用冲量定理法解常微分方程

合集下载

常微分方程的解法总结总结

常微分方程的解法总结总结

常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。

在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。

解决常微分方程是这些领域中许多问题的关键。

本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。

一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。

它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。

解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。

2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。

3.求出积分后的表达式,并整理得到解 y 的表达式。

使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。

二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。

1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。

其中,F(t) 是一个只有一个变量的函数。

解题思路:1.令 v = y/x,即 y = vx。

将方程转化为dy/dx = F(v)。

2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。

3.求出 v(x) 后,将其代入 y = vx 得到完整的解。

2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。

解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。

2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。

3.通过乘积的方式求解完整的方程。

3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。

解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。

常微分方程的解法及应用(常见解法及举实例)

常微分方程的解法及应用(常见解法及举实例)
华北水利水电大学
常微分方程的解法及应用 (常见解法及举实例)
课 程 名 称: 高等数学(2) 专 业 班 级: 成 员 组 成:
联 系 方 式:
2012 05月25 年日
摘要
常微分方程是微积分学的重要组成部分,广泛用于具体问题的 研究中。求解常微分的问题,常常通过变量分离、两边积分, 如果是高阶的则通过适当的变量代换,达到降阶的目的来解决 问题。本文就是对不同类型的常微分方程的解法的系统总结: 先对常微分方程
解法:
若得其解为则 原方程通解为
2.4二阶线性微分方程解的结构
形如: 若时,(方程一)称为:二阶线性齐次微分方程。
若时,(方程二)称为:二阶非齐次微分方程
2.4.1 二阶线性齐次微分方程解的结构
定理1 :如果函数与是方程(5.2)的两个解, 则
也是(方程一)的解,其中是任意常数.
定理2 : 如果与是方程(5.2)的两个线性无关的特解,则
2.1.4 伯努利方程
形如:
当时, 一阶线性微分方程(公式法) 当时, 可分离变量微分方程 求通解过程: 作变量代换
(积分因子公式法)
2.2 一阶微分方程的应用举例
例1细菌的增长率与总数成正比。如果培养的细菌总数在24h内 由100增长为400、那么前12h后总数是多少? 分析:
例2。。某人的食量是2500 cal/天,其中1200 cal用于基本的 新陈代谢(即自动消耗)。在健身训练中,他所消耗的大约是16 cal/kg/天,乘以他的体重(kg)。假设以脂肪形式贮藏的热量 100%的有效,而1kg脂肪含热量10,000 cal。求出这人的体重是 怎样随时间变化的。 输入率=2500 cal/天
定义及一般解法做简单阐述,然后应用变量替换法解齐次性微 分方程,降阶法求高阶微分方程,讨论特殊的二阶微分方程, 并且用具体的实例分析常微分方程的应用。

如何求解常微分方程

如何求解常微分方程

如何求解常微分方程求解常微分方程是微积分中的重要内容,常微分方程是描述未知函数与其导数之间关系的方程。

常微分方程的求解方法有多种,下面我将从多个角度进行全面的回答。

1. 分离变量法,对于可分离变量的一阶常微分方程,可以通过将变量分离并进行积分来求解。

首先将方程中的未知函数和导数分离到方程的两侧,然后进行变量的移项和积分,最后得到未知函数的表达式。

2. 齐次方程法,对于一阶常微分方程,如果可以通过变量的替换将其转化为齐次方程,即方程中的未知函数和导数的比值只与自变量有关,可以使用齐次方程法求解。

通过引入新的变量替换和代换,将齐次方程转化为可分离变量的形式,然后进行求解。

3. 线性方程法,对于一阶线性常微分方程,可以使用线性方程法求解。

线性方程的特点是未知函数和其导数的一次项系数是常数,通过引入一个积分因子,将线性方程转化为可积分的形式,然后进行求解。

4. 变量替换法,对于某些形式复杂的常微分方程,可以通过引入新的变量替换,将其转化为更简单的形式,然后进行求解。

常见的变量替换包括令导数等于新的变量,令未知函数等于新的变量的幂函数等。

5. 微分方程的特殊解法,对于一些特殊的常微分方程,可以使用特殊解法求解。

例如,对于一些常见的一阶常微分方程,如指数函数、对数函数、三角函数等形式,可以直接猜测其特殊解,然后验证是否满足原方程。

6. 数值解法,对于一些无法通过解析方法求解的常微分方程,可以使用数值解法进行近似求解。

常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等,这些方法将微分方程转化为差分方程,通过迭代计算得到近似解。

总结起来,求解常微分方程的方法包括分离变量法、齐次方程法、线性方程法、变量替换法、特殊解法和数值解法。

根据不同的常微分方程形式和条件,选择合适的方法进行求解。

希望这些解答对你有帮助。

微积分-常微分方程解题方法

微积分-常微分方程解题方法

北京理工大学微积分-常微分方程解法常微分方程各种解题方法程功2011/2/161.几个基本定义(1)微分方程:凡含有未知函数的导数或微分的方程叫微分方程.实质: 联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式.分类1: 常微分方程: 未知函数为一元函数 偏微分方程: 未知函数为多元函数分类2:微分方程的阶: 微分方程中出现的未知函数的最高阶导数的阶数称之. 一阶微分方程(,,)0,F x y y '=(,);y f x y '=高阶()n 微分方程()(,,,,)0,n F x y y y '= ()(1)(,,,,).n n y f x y y y -'=分类3: 线性与非线性微分方程.()(),y P x y Q x '+=2()20;x y yy x ''-+=分类4: 单个微分方程与微分方程组.32,2,dyy z dxdz y z dx⎧=-⎪⎪⎨⎪=-⎪⎩(2)微分方程的解:代入微分方程能使方程成为恒等式的函数称之.微分方程的解的分类:① 通解: 微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.,y y '=例;x y Ce =通解0,y y ''+=12sin cos ;y C x C x =+通解② 特解: 确定了通解中任意常数以后的解. (3)解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族.(4)初始条件: 用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题.一阶:00(,)x x y f x y y y ='=⎧⎪⎨=⎪⎩过定点的积分曲线;二阶:0000(,,),x x x x y f x y y y y y y =='''=⎧⎪⎨''==⎪⎩过定点且在定点的切线的斜率为定值的积分曲线.2.可分离变量的微分方程可分离变量微分方程的形式()()g y dy f x dx =44225522,dy x y y dy x dx dx-=⇒=例如解法:设函数()g y 和()f x 是连续的,()()g y dy f x dx =⎰⎰设函数()G y 和()F x 是依次为()g y 和()f x 的原函数,()()G y F x C =+为微分方程的解.3.齐次方程形如()dy yf dx x=的微分方程称为齐次方程. 解法:作变量代换,y u x =,y xu =即,dy duu x dx dx∴=+ 代入原式(),du u x f u dx += 即().du f u u dx x-=(可分离变量的方程) (1)()0,f u u -≠当时1ln ,()duC x f u u=-⎰得),u x Ce ϕ=即()()du u f u uϕ=-⎰(),yu x =将代入(),yx x Ce ϕ=得通解 (2)0,u ∃当00()0,f u u -=使0,u u =则是新方程的解,代回原方程0.y u x =得齐次方程的解 4.可化为齐次的方程 定义111()dy ax by cf dx a x b y c ++=++形如的微分方程 10,c c ==当时为齐次方程.否则为非齐次方程. 解法:,x X h y Y k =+=+令,(其中h 和k 是待定的常数),dx dX dy dY ==11111()dY aX bY ah bk c f dX a X b Y a h b k c ++++=++++1110,0,ah bk c a h b k c ++=⎧⎨++=⎩ (1)1122a b a b ≠有唯一一组解.11()dY aX bYf dX a X b Y +=+得通解代回,X x h Y y k =-⎧⎨=-⎩, (2)11,a b a b λ==1(),()dy ax by c f dx ax by c λ++=++方程可化为,z ax by =+令 dz dy a b dx dx =+则,11()().dz z c a f b dx z c λ+-=+可分离变量. 5.其它类型:通过变量代换化为可分离变量方程(1)()()()f x y dx dy g x dx ±±=,u x y =±令,du dx dy =±方程化为()()f u du g x dx = (2)()()()f xy xdy ydx g x dx +=,u xy =令,du xdy ydx =+代入方程得()()f u du g x dx =(3)()()()y f xdy ydx g x dx x -=,y u x =令则2,xdy ydx du x -=代入方程得2()()g x f u du dx x=22(4)()()()f x y xdx ydy g x dx ++=22,u x y =+令 则22,du xdx ydy =+代入方程得()2()f u du g x dx =6.线性方程一阶线性微分方程的标准形式:()()dyP x y Q x dx+= ()0,Q x ≡当上方程称为齐次的.()Q x ≡当0,上方程称为非齐次的. 例如2,dy y x dx =+2sin ,dx x t t dt=+线性的; 23,yy xy '-=cos 1,y y '-=非线性的。

大一常微分方程一知识点总结

大一常微分方程一知识点总结

大一常微分方程一知识点总结本文档旨在总结大一常微分方程一课程中的主要知识点,帮助同学们复和回顾相关内容。

1. 什么是微分方程微分方程是一个含有未知函数及其导数的方程。

它通常用于描述自然现象中包含变化速率的问题,如物理、工程和经济等领域。

2. 常见的常微分方程类型常微分方程可以分为以下几类:- 一阶常微分方程:只涉及一阶导数的方程。

常见的一阶方程包括分离变量方程、线性方程和齐次方程等。

- 二阶常微分方程:涉及二阶导数的方程。

常见的二阶方程包括常系数二阶齐次方程和非齐次方程等。

3. 常微分方程的解法常微分方程的解法主要有以下几种:- 分离变量法:将方程的未知函数与其导数分开,将方程变为两个可积的方程,再进行求解。

- 变量替换法:通过合适的变量替换,将原方程转化为可以更容易求解的形式。

- 齐次方程的解法:通过适当的变量替换,使得方程变为可以分离变量的形式,然后利用分离变量法求解。

- 常系数二阶齐次方程的解法:通过对方程进行特征根分析,得到方程的通解。

- 非齐次方程的解法:通过求解对应的齐次方程的通解和非齐次方程的特解,得到非齐次方程的通解。

4. 常微分方程的应用常微分方程在各个领域都有广泛的应用,包括但不限于以下几个方面:- 物理学:常微分方程可以用于描述物理系统的运动规律,如牛顿运动定律、电路中的电流变化等。

- 工程学:常微分方程可以用于描述工程问题中的变化和变化率,如电路中的电压变化、机械系统的振动等。

- 经济学:常微分方程可以用于描述经济系统中的变化和变化率,如经济增长模型、人口增长模型等。

以上是对大一常微分方程一课程的主要知识点的简要总结,希望能够为同学们的学习提供一些帮助和参考。

常微分方程初等解法及其求解技巧

常微分方程初等解法及其求解技巧

目 录摘 要 .............................................................. I 关键词 ............................................................. I Abstract ............................................................. I Key words ........................................................... I 1.前 言 ............................................................ 1 2.常微分方程的求解方法 .............................................. 1 2.1常微分方程变量可分离类型解法 ................................... 1 2.1.1直接可分离变量的微分方程 ................................... 2 2.1.2可化为变量分离方程 ......................................... 2 2.2常数变易法 ..................................................... 7 2.2.1一阶线性非齐次微分方程的常数变易法 ......................... 7 2.2.2一阶非线性微分方程的常数变易法 ............................. 8 2.3积分因子法 .................................................... 13 3.实例分析说明这几类方法间的联系及优劣 ............................ 14 3.1几个重要的变换技巧及实例 .. (15)3.1.1变dx dy 为dy dx................................................15 3.1.2分项组合法组合原则 ........................................ 16 3.1.3积分因子选择 .............................................. 17 参考文献 .......................................................... 18 致 谢 (19)常微分方程初等解法及其求解技巧摘要常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法.关键词变量分离法常数变易法积分因子变换技巧Elementary Solution and Solving Skills of Ordinary DifferentialEquationAbstractOrdinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly.Key wordsVariable separation; constant threats; points factor; transform techniques1.前 言数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程又是数学分析的心脏,它还是高等分析里大部分思想和理论的根源.人所共知,常微分方程从它产生的那天起, 就是研究自然界变化规律、研究人类社会结构、生态结构和工程技术问题的强有力工具.它的发展历史也是跟整个科学发展史大致同步的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性质的研究、化学反应稳定性的研究等.这些问题都可以转化为求常微分方程的解,或者化为研究解的性质的问题.常微分方程具有广泛的社会实践性,无论是在各类学科领域上,还是在实际生产生活中,都有举足轻重的作用.它所涉及范围之广,致使前人对它做了很深入的研究.应用常微分方程理论已经取得了很大的成就,但是,它现有的理论也还远远不能满足需要,还有待进一步的发展,使这门学科的理论更加完善.微分方程是表达自然规律的一种自然的数学语言.它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然.所以我们必须能够求出它的解.常微分方程的初等解法,既是常微分方程理论中有自身特色的部分,也与实际问题密切相关;恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法进行分解.总之,常微分方程属于数学分析或基础数学的一个组成部分,在整个数学大厦中占据这重要位置,学好常微分方程基本理论与方法对进一步学习研究数学理论与实际应用均非常重要,因此本文对常微分方程的初等解法进行了简要归纳和分析,主要讨论变量分离方程,非恰当微分方程,线性微分方程,同时结合具体的实例,展示了初等解法在解题过程中的应用及其求解过程中的变换技巧和律. 2.常微分方程的求解方法2.1常微分方程变量可分离类型解法定义 1 如果一阶微分方程具有形式)()(y g x f dx dy=,则该方程称为可分离变量微分方程.若设0)(≠y g ,则可将方程化为dx x f y g dy)()(=.即将两个变量分离在等式两端.其特点是:方程的一端只含有y 的函数与dy ,另一端只含有x 的函数与dx .对于该类程,我们通常采用分离变量的方法来处理。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。

简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。

接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。

一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。

齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。

一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。

2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。

当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。

常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。

二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。

对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。

例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。

2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。

原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。

如何求解常微分方程

如何求解常微分方程

如何求解常微分方程?常数变易法、积分因子法,函数变换法。

大致与微积分同时产生。

事实上,求y′=f(x)的原函数问题便是最简单的微分方程。

I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。

他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。

用现在叫做“首次积分”的办法,完全解决了它的求解问题。

17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。

但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

常微分方程公式解的定理

常微分方程公式解的定理

常微分方程公式解的定理常微分方程是数学中的一种重要的方程类型,广泛应用于物理学、工程学、生物学等领域。

解常微分方程是解决实际问题的关键步骤之一。

在求解常微分方程时,我们可以利用常微分方程公式解的定理来得到方程的解析解。

常微分方程公式解的定理是基于解微分方程的理论基础,它将常微分方程的解表示为一个通解的形式。

常微分方程的通解是指包含所有特解的解的集合。

常微分方程公式解的定理给出了一般形式的通解,通过确定特定的常数值来得到特解。

常微分方程公式解的定理可以分为一阶常微分方程和高阶常微分方程两种情况来讨论。

对于一阶常微分方程,我们可以利用常微分方程公式解的定理将其解表示为一个一般的形式。

一阶常微分方程的一般形式为dy/dx = f(x),其中f(x)为已知函数。

根据常微分方程公式解的定理,我们可以将其解表示为y = F(x) + C,其中F(x)为f(x)的一个原函数,C为常数。

这个解表示了一阶常微分方程的通解,通过确定常数C的值,我们可以得到特解。

对于高阶常微分方程,常微分方程公式解的定理也同样适用。

高阶常微分方程的一般形式为d^n y/dx^n = f(x),其中f(x)为已知函数,n为正整数。

根据常微分方程公式解的定理,我们可以将其解表示为y = F(x) + C1x + C2x^2 + ... + Cnx^n,其中F(x)为f(x)的一个原函数,C1、C2、...、Cn为常数。

这个解表示了高阶常微分方程的通解,通过确定常数C1、C2、...、Cn的值,我们可以得到特解。

常微分方程公式解的定理在解决实际问题中起着重要的作用。

通过将常微分方程表示为通解的形式,我们可以根据实际问题的边界条件确定常数的值,从而得到具体的解。

这种解析解不仅可以帮助我们理解问题的本质,还可以提供更精确的结果。

常微分方程公式解的定理是解常微分方程的基本工具之一。

它将常微分方程的解表示为一个通解的形式,通过确定常数的值来得到特解。

冲量定理法

冲量定理法

§37.1 冲量定理法
定解问题2000(,)||0||0tt xx x x l t t t u a u f x t u u u u ====⎧-=⎪==⎨⎪==⎩
(,)(,)/f x t F x t ρ= 作用于弦上单位长度单位质量上的力。

力(,)f x t 持续作用于整个系统,对(,)u x t 的影响是0—t 时刻的作用的累加,注意到: 0(,)(,)()t
f x t f x t d τδττ=-⎰。

考虑到泛定方程和定解条件的线性性,则方程的解应是由瞬时力引起的振动的累加。

即0(,)(,,)t
u x t v x t d ττ=⎰(这里要求初始条件为零,因为我们只考虑了时刻t=0之后的瞬时力的作用)其中:
22(,)()00t 00000(,)()(,)()||0||0||0||0tt xx tt xx f x t x x l x x l t t t t t t v a v f x t v a v f x t v v v v v v v v τδτττττδττδτ-=====-===-=-⎧⎧-=--=-⎪⎪==⇒==⎨⎨⎪⎪====⎩⎩
由于直到时刻仍未起作用对泛定方程从00ττ-→+积分有2000||(,,)0(,)2
t t xx v v a v x f x τττττ+---+⨯=即 0|(,)t t v f x ττ=+=考虑到(,)()f x t t δτ-从0t τ=+开始不再起作用,因此
若将初始时刻取0t τ=+,则有()
2000000,,tt xx x x l t t t a f x ττυυυυυυτ===+=+⎧-=⎪⎪==⎨⎪==⎪⎩ 求出该自由振动的(),,x t υτ,然后再进行叠加。

常微分方程中的一些简单例子和方法

常微分方程中的一些简单例子和方法

常微分方程中的一些简单例子和方法常微分方程是数学中的一个重要分支,它涉及到很多实际问题的数学模型解析和数值求解。

常微分方程可以用于描述很多自然现象,比如物理、生物、经济和工程学等领域。

它是应用数学中的一部分,也是数学中比较重要的一部分,今天我们就来介绍一下常微分方程中的一些简单例子和方法。

一、一阶常微分方程一阶常微分方程形如: $\frac{dy}{dx}=f(x,y)$,其中y是未知函数,x是自变量,f(x,y)是已知函数。

这种方程的解就是y(x)。

下面我们来看几个例子。

1. 求解方程$y'=3x^2$。

对方程两边求积分,得到$y=\int3x^2dx=x^3+C$。

其中C是常数,可以通过初始条件来确定。

比如,如果y(x)在x=0处等于2,则$y(0)=2$,代入求解得到$C=2$,所以完整的解为$y=x^3+2$。

2. 求解方程$y'=2xy$。

对方程两边分离变量,得到$\frac{dy}{y}=2xdx$,对两边求积分,得到$\ln|y|=x^2+C$。

移项得到$y=Ce^{x^2}$,其中C是常数。

3. 求解方程$y'+2xy=x$。

这是一个非齐次线性微分方程,首先求解它的齐次方程$y'+2xy=0$,这个方程的解是$y=Ce^{-x^2}$。

然后我们要找到一个特殊解,这个特殊解满足非齐次方程。

我们可以猜测特殊解为$y=A+Bx$,代入非齐次方程得到$B=1$,$A=-\frac{1}{2}$,因此特殊解为$y=-\frac{1}{2}+x$。

因为非齐次方程的通解等于它的齐次解加上特殊解,所以得到通解为$y=Ce^{-x^2}-\frac{1}{2}+x$。

二、二阶常微分方程二阶常微分方程形如:$y''+p(x)y'+q(x)y=f(x)$。

其中y是未知函数,x是自变量,f(x)、p(x)和q(x)都是已知函数。

这种方程的解是y(x)。

数学复习常微分方程的解法

数学复习常微分方程的解法

数学复习常微分方程的解法数学复习:常微分方程的解法一、引言在数学中,微分方程是描述自然界中许多物理现象的重要工具之一。

常微分方程是一类只涉及一个自变量的微分方程,求解常微分方程是数学学习中的重要内容。

本文将介绍几种常见的常微分方程的解法。

二、一阶常微分方程的解法1. 可分离变量法如果常微分方程可以化为dy/dx=f(x)g(y)的形式,那么可以通过分离变量法求解。

具体的步骤如下:- 将f(x)g(y)的形式转换为dy/g(y)=f(x)dx。

- 两边同时积分,得到∫1/g(y)dy=∫f(x)dx。

- 对两边分别求积分,得到F(y)=∫1/g(y)dy和F(x)=∫f(x)dx,其中F(x)和F(y)分别为积分常数。

- 最后将F(y)=F(x)+C整理为y的显式表达式。

2. 齐次方程法对于形如dy/dx=f(y/x)的齐次方程,可以通过以下步骤求解:- 令u=y/x,即y=ux。

- 将dy/dx=f(y/x)化为dy/du=xf(u)。

- 通过分离变量法求解上述方程,得到∫1/f(u)du=∫xdx。

- 对两边求积分,再整理为u(x)的显式表达式,即u(x)=∫1/f(u)du+C。

- 最后将u=y/x代回,得到y(x)=xu(x)。

3. 线性方程法对于形如dy/dx+p(x)y=q(x)的一阶线性常微分方程,可以通过以下步骤求解:- 将方程改写为dy/dx+p(x)y=q(x)的形式。

- 通过积分因子mu(x)=exp(∫p(x)dx)将方程转化为(mu(x)y)'=mu(x)q(x)。

- 对等式两边同时求积分,得到mu(x)y=∫mu(x)q(x)dx。

- 将上式整理为y的显式表达式。

三、高阶常微分方程的解法对于高于一阶的常微分方程,通常需要进行一定的变换或者使用递推方法进行求解。

以下介绍一些常见的高阶常微分方程的解法。

1. 特征方程法对于形如yⁿ+a₁y⁽ⁿ⁻¹⁾+...+a⁽²⁾y''+a₁y'+a₀y=0的n阶常微分方程,可以通过解特征方程来获得通解。

常微分方程的解法

常微分方程的解法

常微分方程的解法常微分方程(Ordinary Differential Equation)是描述自然现象和工程问题的基础数学模型,被广泛应用到各个领域中。

解常微分方程的方法不仅是数学学科的基本内容,也是物理、工程、经济等工科领域必须熟练掌握的数学工具之一。

本文将简单介绍常微分方程的基本概念和解法。

一、基本概念常微分方程是指仅涉及一个自变量和它的几个导数的方程。

通常形式为:$$F(x,y,y^\prime,y^{\prime\prime},...,y^{(n)})=0$$若仅涉及一阶导数,则称为一阶常微分方程,通常写作$y^\prime=f(x,y)$。

一般地,我们都要求解的是一阶常微分方程,因此本文仅介绍一阶常微分方程的解法。

二、解法1. 可分离变量法若已知的微分方程为$y^\prime=f(x,y)$,并且可以分离变量,即$f(x,y)=g(x)h(y)$,则可通过以下步骤求解:(1)将方程移项得到$\frac{dy}{dx}=g(x)h(y)$;(2)分母h(y)移项得到$\frac{1}{h(y)}dy=g(x)dx$;(3)两边同时积分得到$\int\frac{1}{h(y)}dy=\int g(x)dx+C$,其中C为常数。

2. 齐次方程法若已知的微分方程为$y^\prime=f(x,y)$,并且满足$f(x,y)=f(\frac{y}{x})$,则称该微分方程为齐次方程。

则可通过以下步骤求解:(1)令$y=ux$,则有$\frac{dy}{dx}=u+x\frac{du}{dx}$;(2)将$y^\prime=f(x,y)$代入$\frac{dy}{dx}=u+x\frac{du}{dx}$中得到$$u+x\frac{du}{dx}=f(x,ux)$$(3)该方程可变形为$$\frac{du}{f(x,ux)-u}=\frac{1}{x}dx$$(4)对两边积分得到$$\int\frac{du}{f(x,ux)-u}=\ln|x|+C$$,其中C为常数。

常微分方程的常见解法

常微分方程的常见解法
在这些节点上采用离散化方法,(通常用数值积分、微分、 泰勒展开等)将上述初值问题化成关于离散变量的相应问题。 把这个相应问题的解yn作为y(xn)的近似值。这样求得的yn就是 上述初值问题在节点xn上的数值解。
Euler折线法
近似导数
y(x0)
y(x1) h
y( x0 )
记为
y( x1 ) y( x0 ) hy( x0 ) y0 h f ( x0 , y0 )
解:设t时刻雪球的体积为
,表面积为 ,
由题得
球体与表面积的关系为
引入新常数
再利用题中的条件得
分离变量积分得方程得通解为
再利用条件 确定出常数C和r代入关系式得 t的取值在 之间。
方程为全微分方程的充要条件
定理2.1 设函数

在一个矩形区域
中连续且有连续的一阶偏导数,则
是全微分方程的充要条件为:
(2.3.3)
nan (x x0 )n1
f
x,
an
(
x
x0
)n
n1
n0
展开后比较两端同次幂的系数确定
an ,
y
y0
N n1
cn1 (x n
x0 )n
例:用待定系数法求
dy x2 y2 ,
的近似解。
dx
y(0) 1
解: 令 y a n (x x0 )n, 由 y (0) 1 得 a0 1 n0
([diff(y(x),x)=-y(x)],y(x),
# 定义微分方程
x=-2..2,
# 指定x范围
[[y(-2)=2],[y(-2)=1],[y(-2)=-2]], # 给出3个初始值
dirgrid=[17,17],

常微分方程平衡点

常微分方程平衡点

常微分方程平衡点常微分方程的平衡点是指系统在某一特定时刻状态不再发生变化,即系统达到了动态平衡的状态。

一般来说,平衡点是使得微分方程等式两端为零的解,对应于系统在某个特定状态下的平衡。

对于一阶常微分方程,平衡点可以通过求解微分方程等式两端为零的方程得到。

以一阶线性微分方程为例,一般形式为dy/dt=f(y),其中f(y)是关于y的函数。

令dy/dt=0,可得f(y)=0,这个方程的解即为平衡点。

对于非线性微分方程,平衡点的求解可能会更加复杂。

需要使用一些常见的技巧和方法进行求解。

以下是一些常见的方法和技巧,可以辅助求解常微分方程的平衡点:1. 变量分离法:对于一些可以通过分离变量的方程,可以将变量分离到等式的两侧,然后分别积分得到解。

在求解过程中,可以找到使得dy/dt=0的解,得到平衡点。

2. 线性代数方法:对于一些线性微分方程,可以将其转化为矩阵形式,然后使用线性代数的方法求解特征值和特征向量。

特征值为零的特征向量对应于平衡点。

3. 奇点分析法:对于一些非线性微分方程,可以通过奇点分析的方法来求解平衡点。

奇点分析的基本思想是将微分方程转化为更简单的形式,以便求解。

在求解过程中,找到使得系统不可解的奇点,即为平衡点。

4. 线性化方法:对于一些非线性微分方程,可以使用线性化的方法来近似求解平衡点。

线性化方法将非线性系统线性化为类似于线性系统的形式,然后求解线性系统的平衡点。

总之,求解微分方程的平衡点是对微分方程进行解析求解的重要步骤之一。

通过选择合适的方法和技巧,可以辅助求解微分方程的平衡点,进而研究系统在不同状态下的稳定性和行为。

常微分方程解法总结

常微分方程解法总结

常微分方程解法总结常微分方程解法总结微分方程是一种描述物理、化学、生物等自然现象的重要数学工具,广泛应用于工程、物理、医学等多个领域。

常微分方程是微分方程中最基本、最常见的一类,其解法具有一定的规律性和方法性。

本文将总结常微分方程的解法,并探讨其应用。

常微分方程的基本定义是关于未知函数的导数的方程,其中独立变量只有一个。

常微分方程可以分为一阶常微分方程和高阶常微分方程。

一阶常微分方程的一般形式为dy/dx=F(x,y),其中F(x,y)是给定的函数。

高阶常微分方程可以通过逐次求导的方式化为一阶常微分方程的形式。

解常微分方程的方法可以分为解析方法和数值方法两类。

解析方法是指通过数学变换和计算得到方程的精确解析式,适用于某些特定的方程。

数值方法是指通过数值计算,以近似的方式求出方程的数值解,适用于一般情况下的方程。

在解一阶常微分方程时,常见的解法包括分离变量法、同类积分法、线性方程法和特殊积分因子法等。

分离变量法是通过将方程中的未知函数和自变量分离到方程的两边,从而得到两个独立的方程,进而求解出未知函数。

这种方法适用于方程可以进行变量分离的情况。

同类积分法是通过对方程进行变形,使得其可以转化为同类的可积形式。

同类积分法适用于一些可以通过恰当的变换化为同类的方程的情况。

线性方程法适用于线性常微分方程,通过求解线性方程的常数系数和齐次方程的通解,再结合特解,得到原方程的完整解。

特殊积分因子法适用于某些形式特殊的一阶线性方程,通过寻找恰当的特殊积分因子,将方程化为恰当积分方程,从而更容易求解。

对于高阶常微分方程,可以通过逐步归纳、变量代换等方法化为一阶常微分方程的形式,然后应用一阶常微分方程的解法进行求解。

除了解析方法外,数值方法也是解常微分方程的重要手段。

常见的数值方法包括欧拉法、改进的欧拉法、龙格-库塔法等。

这些方法通过将微分方程转化为差分方程,并通过逐步逼近的方式求解,从而得到微分方程的数值解。

在应用中,常微分方程解法可以应用于很多领域。

常微分方程的解法介绍

常微分方程的解法介绍

常微分方程的解法介绍常微分方程是描述自变量和未知函数及其导数之间关系的方程。

在数学和工程领域中,常微分方程是一种非常重要的数学工具,广泛应用于描述自然现象和工程问题。

解常微分方程是求解这些方程的未知函数的过程,下面将介绍几种常见的解法。

一、分离变量法分离变量法是解常微分方程最基本的方法之一。

对于形如dy/dx=f(x)g(y)的一阶微分方程,可以通过将变量分离来求解。

具体步骤如下:1. 将方程写成dy/g(y)=f(x)dx的形式;2. 对两边同时积分,得到∫(1/g(y))dy=∫f(x)dx;3. 分别对y和x积分,得到方程的通解。

例如,对于方程dy/dx=x/y,可以将方程改写为ydy=xdx,然后对两边同时积分,得到y^2=2x+C,其中C为积分常数,即为方程的通解。

二、齐次方程法对于形如dy/dx=F(y/x)的一阶齐次微分方程,可以通过引入新的变量u=y/x来将其转化为分离变量的形式。

具体步骤如下:1. 令u=y/x,即y=ux,然后对x求导得到dy/dx=u+x(du/dx);2. 将dy/dx和u代入原方程,化简得到F(u)=u+x(du/dx);3. 通过变量分离法解出u的表达式,再将u=y/x代入,即可得到原方程的通解。

三、一阶线性微分方程法一阶线性微分方程的一般形式为dy/dx+p(x)y=q(x),其中p(x)和q(x)为已知函数。

解一阶线性微分方程的方法是利用积分因子来将其转化为恰当微分方程。

具体步骤如下:1. 将方程写成dy/dx+p(x)y=q(x)的形式;2. 求出积分因子μ(x)=exp(∫p(x)dx);3. 用积分因子乘以方程两边,化为恰当微分方程的形式;4. 求解恰当微分方程,得到原方程的通解。

四、常数变易法对于形如dy/dx+p(x)y=q(x)的一阶线性微分方程,如果p(x)和q(x)为常数,可以利用常数变易法来求解。

具体步骤如下:1. 令y=u(x)v(x),其中u(x)和v(x)为待定函数;2. 将y=u(x)v(x)代入原方程,化简得到关于u(x)和v(x)的两个方程;3. 解出u(x)和v(x),再将其代入y=u(x)v(x),即可得到原方程的通解。

冲量定理 微积分

冲量定理 微积分

冲量定理微积分
冲量定理是力学中一个重要的定理,它可以通过微积分的方法进行推导。

在物理学中,冲量是指力在时间内的积累,是描述物体运动状态变化的一个物理量。

冲量定理表述了冲量与物体动量变化之间的关系,即冲量等于动量的变化量。

在微积分中,我们可以通过对冲量和动量的定义进行求导,得到冲量定理的微积分形式。

具体来说,冲量定理的微积分形式可以表示为:冲量等于物体动量的末状态减去初状态的差值,即I = mv - mu。

其中,I表示冲量,m表示物体的质量,v和u分别表示物体的末状态和初状态下的速度。

通过进一步的推导,我们可以得到力的积分形式,即力等于冲量对时间的导数。

这个定理在物理学中有着广泛的应用,例如在研究碰撞、动量守恒等方面都会用到。

通过微积分的方法推导冲量定理,不仅有助于我们更深入地理解物理学中的概念和原理,同时也可以帮助我们更好地应用这些知识。

- 1 -。

冲量定理 微积分

冲量定理 微积分

冲量定理微积分
冲量定理是微积分中一个非常重要的理论。

它描述了力在时间间隔内对物体动量的影响,是研究物体运动的关键。

根据冲量定理,物体动量的变化量等于作用力在时间间隔内的积分。

这意味着,如果一个力在一段时间内作用在一个物体上,它会改变物体的速度和方向。

而作用力的大小和方向决定了动量的变化量。

冲量定理可以用于解决各种物理问题,如弹道问题、碰撞问题以及其他运动问题。

它还可以应用于工程学和机械学,帮助解决复杂的力学问题。

在微积分中,冲量定理被用来求解动量的变化量,从而帮助我们了解物体运动的规律。

它也可以与其他微积分概念结合使用,如速度、加速度、功等。

总之,冲量定理是微积分中的一个基本概念,对于研究物体运动以及解决工程问题都具有重要意义。

- 1 -。

冲量的微分公式例题

冲量的微分公式例题

冲量的微分公式例题
冲量是物体受到的力在时间上的积分,它描述了物体在一定时间内受到的力的总效果。

冲量的微分公式可以用于求解物体的速度变化。

假设某物体在时间t到t+dt内受到的力为F(t),那么这段时间内物体的冲量可以表示为:
J = ∫F(t)dt (t到t+dt)
对上式两边同时取微分,可以得到:
dJ = F(t)dt
其中,dJ表示冲量的微分,即物体在极短时间内受到的力的效果。

这个公式可以用于计算物体在一个瞬间的速度变化。

举个例子,如果一个质量为m的物体在时间t到t+dt内受到的力为F(t),那么这段时间内物体的速度变化可以表示为:
Δv = (1/m)∫F(t)dt (t到t+dt)
上式中的Δv表示速度变化量,可以用来计算物体在瞬间的速度变化。

需要注意的是,这个公式只在力和质量都是常数的情况下成立,否则需要用更加复杂的微积分方法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档