路两端通断情 况)。 • 带电检查:万用表交流电压档检测(电源、线圈、常开 触电)
0
2
10
5 57
0 10
直流电动机正反转的控制线路
1、先要搞清电路原理图,禁止盲目接线 2、先接主回路,再接控制回路 3、通电前一定要进行仔细检查
1、先要搞清电路原理图,禁止盲目接线 2、先接主回路,再接控制回路 3、通电前一定要进行仔细检查
“联锁”触点
. . SB SB1 KM2 KM1 通电
按下S
KM1 SB2
KM1 KM2
一种简单实用的直流电动机起动控制电路设计
机 以廉价 见长 , 且性 能 良好 。 泛用 于家 用 电器 、 广 汽 车 、 具 、 动工 具 等 领 域 [。在 电动 玩 具 类 产 品 玩 电 2 ]
中 . 品生产 商 为节 约成 本 , 流 电动 机 的驱 动控 产 直 制 电路通 常都 是全 压直接 起动 。 样容 易导 致 电机 这
逐渐升高 ,当 Q 4的基 极 电位 升 高 到 一 定 的程 度 ( 一般 在 06 .V以上 ) , 4开始 导 通并 逐渐 进入 饱 时 Q 和状 态 , 压 二 极 管 D1 始 工 作 ( 向击 穿 )Q1 稳 开 反 , 的基 极被 嵌位 于 39 .V左 右 , 从 饱 和边缘 回到放 Q1 大状 态 , 电机 起动 过 程结 束 并 进入 运 行状 态 , 起 在
韦春玲 朱 金林 雷 学堂
黄 冈师范 学院 湖北 黄州 4 8 0 3 00
【 要 】 计 了一种 简单 实用 的起 动控 制 电路 , 电路 具 有结构 简 单 、 本 不高 、 护可靠且 容 摘 设 该 成 保
易实现 等特 点 , 对其 工作 原理及 控制 回路进 行 了分析 , 并在该 控制 电路 上扩展 了调速 等 功能。
5 2
・
韦 春玲
朱金林
雷学堂 l 一种 简单 实用 的直流 电动机 起动控 制 电路设 计
V1 2 o o1 . . N5
电力工程 ・
一
种 简 单 实 用 的直 流 电动机 起 动 控 制 电路 设 计
A i l tr— n rlCic i ’De i n o t r S mp e S a t up Co to r u t sg fDC Mo o
-
l
为 (一e: V N 07V时 Q 1 q) 0= . 4饱 和 ,此 时 起 动过 程 结束 , N o 为起动 控制 电压 ,当 o 为 5 N V时可计 算
直流电动机的基本控制电路
并励直流电动机的基本控制电路 启动控制电路
并励电动机电枢串接电阻起动控制电路
QS FU KM1 KM2
M
E1 R
KM1
KA1 KA2
KT
E2
SB1
KM1 KM1
KM1
SB2
I>
KA1
I<
KA2
KT KM1
KM2
11
过电流继电器:短路保护 和过载保护
欠电流继电器:励磁绕组失 磁保护
并励直流电动机的基本控制电路 正反转控制电路
KM1
KM2 KA KT
KM3
KM1
并励直流电动机正反转控制电路
13
并励直流电动机的基本控制电路 能耗制动电路
原理:维持直流电机的励磁电源不变的情况下,把正在作电动运行的电机电 枢从电源上断开,再串接一个外加制动电阻组成制动回路,将机械能(高速 旋转的动能)转变为电能并以热能的形式消耗在电枢和制动电阻上。 KM3 KM1 R3 R1 R2 KM1 KM1 KT1
RP进行调速
A2 E2
A1
M
A2
E1 E1
15
E2
RP
较大,当励磁绕组反接时,在励磁绕组中会产生很大的感应电动势,它将 危及开关和励磁绕组的绝缘)
12
并励直流电动机的基本控制电路 正反转控制电路
保持励磁磁场方向不变,改变电 枢电流方向,使电动机反转
KM3
R
E1 KM1 KM2
KM1 KM2
KA
KM1
M
E2
SB1
KM2 KT SB2
KM1 KM2 SB3 KM2 KM1 KM2
直流电机的转向取决于电磁转矩M的方向,而 M=CmIa,其中Cm为转矩常数, 为主磁通, Ia为电枢电 流。 改变直流电机转动的方法有两种: (1)电枢反接法:保持励磁磁场方向不变,而改变电枢电 流方向; (2)励磁绕组反接法:保持电枢电流方向不变,改变励磁绕 组电流的方向。(实际中,一般不用,因为励磁绕组匝数多,电感量
并励直流电动机控制电路(直流电机原理)精美
无轨电车
并励直流电动机还用于无轨电车 的驱动,提供稳定可靠的动力输
出。
在家用电器中的应用
空调和冰箱
并励直流电动机在家用空调和冰 箱中用于驱动风扇、压缩机等部 件,实现制冷和制热功能。
电动工具
并励直流电动机作为电动工具的 驱动电机,提供高效、稳定的动 力输出,方便家庭维修和DIY项目 。
调速控制电路
调速控制电路
用于调节并励直流电动机 的转速,以满足不同的工 作需求。
调速方式
通过改变电枢电压、改变 电枢电阻或改变励磁电流 来实现调速。
调速性能
调速控制电路应具有较好 的线性度和稳定性,以保 证调速过程中电机的平稳 运行。
制动控制电路
制动控制电路
用于控制并励直流电动机的制动过程, 确保电机在制动时能够快速、准确地 停止。
04 并励直流电动机的优缺点
优点
调速性能好
通过改变电枢电压或励磁电流,可以方便地调节并励直流电动机 的转速,具有良好的线性调速性能。
启动转矩较大
由于具有较大的启动转矩,并励直流电动机能够克服较大的负载阻 力启动。
可靠性高
并励直流电动机的结构简单,维护方便,且使用寿命较长,因此具 有较高的可靠性。
制动方式
制动性能
制动控制电路应具有较好的制动性能, 以保证电机在紧急情况下能够快速、 安全地停止。
通过在电枢绕组中通入反向电流或改 变励磁绕组的电流方向来实现制动。
03 并励直流电动机的应用
在工业自动化中的应用
自动化生产线
并励直流电动机在自动化生产线 中作为驱动电机,实现物料的传 输、加工和装配等环节的自动化
并励直流电动机控制电路(直流电 机原理)
直流电机PWM调速控制系统设计
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
直流电动机常见控制线路
按下启动按钮SB1,接触器KM1线圈通电吸合并自锁,电动机在串 入全部启动电阻情况下降压起动。同时,由于接触器KM1的常闭触点断 开,使时间继电器KT1和KT2线圈断电。经一段延时候,其中KT1的常 闭延时闭合触点首先闭合,接触器KM2线圈通电,其常开触点闭合,将 启动电阻R1短接,电动机继续加速。然后,KT2常闭延时闭合触点延时 闭合,接触器KM3通电吸合,将电阻R2短接,电动机启动完毕,投入正 常运行。
设备控制技术
直流电动机常见控制线路
直流电动机按励磁方式分为他励、并励、串励和复励四种。并励及 他励直流电动机的性能及控制线路相近,他们多用在机床等设备中。在 牵引设备中,则以串励支流电动机应用较多。
直流电动机的控制包括直流电动机的起动、正反转、调速及制动的 控制。
1-1直流电动机的起动控制线路
直流电动机在起动最初的一瞬间,因为电动机的转速等于零,则反 电动势为零,所以电源电压全部施加在电枢绕组的电阻及线路电阻上。 通常这些电阻都是极小的,所以这时流过电枢电流很大,启动电流可达 额定电流的10~20倍。这样大的起动电流将导致电动机转向器和电枢绕 组的损坏,同时大电流产生转矩和加速度对机械传动部件也将产生强烈 的冲击。因此,如外加的是恒定电压,则必须在电枢回路中篡改如附加 电阻来起动,以限制起动电流。
详解直流电机驱动电路设计
直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
直流电机的基本构成直流电机由定子和转子两部分组成,其间有一定的气隙。
直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。
其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。
直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。
其中电枢由电枢铁心和电枢绕组两部分组成。
电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。
换向器是一种机械整流部件。
由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。
各换向片间互相绝缘。
换向器质量对运行可靠性有很大影响。
直流电机的组成结构直流电机的结构应由定子和转子两大部分组成。
直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。
01定子主磁极主磁极的作用是产生气隙磁场。
主磁极由主磁极铁心和励磁绕组两部分组成铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。
励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。
整个主磁极用螺钉固定在机座上。
换向极换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成。
浅谈简易的直流电动机起动控制电路设计
回到放 大状态 , 电机起 动过程结束 并进入运行 状态 , 在起 动过 小需要满足 的条件 : NI N应根据 电机和负载特性来选取) I ( , 程 中加在 电机上的电压一直处在较 高状态 , 这就可 实现高 电压 在 直 流 电 动 机 起 动 开 始 瞬 间 , 它 加 上 电源 电压 U, 于 转 子 给 由
起动 。 行过程是通过 Q 运 4的 饱 和和 D1 稳 压 使 Q1 基 极 被 的惯 性 , 的 的 一开始转 速为 0 其 反动势 E 。 0 当 N I时 , , c中 , = 从 嵌位 来 维持 的,在运行状 态 时加 到 电机上 的 电压 为 ( + . VDI 0 中解 的 R5 , 同时 要使 稍 大 于 307 V 左 右 , -. ) VD1为稳 压 二极 管 D1 端 的 击 穿 电 压 , 果 图 两 如 1中的 VC C为 6 V就 可实现 5 V起动 、.V运行 ,那 么即可实 D1的稳 压 电流 。 3 2
v1为 起 动 控 制 电 压 , 当 v1为 5 时 可 计 算 出 起 动 时 间 为 V
2 .无极调速单 向运行起动控制 电路 如 图 3 该 电路 中 Q , 4
企业导 报 2 1 年第o 期 2 3 02 1 6
技术市场
刍议 智 能机 器 人 及 其 关键 技 术
图 1 单 向运 行 直 流 电动机 起 动控 制 电路
2 .起动时间。 c 值的大小决定 了起动过程的时间长短,
—
二一 !
串励直流电动机的基本控制电路PPT课件
KV
KM KM1 KM2 KM3 KM4 KM5
I> KA
QF L+ L-
KM
KM1
KM2
M
KV AC 前1
0
后1
KM1 KM2
KM1 KM2
KA1
KA1
KA2
电动机正转:
KA2
AC手柄置前 位
KT2
置,KM,KM1 线圈得电动作, 电动机串联电 阻起动
R2
R1 KT1
RB
KM5 KM4 KM3
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
合上电源开关QF
KM1
SB2 SB1
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
按下SB1 KM1线圈得电
SB2
KM1 SB1
KV
KM KM1 KM2 KM3 KM4 KM5
I> KA
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
KT1经过整定时间 KT1动断触头延时闭合
KM1
SB2 SB1
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计(论文)题目名称直流电动机控制电路的设计课程名称电力拖动基础课程设计学生姓名周孝雄学号0941202031系、专业电气工程系、09自动化指导教师邱雄迩2011年12 月18 日邵阳学院课程设计(论文)任务书注: 1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效;2.此表1式3份,学生、指导教师、教研室各1份。
指导教师(签字):学生(签字):邵阳学院课程设计(论文)评阅表学生姓名周孝雄学号0941202031系电气工程系专业班级09自动化班题目名称直流电动机控制电路的设计课程名称电力拖动基础一、学生自我总结二、指导教师评定注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面;当今,自动化控制系统在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。
直流电动机应用如此之广,主要在于其采用了PWM脉宽调制电路来控制直流电动机的调速。
在这里介绍了PWM脉宽产生的电路。
该电路运用模拟电子电路基础知识完成,利用产生的方波信号带动负载转动。
本设计原理简单,易于理解,电路实现简单。
我们先概括介绍了电路中锁需要的电路模块,然后给出了整体的电路图,并做了测试及得出测试结果。
关键词:直流电动机,PWM,三极管1绪论 (7)1.1概述 (7)1.2 直流电动机的基本理论 (7)1.3直流脉宽调速系统 (10)2 元器件介绍 (13)2.1 SG2731 (13)2.2 三极管C4466 和 A1693 (16)3 系统设计方案 (17)3.1直流电动机控制电路 (17)4直流电动机控制电路的测试 (19)4.1 测试步骤 (19)4.2 测试结果 (19)5实验总结 (21)参考文献 (22)1绪论1.1概述直流电机可分为他励直流电机,串励直流电机,并励直流电机和复励直流电机。
它是电机的主要类型之一。
不同励磁方式的直流电机有着不同的特性。
一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。
一台直流电机即可作为发电机使用,也可作为电动机使用。
直流发电机是把机械能转化为直流电能的机器,它主要作为直流电动机、电解、电镀、电冶炼、充电及交流发电机的励磁等所需的直流电机。
虽然在需要直流电的地方,也用电力整流元件,把交流电变成直流电,但从使用方便、运行的可靠性及某些工作性能方面来看,交流电整流还不能和直流发电机相比。
用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用1.2 直流电动机的基本理论1.2.1直流电动机的工作原理固定部分有磁铁,这里称作主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
体,电流通过转子上的线圈产生洛伦磁力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦磁力方向不变,所以电机能保持一个方向转动这就是直流电动机的工作原图1-1 直流电动机的工作原理理。
直流电动机的工作原理归结如下:将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。
电机内部有磁场存在。
载流的转子(即电枢)导体将受到电磁力f的作用,f=bli.所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以便拖动机械负载1.2.2直流电动机的调速改变直流电动机的转速n和其他参量的关系可表示式中Ua——电枢供电电压(V);Ia——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE——电势系数,p为电磁对数,a为电枢并联支路数,N为导体数。
由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。
1. 改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
由式(1)可看出,电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反之,则n降低。
与此同时,由于电动机的转矩Te是磁通Ф和电枢电流Ia的乘积(即Te=CTФIa),电枢电流不变时,随着磁通Ф的减小,其转速升高,转矩也会相应地减小。
所以,在这种调速方法中,随着电动机磁通Ф的减小,其转矩升高,转矩也会相应地降低。
在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。
这种调速方法的调速性能如下:(1)调速方向是往上调,因为励磁电流不能超过其额定值,因此只能减小励磁电流,从而使磁通减小,转速上升。
(2)调速的平滑性好,只要均匀的调励磁电流的大小便可以实现无能调速转速增加,静差率不变。
(3)调速的稳定性好,虽然励磁电流减小时,机械特性硬度下降,但因理想空载转速增加,静差率不变。
(4)调速的经济性较好,因为它是在功率较小的励磁电路内控制励磁电流的,功率损耗小,运行费用低。
但基本采用电压可调的直流电源供电,则需增加初期投入。
(5)调速的范围因为受机械强度、电枢电压的去磁作用和换向能力的限制,最高转速和换向能力的限制,最高转速一般只能达到额定转速的1-2倍,所以调速范围不大。
(6)调速时的允许负载为恒功率负载。
2. 改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
降低电枢电压时,电动机机械特性平行下移。
负载不变时,交点也下移,速度也随之改变。
优点:调速后,转速稳定性不变、无级、平滑、损耗小。
缺点:只能下调,且专门设备,成本大。
(可控硅调压调速系统)下面分别介绍这两种调速系统。
3. 改变电枢回路电阻调速各种直流电动机都可以通过改变电枢回路电阻来调速,当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。
其机械特性如图1(b)所示。
Rw的改变可用接触器或主令开关切换来实现。
这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。
调速性能如下:(1)调速方向是往下调。
(2)调速的平滑性取决于调速变阻器的调节方式。
(3)调速的稳定性差。
因为电阻增大后,机械特性硬度降低,静差率增大。
(4)调速的经济性差,因为初期投资虽然不大,但损耗增加,运行效率低。
(5)调速范围不大,因为低速时静差率的限制。
(6)调速时的允许负载为恒转矩负载。
1.3直流脉宽调速系统1.3.1概述脉宽调制——将恒定的直流电压调制成极性可变、大小可调的脉冲电压,实现直流电机电枢端电压的平滑调节。
PWM (Pulse Width Modulation )由GTO、GTR、IGBT 、P-MOSFET等全控型器件组成的脉冲宽度调制器。
与V-M系统相比,PWM-M的优越性:(1)主电路线路简单,需用的功率元件少;(2)开关频率高,电流易连续,谐波少,电机损耗和发热较小;(3)低速性能好,稳速精度高,调速范围宽;(4) 系统快速响应性能好,动态抗扰能力强;(5)主电路元件工作在开关状态,导通损耗小,装置效率较高;(6)直流电源采用不可控三相整流时,功率因数高。
全控型器件构成的直流脉宽调速系统的原理是一样的,只是不同器件具有各自不同的驱动、保护及器件的使用问题。
PWM-M系统和V-M系统的主要区别在主电路和PWM控制电路。
闭环控制系统以及静、动态分析和设计基本相同。
脉宽调制变换器是把脉冲宽度进行调制的一种直流斩波器,其基本原理已在电力电子技术中阐述。
自从全控式电力电子器件问世以来,应用于实践的脉宽调速系统,以它的线路简单,谐波少,损耗小,效率高和静、动态性能好等优势,引发了直流调速领域的一场革命。
将直流PWM调速推广到一般工业应用中取代晶闸管相控式整流器调速有着广阔的前景。
只是由于器件的发展,同时带来交流变压变频调速的更快速发展,使得直流PWM调速还没有来得及完全占领市场,几乎是刚刚兴起,就变成了传统领域。
不过,在一些仍需要使用直流电动机的场合,例如电动叉车、城市无轨电车、地铁机车等,直流PWM调速仍有用武之地。
1.3.2直流脉宽调速系统的工作原理脉冲宽度调制(PWM)是通过功率管的开关作用,将恒定直流电压转换成频率一定,宽度可调的方波脉冲电压,通过调节脉冲电压的宽度而改变输出电压平均值的一种功率变换技术。
由脉宽调制器向电机供电的系统称为脉宽调速系统,简称PWM-M 调速系统。
直流PWM 调速系统主回路由二极管整流桥、滤波电容、缓冲电阻、斩波功率绝缘场效应管MOSFET 及续流二极管组成,如图2所示。
整流电路因系统输出功率大小不同而异,小功率输入电源多用单相220V ,整流电路为单相桥式整流桥;功率较大的,一般用三相380 V 电源,整流电路为三相桥式全波整流电路。
整流电路输出的整流电压是脉动的直流电压,必须加以滤波。
该系统的直流斩波器采用PWM 控制方式,实现DC-DC 变换,要求直流电源是电压源。
所以一般采用电容滤波中间直流电路除起滤波作用外,还必须在整流电路与逆变器之间起去耦作用,以消除相互干扰。
由于储能电容大,有必要在整流桥的输出端与储能电容之间接一限流电抗器或限流电阻器以限制因接入电源时电容两端电压为零而产生的电流冲击,但在正常工作时如将此限流电阻器一直接在电路中,将引起附加损耗和直流电压的不稳定。
因此,只在接上电源的最初短时间内限流电阻器投入,而后由延时动作的触头将其短路。
图1-2 控制系统结构图该直流脉宽调速的控制系统包括速度调节器、电流调节器、PWM 调制器、驱动器、电流隔离检测器、电压隔离检测器、电流正反馈补偿部分,如图1所示,在电机运行的现场安装测速发电机不太容易,另一方面,即使安装了测速发电机,反馈信号的处理及信号线的引入也会带来不便,所以在该调速系统中采用电压反馈来代替速度反馈,由于直流电机电枢内阻的存在,电机的电枢电势不等于电枢电压²直流电动机的电势平衡方程为:a a=U E I R因此,电压信号并不是准确的转速信号,它们之间存在一定的差别,且随着负载增大,电枢电流增大,误差也增大,也就是说电压闭环不能补偿电机电枢压降所造成的转速降落,从而并不能真正代替转闭环而实现转速无静差调节。
为此,在系统电压环增加电流正反馈来补偿电机电枢绕组压降所引起的转速降落,如图1所示。
为了使系统静差尽量小,又能使系统稳定且机械特性不上翘,需选择适当的电流正反馈补偿比例以使电压能正确反映电机转速。
对于直流电动机,根据电势平衡方程,可以得到电机电势或转速与电压、电流之间的关系,即a a e e n=-I R U C C φφ从上式可以看出,电流正反馈补偿可以完全补偿电枢压降所造成的转速降落,则带电流补偿控制的电压负反馈与转速负反馈调速系统静特性方程[4]完全相当,即电动势负反馈。