2021年三角函数、向量、解三角形、数列综合测试(含答案)之欧阳学文创编
2021年高考数学解答题专项练习《解三角形》(含答案)
2021年高考数学解答题专项练习《解三角形》(含答案)1.已知△ABC中,b=3,c=4,C=2B,求cosB的值。
2.已知△ABC中,b=2,求角B的值;若△ABC的面积为S,求S。
3.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+csinA=b+c,求A;若a=2,b+c=3,求b,c。
4.已知△ABC中,B=150°,a=c=2,求△ABC的面积;若sinA+sinC=1,求C。
5.已知△ABC中,b=3,c=4,求角A;若a=5,求△ABC的面积。
6.已知△ABC中,ab+a^2=c^2,证明:△ABC是直角三角形;若△ABC的面积为S,求角C的大小。
7.已知锐角△ABC中,b=2,c=3,求角C的大小;若a=4,求△ABC的面积。
8.已知△ABC中,b+c=5,且△ABC的面积为S,求角A的大小;若a=3,求S;若a=4,求角B的大小。
9.已知△ABC中,sinA=3/5,求∠B的大小;若a=4,求b+c的范围;若S=6,求a的值。
10.已知△ABC中,cosB=1/2,求角B的大小;求cosA+cosB+cosC的取值范围。
11.已知△ABC中,sin2A-sin2B-sin2C=sinBsinC,求A;若BC=3,求△XXX周长的最大值。
12.已知△ABC中,c=2,ccosAcosB=asinCcosB-ccosC,求角B的大小;若S=16,求△ABC的周长的取值范围。
13.已知△ABC中,a=3,b=4,满足cosAcosB=1/4,求角A 的值;若S=5,求c的值。
14.已知△ABC中,a=8,ccosAcosB=2asinCcosB-ccosC,求tanB的值;若S=16,求b的值。
已知三角形ABC的内角A,B,C的对边分别为a,b,c,且3(acos C-b)=asin C,求角A。
解:(1)根据正弦定理和已知条件,可得sin A = sin (π - B - C) = sin (B + C) = sin B cos C + cos B sin C = sin B cos C + √(1 - sin^2 B) sin C将sin B = a/2c代入上式,得sin A = a/2c cos C + √(1 - a^2/4c^2) sin C又因为3(acos C - b) = asin C,可得3a/2c cos C - 3b = √(1 - a^2/4c^2) a将a/b = cosp,代入上式,得3p cos C - 3 = √(1 - p^2) 2sin C将sin C = √(1 - cos^2 C)代入上式,整理可得9p^2 - 4) cos^2 C - 18p cos C + 9 = 0解得cos C = 3/2p或cos C = 1/3.因为b ≥ a,所以p ≤ 1/2,故cos C = 3/2p。
(2021年整理)三角函数部分高考题(带答案)
三角函数部分高考题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角函数部分高考题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角函数部分高考题(带答案)的全部内容。
22.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34。
23。
在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ········· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ······················· 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =.所以sin 11sin 2AB A BC C ⨯==.··················· 10分24。
三角函数及解三角形测试题(含答案)
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数、向量、解三角形、数列综合测试(含答案)
三角函数、向量、解三角形、数列综合测试(含答案)大冶一中 孙雷 一、选择题(每题只有一个正确选项,共60分)1.若向量===BAC ∠),0,1-(),23,21(则( ) ° ° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(+•的最小值是( )B. -143.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB ( ) A.51858-+ B.74718-+ C.58518-+ D. 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin ( ) ( A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=m ( )A.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin ( ) A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,,且//,则=)4π-αcos(( ) A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::( ) :2:3 :2:1 :3:2 D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c ( )、 A.364 C.362 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =( )A. 334B.43 C.33 D.332 11.我国古代数学巨著《九章算术》中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是( )12.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为( ) A.20194036 B.10102019 C.20194037 D.20204039 二、填空题(共20分)13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. )14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题(共70分)17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S(1)求n a ,n S ;(2)设||||||21n n a a a T +++= ,求n T .;18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=• (1)求ABC △的面积;。
2021 2021 高考全国卷三角函数解三角形真题汇编(文科)
2021 2021 高考全国卷三角函数解三角形真题汇编(文科)2021-2021高考全国卷三角函数、解三角形真题汇编(文科)2022-2022年全国高考卷三角函数与解三角形真题汇编(文科)学校:姓名:班级:考号:评分员得1分。
多项选择题1.[2021全国新课标卷i(文)]函数y=的部分图象大致为()-a、不列颠哥伦比亚省。
d.2.[2022年国家新课程标准第一卷(正文)]△ ABC的内角a、B和C分别是a、B和C。
已知SINB+Sina(sinc-COSC)=0,a=2,C=,然后C=()a.b.c.d.3.函数f(x)=sin的最小正周期为()a.4πB.2πC.πD4.[2021全国新课标卷iii(文)]已知sinα-cosα=,则sin2α=()a.-b.-c.d.5.[2022年国家新课程标准第三卷(文本)]函数f(x)=sin+cos-的最大值为()a.b.1c d.6。
[2022年国家新课程标准第三卷(正文)]函数y=1+X+的部分图象大致为()第1页共4页a、 b。
c.D7.[2021高考全国新课标卷ⅰ(文),4]△abc的内角a,b,c的对边分别为a,b,c.已知A=,C=2,cosa=,然后B=()a.b.c.2d.38.[2022年国家新课程标准高考第一卷(文本),6]将函数y=2Sin的图像向右移动一个周期,并生成图形象对应的函数为()a、 y=2sinb。
y=2sinc。
y=2sin-d。
y=2sin-9.[2022年国家新课程标准第一卷(正文),12]如果函数f(x)=x-sin2x+asinx单调增加(-∞, + ∞), 然后a的取值范围是()a、 [1,1]b-c-d--10.[2021高考全国新课标卷ⅱ(文),3]函数y=asin(ωx+φ)的部分图象如图所示,则()a、 y=2sin-b.y=2sin-c.y=2sind。
y=2英寸11.[2021高考全国新课标卷ⅱ(文),11]函数f(x)=cos2x+6cos-的最大值为()a.4b.5c.6d.712.[2022年国家新课程标准高考三(正文),6]若坦θ=-,则Cos2θ=()第2页共4页a、 -b.-c.d。
2021年高考数学一轮复习 三角函数 平面向量 解三角形 复数质量检测 文(含解析)新人教A版
2021年高考数学一轮复习 三角函数 平面向量 解三角形 复数质量检测文(含解析)新人教A 版一、选择题(本大题共10小题,每小题5分,共50分) 1.(xx·黄冈模拟)sin 2 013°的值属于区间( ) A.⎝ ⎛⎭⎪⎫-12,0 B.⎝ ⎛⎭⎪⎫-1,-12C.⎝ ⎛⎭⎪⎫12,1 D.⎝⎛⎭⎪⎫0,12解析:sin 2 013°=sin(360°×5+213°)=sin 213°=-sin 33°,即sin 30°<sin 33°,所以-sin 33°<-12,故选B.答案:B2.(xx·武汉四月调研)若复数7+b i3+4i (b ∈R )的实部与虚部互为相反数,则b =( )A .-7B .-1C .1D .7 解析:7+b i3+4i=7+b i 3-4i 3+4i3-4i=21+4b 25+3b -2825i ,实部与虚部互为相反数,则有21+4b 25+3b -2825=0,解得b =1,选C.答案:C3.(xx·重庆模拟)已知向量a =(2,k ),b =(1,2),若a ∥b ,则k 的值为( ) A .4 B .1 C .-1 D .-4解析:由a ∥b ⇒2×2=k ×1⇒k =4,故选A. 答案:A4.(xx·重庆市六区调研抽测)设e 1,e 2是夹角为2π3的单位向量,且a =2e 1+3e 2,b =k e 1-4e 2.若a ⊥b ,则实数k 的值为( )A.167 B.327C .16D .32 解析:∵a ⊥b ,∴a ·b =0,(2e 1+3e 2)·(k e 1-4e 2)=2k |e 1|2-12|e 2|2+(3k -8)e 1·e 2=2k -12+(3k -8)×⎝ ⎛⎭⎪⎫-12=0,得k =16. 答案:C5.(xx·辽宁大连第一次模拟)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,A >0,ω>0,|φ|<π2的图象(部分)如图所示,则ω,φ分别为( )A .ω=π,φ=π3B .ω=2π,φ=π3C .ω=π,φ=π6D .ω=2π,φ=π6解析:由所对应函数的图象知A =2,14T =⎝ ⎛⎭⎪⎫56-13,得T =2,所以ω=π,又因为函数图象过点⎝ ⎛⎭⎪⎫13,2,代入2sin(πx +φ)得φ=π6,故选C. 答案:C6.(xx·湖北卷)将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6解析:y =3cos x +sin x =2⎝ ⎛⎭⎪⎫32cos x +12sin x =2sin ⎝ ⎛⎭⎪⎫x +π3的图象向左平移m 个单位后,得到y =2sin ⎝⎛⎭⎪⎫x +m +π3的图象,此图象关于y 轴对称,则x =0时,y =±2,即2sin ⎝⎛⎭⎪⎫m +π3=±2,所以m +π3=π2+kπ,k ∈Z ,由于m >0,所以m min =π6,故选B.答案:B7.(xx·武汉市高中毕业生四月调研测试)已知tan α=2,则4sin 3α-2cos α5cos α+3sin α=( )A.25B.511C.35D.711解析:由tan α=2得sin α=2cos α,又因为sin 2α+cos 2α=1所以sin 2α=45,原式4sin 3α-2cos α5cos α+3sin α=4sin 2α·tan α-25+3tan α=4×45×2-25+6=25,选A.答案:A8.(xx·保定第一次模拟)若平面向量a ,b ,c 两两所成的角相等,且|a |=1,|b |=1,|c |=3,则|a +b +c |等于( )A .2B .5C .2或5 D.2或 5解析:由已知a ,b ,c 两两夹角相等,故其夹角为0°或120°,|a +b +c |2=|a |2+|b |2+|c |2+2(|a ||b |cos θ+|b ||c |cos θ+|a ||c |cos θ)代入数据易得θ=0°时,|a +b +c |=5;θ=120°时,|a +b +c |=2,故选C.答案:C9.(xx·安徽卷)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sinA =5sinB ,则角C =( )A.π3B.2π3 C.3π4 D.5π6解析:根据正弦定理可将3sin A =5sin B 化为3a =5b ,所以a =53b ,代入b +c =2a可得c =73b ,然后结合余弦定理可得cos C =a 2+b 2-c 22ab =-12,所以角C =2π3.答案:B10.(xx·郑州第三次质量预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a =6,b =2,且1+2cos(B +C )=0,则△ABC 的BC 边上的高等于( )A. 2B.62 C.6+22 D.3+12解析:设BC 边上的高为h ,则由1+2cos(B +C )=0⇒cos A =12,又0<A <π,A =π3,由正弦定理asin A=bsin B⇒sin B =22⇒B =π4,故有sin 15°=6-h 2⇒h =6+22.或由余弦定理c 2=a 2+b 2-2ab cos 75°=4+23=(3+1)2得c =3+1,h =c ·sinπ4=6+22. 答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.(xx·厦门市高三质检)已知sin ⎝ ⎛⎭⎪⎫π2-x =35,则cos 2x =________.解析:sin ⎝ ⎛⎭⎪⎫π2-x =cos x =35,∴cos 2x =2cos 2x -1=-725.答案:-72512.(xx·江西八校联考)已知向量a ,b ,满足|a |=2,|b |=1,且(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,则a 与b 的夹角为________.解析:(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ⇒(a +b )·⎝ ⎛⎭⎪⎫a -52b =0⇒a 2-52b 2-32|a |·|b |·cos θ=0⇒cosθ=12,又两向量夹角范围为[0°,180°],故θ=60°.答案:60°13.(xx·资阳第一次模拟)在钝角△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,b =1,c =3,∠B =30°,则△ABC 的面积等于________.解析:由正弦定理b sin B =csin Csin C =c b sin B =32,又△ABC 为钝角三角形,则C =120°,A =30°. S △ABC =12×1×3×12=34. 答案:3414.(xx·荆门高三调考)已知|OA →|=1,|OB →|≤1,且S △OAB =14,则OA →与OB →夹角的取值范围是________.解析:S △OAB =12|OA →||OB →|·sin θ=12|OB →|·sin θ=14,∴sin θ=12|OB →|≥12,∴π6≤θ≤56π.答案:⎣⎢⎡⎦⎥⎤π6,5π6三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.) 15.(满分12分)(xx·陕西卷)已知向量a =⎝⎛⎭⎪⎫cos x ,-12,b =()3sin x ,cos 2x ,x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期; (2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解:f (x )=⎝ ⎛⎭⎪⎫cos x ,-12·()3sin x ,cos 2x=3cos x sin x -12cos 2x=32sin 2x -12cos 2x =cosπ6sin 2x -sinπ6cos 2x=sin ⎝⎛⎭⎪⎫2x -π6.(1)f (x )的最小正周期为T =2πω=2π2=π, 即函数f (x )的最小正周期为π. (2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 由正弦函数的性质,知 当2x -π6=π2,即x =π3时, f (x )取得最大值1.当2x -π6=-π6,即x =0时, f (0)=-12, 当2x -π6=5π6,即x =π2时, f ⎝ ⎛⎭⎪⎫π2=12, ∴f (x )的最小值为-12.因此, f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值是1,最小值是-12.16.(满分12分)(xx·天津卷)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .已知b sin A =3c sin B ,a =3,cos B =23.(1)求b 的值; (2)求sin ⎝⎛⎭⎪⎫2B -π3的值.解:(1)在△ABC 中,由a sin A =bsin B ,可得b sin A =a sin B ,又由b sin A =3c sin B ,可得a =3c ,又a =3,故c =1.由b 2=a 2+c 2-2ac cos B ,cos B =23,可得b = 6.(2)由cos B =23,得sin B =53,从而得cos 2B =2cos 2B -1=-19,sin 2B =2sin B cos B =459.所以sin ⎝⎛⎭⎪⎫2B -π3=sin 2B cos π3-cos 2B sin π3=45+318.17.(满分13分)(xx·资阳第一次模拟)设函数f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin 2x .(1)求函数f (x )的单调递增区间;(2)若f ⎝ ⎛⎭⎪⎫12α-π6=13,且α∈⎝ ⎛⎭⎪⎫π2,π,求f (α)的值.解:f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin 2x=cos 2x cos π6-sin 2x sinπ6+sin 2x=32cos 2x +12sin 2x =sin ⎝⎛⎭⎪⎫2x +π3.(1)令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,则k π-5π12≤x ≤k π+π12,k ∈Z , ∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). (2)由(1)f ⎝ ⎛⎭⎪⎫12α-π6=sin α=13,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-223,故sin 2α=2×13×⎝ ⎛⎭⎪⎫-223=-429,cos 2α=2⎝ ⎛⎭⎪⎫-2232-1=79, ∵f (α)=sin ⎝⎛⎭⎪⎫2α+π3=12sin 2α+32cos 2α=12×⎝ ⎛⎭⎪⎫-429+32×79=73-4218. 18.(满分13分)(xx·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc .(1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解:(1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc2bc=-32. 又0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin Bsin A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.T33293 820D 舍26234 667A 智36503 8E97躗y25425 6351 捑24979 6193 憓20960 51E0 几/|29275 725B 牛]33016 80F8 胸(28020 6D74 浴。
高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)
cos
x
0
2
的部分图象如图所示,f
x0
f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.
6
,
x0
1
C.
3
,
x0
1
B.
6
,
x0
4 3
D.
3
,
x0
2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )
CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2
上的最大值为(
)
(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数
高考数学复习专题过关测评—三角函数与解三角形(含答案及解析)
高考数学复习专题过关测评—三角函数与解三角形一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·江西临川期中)已知角θ的终边经过点P(√2,a),若θ=-π3,则a=()A.√6B.√63C.-√6 D.-√632.(2021·北京房山区一模)将函数f(x)=sin 2x的图象向左平移π6个单位长度得到函数y=g(x)的图象,则函数g(x)的图象的一条对称轴方程为()A.x=-π6B.x=-π12C.x=π12D.x=π63.(2021·北京西城区一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,且C=60°,a+2b=8,sin A=6sin B,则c=()A.√35B.√31C.6D.54.(2021·山西吕梁一模)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)部分图象如图所示,则f(π3)=()A.√32B.12C.-√3D.√35.(2021·北京海淀区模拟)已知sin(π6-α)=13+cos α,则sin(2α+5π6)=()A.-79B.-4√39C.4√39D.796.(2021·福建福州期末)疫情期间,为保障市民安全,要对所有街道进行消毒处理,某消毒装备的设计如图所示,PQ为路面,AB为消毒设备的高,BC为喷杆,AB⊥PQ,∠ABC=2π3,C处是喷洒消毒水的喷头,且喷射角∠DCE=π3,已知AB=2,BC=1,则消毒水喷洒在路面上的宽度DE的最小值为()A.5√2-5B.5√2C.5√33D.5√37.(2021·浙江宁波模拟)在△ABC中,“tan A tan B>1”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2021·安徽淮北一模)函数f(x)=2sin x+π4+cos 2x的最大值为()A.1+√2B.3√32C.2√2D.3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A∶sin B∶sin C=4∶5∶6B.△ABC是钝角三角形C.△ABC的最大内角是最小内角的2倍D.若c=6,则△ABC的外接圆半径R为8√7710.(2021·江苏苏州月考)已知函数f(x)=(sin x+√3cos x)2,则()A.f(x)在区间[0,π6]上单调递增B.f(x)的图象关于点(-π3,0)对称C.f(x)的最小正周期为πD.f(x)的值域为[0,4]11.(2021·辽宁沈阳二模)关于f(x)=sin x·cos 2x的说法正确的为()A.∀x∈R,f(-x)-f(x)=0B.∃T≠0,使得f(x+T)=f(x)C.f(x)在定义域内有偶数个零点D.∀x∈R,f(π-x)-f(x)=012.(2021·山东潍坊统考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若1tanA ,1tanB,1tanC依次成等差数列,则下列结论不一定成立的是()A.a,b,c依次成等差数列B.√a,√b,√c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题:本题共4小题,每小题5分,共20分.13.(2021·安徽合肥期中)已知cos(α+5π4)=-√63,则sin 2α=.14.(2021·北京东城区一模)已知函数f(x)=A sin(2x+φ)(A>0,|φ|<π2),其中x和f(x)部分对应值如下表所示:则A=.15.(2021·广东茂名二模)在矩形ABCD内(包括边界)有E,F两点,其中AB=120 cm,AE=100√3cm,EF=80√3 cm,FC=60√3 cm,∠AEF=∠CFE=60°,则该矩形ABCD的面积为cm2.(答案如有根号可保留)16.(2021·湖南长郡中学二模)如图,某湖有一半径为100 m的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距200 m的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且满足AB=AC,∠BAC=90°.四边形OACB及其内部区域为“直接监测覆盖区域”.设∠AOB=θ,则“直接监测覆盖区域”面积的最大值为m2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021·江西上饶一模)已知f(x)=2cos x·sin x+π3-√3sin2x+sin x cos x.(1)求函数f(x)的单调递增区间;(2)若x∈(-π4,π6),求y=f(x)的值域.18.(12分)(2021·河北石家庄一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a-b=2c cos B.(1)求角C;(2)若a=2,D是AC的中点,BD=√3,求边c.19.(12分)(2021·广东韶关一模)在①cos C+(cos A-√3sin A)cos B=0;②cos 2B-3cos(A+C)=1;③b cosC+√33c sin B=a这三个条件中任选一个,补充在下面的问题中并解答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,若a+c=1,,求角B和b的最小值. 20.(12分)(2021·山东枣庄二模)已知函数f (x )=sin(ωx+φ)ω>0,0<φ<π2的部分图象如图所示,f (0)=12,f (5π12)=0. (1)求f (x )的解析式;(2)在锐角△ABC 中,若A>B ,f (A -B 2-π12)=35,求cosA -B2,并证明sin A>2√55.21.(12分)(2021·福建宁德期末)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:若建立平面直角坐标系Oxy 如图所示,则股价y (单位:元)和时间x (单位:天)的关系在ABC 段可近似地用函数y=a sin(ωx+φ)+b (0<φ<π)来描述,从C 点走到今天的D 点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D 点和C 点正好关于直线l :x=34对称.老张预计这只股票未来的走势可用曲线DE 描述,这里DE 段与ABC 段关于直线l 对称,EF 段是股价延续DE 段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A (0,22),点B (12,19),点D (44,16)来确定函数解析式中的常数a ,b ,ω,φ,并且求得ω=π72.(1)请你帮老张算出a ,b ,φ,并回答股价什么时候见顶(即求点F 的横坐标);(2)老张如能在今天以点D 处的价格买入该股票3 000股,到见顶处点F 的价格全部卖出,不计其他费用,这次操作他能赚多少元?22.(12分)(2021·深圳实验学校月考)已知函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2. (1)当x ∈[-π2,π4]时,求f (x )的单调递减区间;(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y=g (x )的图象,当x ∈[-π12,π6]时,求函数g (x )的值域;(3)对于第(2)问中的函数g (x ),记方程g (x )=43在区间[π6,4π3]上的根从小到大依次为x 1,x 2,…,x n ,试确定n 的值,并求x 1+2x 2+2x 3+…+2x n-1+x n 的值.答案及解析1.C解析由题意,角θ的终边经过点P(√2,a),可得|OP|=√2+a2(O为坐标原点),又由θ=-π3,根据三角函数的定义,可得cos(-π3)=√2√2+a2=12,且a<0,解得a=-√6.2.C解析将函数f(x)=sin 2x的图象向左平移π6个单位长度,得到y=g(x)=sin[2(x+π6)]=sin(2x+π3),令2x+π3=kπ+π2,k∈Z,解得x=kπ2+π12,k∈Z,结合四个选项可知,函数g(x)的图象的一条对称轴方程为x=π12 .3.B解析因为sin A=6sin B,所以a=6b,又a+2b=8,所以a=6,b=1,因为C=60°,所以c2=a2+b2-2ab cos C,即c2=62+12-2×6×1×12,解得c=√31.4.D解析由题中函数f(x)=A sin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象知,A=2,34T=11π3−2π3=3π,所以T=4π=2πω,所以ω=12.又f(2π3)=2sin(12×2π3+φ)=2,可得12×2π3+φ=2kπ+π2,k∈Z,解得φ=2kπ+π6,k∈Z.∵|φ|<π2,∴φ=π6,∴f(x)=2sin(12x+π6).故f(π3)=2sin(12×π3+π6)=2sinπ3=√3.5.D解析由sin(π6-α)=13+cos α可得sinπ6·cos α-cosπ6·sin α=13+cos α,∴12cos α-√32sinα=13+cos α,∴√32sin α+12cos α=-13,∴sin(α+π6)=-13,∴sin(2α+5π6)=sin[π2+(2α+π3)]=cos(2α+π3)=1-2sin2(α+π6)=79.6.C解析在△CDE中,设定点C到底边DE的距离为h,则h=2+1·sin(2π3-π2)=52,又S△CDE=12DE·h=12CD·CE sinπ3,即5DE=√3CD·CE,利用余弦定理得DE2=CD2+CE2-2CD·CE cosπ3=CD2+CE2-CD·CE≥2CD·CE-CD·CE=CD·CE,当且仅当CD=CE时,等号成立,故DE 2≥CD·CE ,而5DE=√3CD·CE ,所以DE 2≥5√33DE ,则DE ≥5√33,故DE 的最小值为5√33. 7.D 解析 因为tan A tan B>1,所以sinAsinBcosAcosB >1,因为0<A<π,0<B<π,所以sin A sin B>0,cos A cos B>0,故A ,B 同为锐角,因为sin A sin B>cos A cos B ,所以cos A cos B-sin A sin B<0,即cos(A+B )<0,所以π2<A+B<π,因此0<C<π2,所以△ABC 是锐角三角形,不是钝角三角形,所以充分性不满足.反之,若△ABC 是钝角三角形,也推不出“tan A tan B>1”,故必要性不成立,所以为既不充分也不必要条件.8.B 解析 因为f (x )=2sin (x +π4)+cos 2x ,所以f (x )=2sin (x +π4)+sin [2(x +π4)]=2sin x+π4+2sin (x +π4)cos (x +π4). 令θ=x+π4,g (θ)=2sin θ+2sin θcos θ=2sin θ+sin 2θ,则g'(θ)=2cos θ+2cos 2θ=2(2cos 2θ-1)+2cos θ=4cos 2θ+2cos θ-2,令g'(θ)=0,得cos θ=-1或cos θ=12,当-1≤cos θ≤12时,g'(θ)≤0;当12≤cos θ≤1时,g'(θ)≥0,所以当θ∈[-5π3+2kπ,-π3+2kπ](k ∈Z )时,g (θ)单调递减;当θ∈[-π3+2kπ,π3+2kπ](k ∈Z )时,g (θ)单调递增,所以当θ=π3+2k π(k ∈Z )时,g (θ)取得最大值,此时sin θ=√32,所以f (x )max =2×√32+2×√32×12=3√32.9.ACD 解析 因为(a+b )∶(a+c )∶(b+c )=9∶10∶11,所以可设a+b=9x ,a+c=10x ,b+c=11x (其中x>0),解得a=4x ,b=5x ,c=6x ,所以sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,所以A 中结论正确;由以上解答可知c 边最大,所以三角形中角C 最大,又cos C=a 2+b 2-c 22ab=(4x )2+(5x )2-(6x )22×4x×5x=18>0,所以C 为锐角,所以B 中结论错误;由以上解答可知a 边最小,所以三角形中角A 最小, 又cos A=c 2+b 2-a 22cb=(6x )2+(5x )2-(4x )22×6x×5x=34,所以cos 2A=2cos2A-1=18,所以cos 2A=cos C.由三角形中角C最大且角C为锐角可得2A∈(0,π),C∈(0,π2),所以2A=C,所以C中结论正确;由正弦定理,得2R=csinC(R为△ABC外接圆半径),又sin C=√1-cos2C=3√78,所以2R=3√78,解得R=8√77,所以D中结论正确.10.ACD解析f(x)=(sinx+√3cosx)2=sin2x+3cos2x+2√3sin x cos x=2+cos 2x+√3sin2x=2sin2x+π6+2;对于A选项:∵x∈[0,π6],∴2x+π6∈[π6,π2],∴f(x)=2sin(2x+π6)+2在区间[0,π6]上单调递增,故A正确;对于B选项:f(-π3)=2sin[2×(-π3)+π6]+2=0,由函数f(x)的图象(图略)可知-π3是f(x)的一个极小值点,故B错误;对于C选项:由f(x)=2sin(2x+π6)+2可知,函数的最小正周期T=2π2=π,故C正确;对于D选项,∵sin(2x+π6)∈[-1,1],∴f(x)=2sin(2x+π6)+2∈[0,4],故D正确.11.BD解析对于A,当x=π3时,f(-π3)-f(π3)=sin(-π3)cos2π3-sinπ3cos2π3=-√32×(-12)−√32×(-1 2)=√32≠0,故A错误.对于B,因为f(x+2π)=sin(2π+x)cos[2(x+2π)]=sin x cos 2x,所以∃T=2π≠0,使得f(x+T)=f(x),故B正确.对于C,因为f(-x)=sin(-x)cos(-2x)=-sin x cos 2x=-f(x),所以f(x)为奇函数,因为x=0在定义域内,所以f(0)=0,故f(x)有奇数个零点,故C错误.对于D,f(π-x)-f(x)=sin(π-x)cos[2(π-x)]-sin x cos 2x=sin x cos 2x-sin x cos 2x=0,故D正确.12.ABD 解析 因为1tanA ,1tanB ,1tanC 依次成等差数列,所以2tanB =1tanA +1tanC ,整理得2cosB sinB=cosC sinC +cosAsinA ,所以2·a 2+c 2-b 22abc=a 2+b 2-c 22abc+b 2+c 2-a 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.但数列a ,b ,c 或√a,√b,√c 或a 3,b 3,c 3不一定是等差数列,除非a=b=c ,但题目没有说△ABC 是等边三角形.13.-13 解析 由cos (α+5π4)=-√63可得cos (α+π4)=√63,所以√22(cos α-sin α)=√63,即cos α-sin α=2√33,两边平方可得1-sin 2α=43,故sin 2α=-13.14.4 解析 由题意可得{f (0)=-2√3,f (π4)=2,即{Asinφ=-2√3,Asin (π2+φ)=2,所以{Asinφ=-2√3,Acosφ=2,所以tan φ=-√3,又因为|φ|<π2, 所以φ=-π3,所以A=√3-√32=4. 15.14 400√3 解析 连接AC 交EF 于点O (图略),由∠AEF=∠CFE=60°,得AE ∥FC ,所以△AEO 与△CFO 相似,所以OEOF =AECF =53,所以EO=50√3 cm,FO=30√3 cm,在△AEO 中,由余弦定理得,AO 2=AE 2+EO 2-2AE·EO·cos ∠AEO=(100√3)2+(50√3)2-2×100√3×50√3cos 60°=22 500,所以AO=150 cm,同理CO=90 cm,所以AC=240 cm,从而BC=√AC 2-AB 2=120√3 cm,所以矩形ABCD 的面积为14 400√3 cm 2.16.(10 000√5+25 000) 解析 在△OAB 中,∵∠AOB=θ,OB=100 m,OA=200 m,∴AB 2=OB 2+OA 2-2OB·OA·cos ∠AOB ,即AB=100√5-4cosθ,∴S 四边形OACB =S △OAB +S △ABC =12·OA·OB·sin θ+12AB 2,于是S 四边形OACB =1002(sinθ-2cosθ+52)=1002√5sin(θ-φ)+52(其中tan φ=2),所以当sin(θ-φ)=1时,S 四边形OACB 取最大值10 000(√5+52)=10 000√5+25 000,即“直接监测覆盖区域”面积的最大值为(10 000√5+25 000)m 2.17.解 (1)f (x )=2cos x sin (x +π3)−√32(1-cos 2x )+12sin 2x=2cos x (12sinx +√32cosx)−√32+√32cos 2x+12sin 2x=12sin 2x+√32(2cos 2x-1)+√32cos 2x+12sin 2x=sin 2x+√3cos 2x=2sin (2x +π3), 令2k π-π2≤2x+π3≤π2+2k π,k ∈Z , 解得k π-5π12≤x ≤k π+π12,k ∈Z ,因此,函数f (x )的单调递增区间为[kπ-5π12,kπ+π12],k ∈Z .(2)∵x ∈(-π4,π6),∴-π6<2x+π3<2π3,∴-12<sin (2x +π3)≤1,∴-1<f (x )≤2, 因此当x ∈(-π4,π6)时,y=f (x )的值域为(-1,2].18.解 (1)因为2a-b=2c cos B ,由正弦定理得2sin A-sin B=2sin C cos B ,因为sin A=sin(B+C )=sin B cos C+cos B sin C ,代入上式得,2sin B cos C+2cos B sin C-sin B=2sin C cos B ,即2sin B cos C-sin B=0,即sin B (2cos C-1)=0.因为B ∈(0,π),所以sin B ≠0,所以2cos C=1,即cos C=12,又0<C<π,所以C=π3. (2)依题意,在△CBD 中,CB=2,CD=12b ,BD=√3,C=π3, 利用余弦定理的推论可得,cos C=cos π3=12=4+(12b )2-32×2×12b,即b 2-4b+4=0,解得b=2.在△ABC 中,b=a=2,C=π3,故△ABC 是等边三角形,故c=2.19.解 若选择①:在△ABC 中,有A+B+C=π,则由题意可得cos[π-(A+B )]+(cos A-√3sinA )cos B=0,即-cos(A+B )+cos A cos B-√3sin A cos B=0, sin A sin B-cos A cos B+cos A cos B-√3sin A cos B=0, sin A sin B=√3sin A cos B ,又sin A ≠0,所以sin B=√3cos B ,则tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择②:在△ABC 中,有A+B+C=π,则由题意可得2cos 2B-1-3cos(π-B )=2cos 2B+3cos B-1=1,解得cos B=12或cos B=-2(舍去),又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择③:由正弦定理可将已知条件转化为sin B cos C+√33sin C sin B=sin A , 又sin A=sin[π-(B+C )]=sin(B+C )=sin B cos C+sin C cos B ,所以√33sin C sin B=sin C cos B ,又sin C ≠0,所以sin B=√3cos B ,所以tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 20.解 (1)由f (0)=12,得sin φ=12,又0<φ<π2,所以φ=π6.由f (5π12)=0,得sin (ω·5π12+π6)=0,所以ω·5π12+π6=k π,k ∈Z ,即ω=25(6k-1),k ∈Z . 由ω>0,结合题中函数f (x )的图象可知12·2πω>5π12, 所以0<ω<125,所以有0<25(6k-1)<125,即16<k<76, 又k ∈Z ,所以k=1,从而ω=25×(6×1-1)=2,因此,f (x )=sin (2x +π6). (2)由f (A -B2-π12)=35,得sin(A-B )=35,又由题意可知0<A-B<π2,故cos(A-B )=45,于是cos A -B2=√1+cos (A -B )2=√10,sin A -B2=√10, 又A+B>π2,所以A=A+B 2+A -B 2>π4+A -B2,又因为函数y=sin x 在区间(0,π2)上单调递增,A ∈(0,π2),π4+A -B 2∈(0,π2),所以sin A>sin π4+A -B2=√22×(3√10+1√10)=2√55.21.解 (1)∵点C ,D 关于直线l 对称,∴点C 坐标为(2×34-44,16),即(24,16). 把点A ,B ,C 的坐标分别代入函数解析式,得{22=asinφ+b , ①19=asin (π6+φ)+b ,②16=asin (π3+φ)+b ,③②-①,得a [sin (π6+φ)-sinφ]=-3, ③-①,得a [sin (π3+φ)-sinφ]=-6,∴2sin (π6+φ)-2sin φ=sin (π3+φ)-sin φ, ∴cos φ+√3sin φ=√32cos φ+32sin φ,∴(1-√32)cos φ=(32-√3)sin φ=√3(√32-1)sin φ,∴tan φ=-√33.∵0<φ<π,∴φ=5π6,代入②,得b=19. 将φ=5π6,b=19代入①得,a=6.于是ABC 段对应的函数解析式为y=6sin (π72x +5π6)+19,由对称性得DEF 段对应的函数解析式为y=6sin π72(68-x )+5π6+19.设点F 的坐标为(x F ,y F ),则由π72(68-x F )+5π6=π2,解得x F =92. 因此可知,当x=92时,股价见顶.(2)由(1)可知,y F =6sin [π72×(68-92)+5π6]+19=6sin π2+19=25,故这次操作老张能赚3 000×(25-16)=27 000(元).22.解 (1)由题意,函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1=√3sin(ωx+φ)-cos(ωx+φ)=2sin (ωx +φ-π6),因为函数f (x )图象的相邻两对称轴间的距离为π2, 所以T=π,可得ω=2.又f (x )为奇函数,且f (x )在x=0处有定义,可得f (0)=2sin (φ-π6)=0, 所以φ-π6=k π,k ∈Z ,因为0<φ<π,所以φ=π6, 因此f (x )=2sin 2x.令π2+2k π≤2x ≤3π2+2k π,k ∈Z ,解得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递减区间为[π4+kπ,3π4+kπ],k ∈Z , 又因为x ∈[-π2,π4],故函数f (x )的单调递减区间为[-π2,-π4].(2)将函数f (x )的图象向右平移π6个单位长度,可得y=2sin (2x -π3)的图象,再把横坐标缩小为原来的12,得到函数y=g (x )=2sin 4x-π3的图象,当x ∈[-π12,π6]时,4x-π3∈[-2π3,π3],当4x-π3=-π2时,函数g (x )取得最小值,且最小值为-2,当4x-π3=π3时,函数g (x )取得最大值,且最大值为√3,故函数g (x )的值域为[-2,√3].(3)由方程g (x )=43,即2sin (4x -π3)=43,即sin 4x-π3=23.(*)因为x ∈[π6,4π3],可得4x-π3∈[π3,5π],设θ=4x-π3,其中θ∈[π3,5π],则方程(*)可转化为sin θ=23,结合正弦函数y=sin θ的图象,如图,可得方程sin θ=23在区间[π3,5π]上有5个解,设这5个解分别为θ1,θ2,θ3,θ4,θ5,所以n=5,其中θ1+θ2=3π,θ2+θ3=5π,θ3+θ4=7π,θ4+θ5=9π,即4x 1-π3+4x 2-π3=3π,4x 2-π3+4x 3-π3=5π,4x 3-π3+4x 4-π3=7π,4x 4-π3+4x 5-π3=9π, 解得x 1+x 2=11π12,x 2+x 3=17π12,x 3+x 4=23π12,x 4+x 5=29π12,所以x 1+2x 2+2x 3+2x 4+x 5=(x 1+x 2)+(x 2+x 3)+(x 3+x 4)+(x 4+x 5)=20π3.。
三角函数、解三角形 质量检测(含答案)
第三章 三角函数、解三角形(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.cos(-17π4)-sin(-17π4)的值是 ( ) A.2 B .- 2 C .0 D.22解析:原式=cos(-4π-π4)-sin(-4π-π4)=cos(-π4)-sin(-π4)=cos π4+sin π4= 2.答案:A 2.已知sin α=2m -5m +1,cos α=-mm +1,且α为第二象限角,则m 的允许值为( ) A.52<m <6 B .-6<m <52 C .m =4 D .m =4或m =32 解析:由sin 2α+cos 2α=1得,(2m -5m +1)2+(-m m +1)2=1,∴m =4或32,又sin α>0,cos α<0,把m 的值代入检验得,m =4. 答案:C3.已知sin(x +π4)=-35,则sin2x 的值等于 ( )A .-725 B.725 C .-1825 D.1825解析:sin(x +π4)=22(sin x +cos x )=-35,所以sin x +cos x =-325,所以(sin x +cos x )2=1+sin2x =1825,故sin2x =-725.答案:A4.设a =sin15°+cos15°,b =sin17°+cos17°,则下列各式中正确的是 ( ) A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a 2+b 22<aD .b <a <a 2+b 22解析:a =2sin(15°+45°)=2sin60°, b =2sin(17°+45°)=2sin62°,b >a .a 2+b 22=sin 260°+sin 262°>2sin60°sin62°=3sin62°, ∴a 2+b 22>b >a .答案:B5.(2010·惠州模拟)将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π6)的图象,则φ等于 ( )A.π6B.11π6C.7π6D.5π6解析:依题意得y =sin(x -π6)=sin(x -π6+2π)=sin(x +11π6),将y =sin x 的图象向左平移11π6个单位后得到y =sin(x +11π6)的图象,即y =sin(x -π6)的图象. 答案:B6.在△ABC 中,角A ,B 均为锐角,且cos A >sin B ,则△ABC 的形状是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 解析:cos A =sin(π2-A )>sin B ,π2-A ,B 都是锐角,则π2-A >B ,A +B <π2,C >π2.答案:C7.(理)给定性质:①最小正周期为π;②图象关于直线x =π3对称.则下列四个函数中,同时具有性质①②的是 ( ) A .y =sin(x 2+π6) B .y =sin(2x +π6)C .y =sin|x |D .y =sin(2x -π6)解析:∵T =2πω=π,∴ω=2.对于选项D ,又2×π3-π6=π2,所以x =π3为对称轴.答案:D8.(文)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 ( )A.518B.34C.32D.78解析:设等腰三角形的底边为a ,顶角为θ,则腰长为2a . 由余弦定理得cos θ=4a 2+4a 2-a 28a 2=78.答案:D(理)△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2解析:由余弦定理得:三角形第三边长为22+32-2×2×3×13=3,且第三边所对角的正弦值为=223,所以2R =3223⇒R =928. 答案:C9.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a =b ”是“a cos A =b cos B ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件解析:a =b ⇒A =B ⇒a cos A =b cos B ,条件是充分的;a cos A =b cos B ⇒sin A cos A =sin B cos B ⇒sin2A =sin2B ⇒2A =2B 或2A +2B =π,即A =B 或A +B =π2,故条件是不必要的. 答案:A10.已知函数f (x )=a sin2x +cos2x (a ∈R)图象的一条对称轴方程为x =π12,则a 的值为( )A.12B. 3C.33D .2 解析:函数y =sin x 的对称轴方程为x =kπ+π2,k ∈Z ,f (x )=a 2+1sin(2x +φ),其中tan φ=1a ,故函数f (x ) 的对称轴方程为2x +φ=kπ+π2,k ∈Z ,而x =π12是其一条对称轴方程,所以2×π12+φ=kπ+π2,k ∈Z ,解得φ=kπ+π3,k ∈Z ,故tan φ=1a =tan(kπ+π3)=3,所以a =33. 答案:C11.已知函数f (x )的部分图象如图所示,则f (x )的解析式可能为 ( ) A .f (x )=2cos(x 2-π3)B .f (x )=2cos(4x +π4)C .f (x )=2sin(x 2-π6)D .f (x )=2sin(4x +π4)解析:设函数f (x )=A sin(ωx +φ),由函数的最大值为2知A =2,又由函数图象知该函数的周期T =4×(5π3-2π3)=4π,所以ω=12,将点(0,1)代入得φ=π6,所以f (x )=2sin(12x +π6)=2cos(12x -π3).答案:A12.(2010·抚顺模拟)当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 ( )A .2B .2 3C .4D .4 3解析:f (x )=1+cos2x +8sin 2x sin2x =2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x ≥2cos x sin x ·4sin xcos x=4,当 且仅当cos x sin x =4sin x cos x ,即tan x =12时,取“=”,∵0<x <π2,∴存在x 使tan x =12,这时f (x )min =4. 答案:C二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在题中的横线上) 13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,C =75°,a =4,则b =________.解析:易知A =45°,由正弦定理a sin A =b sin B 得4sin45°=b sin60°,解得b =2 6. 答案:2 6 14.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案:215.在△ABC 中,已知tan A =3tan B ,则tan(A -B )的最大值为________,此时角A 的大小为________.解析:由于tan(A -B )=tan A -tan B 1+tan A tan B =3tan B -tan B 1+3tan B ·tan B =2tan B 1+3tan 2B ≤33.当且仅当1=3tan B 时取“=”号,则tan B =33⇒tan A =3⇒A =60°. 答案:3360° 16.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π),x ∈R 的部分图象,则下列命题中,正确命题的序号为________. ①函数f (x )的最小正周期为π2;②函数f (x )的振幅为23; ③函数f (x )的一条对称轴方程为x =7π12; ④函数f (x )的单调递增区间为[π12,7π12];⑤函数的解析式为f (x )=3sin(2x -2π3). 解析:由图象可知,函数f (x )的最小正周期为(5π6-π3)×2=π,故①不正确;函数f (x )的振幅为3,故②不正确;函数f (x )的一条对称轴方程为x =5π6+π32=7π12,故③正确;④不全面,函数f (x )的单调递增区间应为[π12+2kπ,7π12+2kπ],k ∈Z ;由3sin(2×7π12+φ)=3得2×7π12+φ=π2+2kπ,k ∈Z ,即φ=2kπ-2π3,k ∈Z ,∵-π<φ<π,故k 取0,从而φ=-2π3,故f (x )=3sin(2x -2π3). 答案:③⑤三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知tan(α+π4)=-3,α∈(0,π2).(1)求tan α的值; (2)求sin(2α-π3)的值.解:(1)由tan(α+π4)=-3可得tan α+11-tan α=-3.解得tan α=2.(2)由tan α=2,α∈(0,π2),可得sin α=255,cos α=55.因此sin2α=2sin αcos α=45,cos2α=1-2sin 2α=-35,sin(2α-π3)=sin2αcos π3-cos2αsin π3=45×12+35×32=4+3310. 18.(文)(本小题满分12分)已知sin(π-α)=45,α∈(0,π2).(1)求sin2α-cos 2α2的值;(2)求函数f (x )=56cos αsin2x -12cos2x 的单调递增区间.解:∵sin(π-α)=45,∴sin α=45.又∵α∈(0,π2),∴cos α=35.(1)sin2α-cos 2α2=2sin αcos α-1+cos α2=2×45×35-1+352=425. (2)f (x )=56×35sin2x -12cos2x=22sin(2x -π4). 令2kπ-π2≤2x -π4≤2kπ+π2,k ∈Z ,得kπ-π8≤x ≤kπ+38π,k ∈Z.∴函数f (x )的单调递增区间为[kπ-π8,kπ+38π],k ∈Z.(理)(本小题满分12分)已知函数f (x )=2sin x cos x +3(2cos 2x -1).(1)将函数f (x )化为A sin(ωx +φ)(ω>0,|φ|<π2)的形式,填写下表,并画出函数f (x )在区间[-16π,56π]上的图象;(2)求函数f (x )的单调减区间.解:(1)f (x )=2sin x cos x +3(2cos 2x -1) =sin2x +3cos2x =2sin(2x +π3).图.(2)由2kπ+π2≤2x +π3≤2kπ+3π2(k ∈Z)得kπ+π12≤x ≤kπ+7π12(k ∈Z),故函数f (x )的单调减区间为[kπ+π12,kπ+7π12](k ∈Z).19.(本小题满分12分)已知函数f (x )=2sin x cos(π2-x )-3sin(π+x )cos x +sin(π2+x )cos x .(1)求函数y =f (x )的最小正周期和最值;(2)指出y =f (x )图象经过怎样的平移变换后得到的图象关于原点对称. 解:(1)f (x )=2sin 2x +3sin x cos x +cos 2x =1+sin 2x +3sin x cos x =1+1-cos2x 2+32sin2x=sin(2x -π6)+32,y =f (x )最小正周期T =π.y =f (x )的最大值为32+1=52,最小值为32-1=12.(2)∵y =32+sin(2x -π6)的图象1232π−−−−−→左移个单位下移个单位y =sin2x 的图象. 20.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A +C 2=33.(1)求cos B 的值;(2)若BC BA ·BC=2,b =22,求a 和c 的值.解:(1)∵cos A +C 2=33,∴sin B 2=sin(π2-A +C 2)=33,∴cos B =1-2sin 2B 2=13.(2)由BA ·BC =2可得a ·c ·cos B =2,又cos B =13,故ac =6, 由b 2=a 2+c 2-2ac cos B 可得a 2+c 2=12, ∴(a -c )2=0,故a =c ,∴a =c = 6.21.(本小题满分12分)如图所示,甲船由A 岛出发向北偏东45°的方向做匀速直线航行,速度为152海里/小时,在甲 船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ(tan θ=12)的方向作匀速直线航行,速度为105海里/小时.(1)求出发后3小时两船相距多少海里?(2)求两船出发后多长时间距离最近?最近距离为多少海里? 解:以A 为原点,BA 所在直线为y 轴建立如图所示的平面直角坐标系.设在t 时刻甲、乙两船分别在P (x 1,y 1),Q (x 2,y 2). 则⎩⎨⎧x 1=152t cos45°=15t y 1=x 1=15t, 由tan θ=12可得,cos θ=255,sin θ=55, 故⎩⎨⎧x 2=105t sin θ=10t ,y 2=105t cos θ-40=20t -40.(1)令t =3,P 、Q 两点的坐标分别为(45,45),(30,20), |PQ |=(45-30)2+(45-20)2=850=534. 即出发后3小时两船相距534海里. (2)由(1)的解法过程易知: |PQ |=(x 2-x 1)2+(y 2-y 1)2 =(10t -15t )2+(20t -40-15t )2 =50t 2-400t +1 600 =50(t -4)2+800≥202,∴当且仅当t =4时,|PQ |取得最小值20 2.即两船出发后4小时时,相距202海里为两船的最近距离.22.(文)(本小题满分14分)已知函数f (x )=sin 2x +23sin(x +π4)cos(x -π4)-cos 2x - 3.(1)求函数f (x )的最小正周期和单调递减区间; (2)求函数f (x )在[-π12,2536π]上的最大值和最小值,并指出此时相应的x 的值. (理)(本小题满分14分)已知函数f (x )=2cos x sin(x +π3)-32.(1)求函数f (x )的最小正周期T ;(2)若△ABC 的三边a ,b ,c 满足b 2=ac ,且边b 所对角为B ,试求cos B 的取值范围,并确定此时f (B )的最大值. 解:(1)f (x )=2cos x ·sin(x +π3)-32=2cos x (sin x cos π3+cos x sin π3)-32=2cos x (12sin x +32cos x )-32=sin x cos x +3·cos 2x -32=12sin2x +3· 1+cos2x 2-32 =12sin2x +32cos2x =sin(2x +π3).∴T =2π|ω|=2π2=π. (2)由余弦定理cos B =a 2+c 2-b 22ac 得,cos B =a 2+c 2-ac2ac=a 2+c 22ac -12≥2ac 2ac -12=12,∴12≤cos B <1,而0<B <π,∴0<B ≤π3.函数f (B )=sin(2B +π3),∵π3<2B +π3≤π,当2B +π3=π2, 即B =π12时,f (B )max =1.。
【师说系列】2021年高考数学三轮专题分项模拟 三角函数、平面向量质量检测试题 文(含解析)(1)
专题质量检测(二) 三角函数、平面向量一、选择题1.假设函数f(x)=sin2ax -3sinaxcosax(a >0)的图象与直线y =m 相切,那么m 的值为( )A .-12B .-32C .-12或32 D.52或32解析:f(x)=sin2ax -3sinaxcosax =1-cos2ax 2-32sin2ax =-sin ⎝⎛⎭⎪⎫2ax +π6+12,由题意得,m 为函数f(x)的最大值或最小值,因此m =-12或m =32.答案:C2.假设向量a =(1,2)和向量b =(x +1,-1)垂直,那么|a +b|=( )A. 5B.52C.10D.102解析:由a ⊥b 可得1×(x+1)+2×(-1)=0,解得x =1.故b =(2,-1),因此a +b =(3,1),因此|a +b|=32+12=10.答案:C3.要取得函数f(x)=cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数f(x)=sin ⎝⎛⎭⎪⎫2x +π3的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π4个单位长度D .向右平移π2个单位长度解析:由cos ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝ ⎛⎭⎪⎫π2+2x +π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+π3知,将函数f(x)=sin ⎝ ⎛⎭⎪⎫2x +π3的图象向左平移π4个单位长度即可取得函数f(x)=cos ⎝⎛⎭⎪⎫2x +π3的图象.应选B.答案:B4.在△ABC 中,AB =2BC =2,∠A =30°,那么△ABC 的面积为( ) A.12 B.32C .1 D.3解析:由题意得AB =2,BC =1,由正弦定理得2sinC =1sin30°,故sinC =1,即C =90°,于是AC =22-12=3,那么S △ABC =12×AC×BC=32.答案:B5.假设M 为△ABC 所在平面内一点,且知足(MB →-MC →)·(MB →+MC →-2MA →)=0,那么△ABC 为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形解析:由(MB →-MC →)·(MB →+MC →-2MA →)=0可知CB →·(AB →+AC →)=0,设BC 的中点为D ,那么AB →+AC →=2AD →,故CB →·AD →=0,因此CB →⊥AD →.又D 为BC 中点,故△ABC 为等腰三角形. 答案:B6.函数f(x)=Asin(ωx+φ)(其中A >0,|φ|<π2)的图象如下图,为了取得函数g(x)=cos2x 的图象,那么只要将函数f(x)的图象( ) A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度解析:显然A =1,又ω×π3+φ=π,ω×7π12+φ=3π2,解得ω=2,φ=π3,故函数f(x)=Asin(ωx+φ)的解析式为f(x)=sin ⎝ ⎛⎭⎪⎫2x +π3,又g(x)=cos2x =sin ⎝⎛⎭⎪⎫2x +π2,设需平移的单位长度为φ1,那么由2(x +φ1)+π3=2x+π2得φ1=π12.故要把函数f(x)=Asin(ωx+φ)的图象向左平移π12个单位长度.应选D. 答案:D7.已知向量a =(1,m),b =(2,n),c =(3,t),且a ∥b ,b ⊥c ,那么|a|2+|c|2的最小值为( ) A .4 B .10 C .16 D .20解析:由a ∥b ,b ⊥c ,得a ⊥c ,那么1×3+mt =0,即mt =-3,故|a|2+|c|2=1+m2+9+t2=10+m2+t2≥10+2|mt|=16,当且仅当|m|=|t|=3时等号成立.答案:C8.在△ABC 中,角A 、B 、C 的对边别离为a 、b 、c ,已知a2-c2=2b ,且sinAcosC =3cosAsinC ,那么b =( ) A.2 B .22 C .4 D .23解析:由余弦定理得:a2-c2=b2-2bccosA.又a2-c2=2b ,b≠0,因此b =2ccosA +2.①又sinAcosC =3cosAsinC ,因此sinAcosC +cosAsinC =4cosAsinC ,因此sin(A +C)=4cosAsinC ,即sinB =4cosAsinC. 由正弦定理得sinB =bc sinC ,故b =4ccosA.②由①②解得b =4. 答案:C9.在△ABC 中,D 是BC 边的中点,AD =1,点P 在线段AD 上,那么PA →·(PB →+PC →)的最小值为( ) A .-1 B .1 C.12 D .-12解析:依题意得,PA →·(PB →+PC →)=2PA →·PD →=-2|PA →|·|PD →|≥-2⎝ ⎛⎭⎪⎪⎫|PA →|+|PD →|22=-|AD →|22=-12,当且仅当|PA →|=|PD →|=12时取等号,因此PA →·(PB →+PC →)的最小值是-12,选D. 答案:D10.已知函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx+π3(ω>0)在(0,2]上恰有一个最大值点和一个最小值点,那么ω的取值范围为( )A.⎣⎢⎡⎭⎪⎫π6,13π12 B.⎝ ⎛⎭⎪⎫5π12,13π11 C.⎣⎢⎡⎭⎪⎫4π13,12π11 D.⎣⎢⎡⎭⎪⎫7π8,14π11 解析:设t =ωx+π3,那么t ∈⎝ ⎛⎦⎥⎤π3,2ω+π3.因为f(t)=sint 在t ∈⎝ ⎛⎦⎥⎤π3,2ω+π3上恰有一个最大值点和一个最小值点,因此⎩⎪⎨⎪⎧2ω+π3≥2π3,2ω+π3<5π2,解得⎩⎪⎨⎪⎧ω≥π6,ω<13π12,即π6≤ω<13π12. 答案:A11.在斜三角形ABC 中,sinA =-2cosB·cosC,且tanB·tanC=1-2,那么角A 的值为( )A.π4B.π3 C.π2 D.3π4解析:由题意知,sinA =-2cosB·cosC=sin(B +C)=sinB·cosC+cosB·sinC,在等式-2cosB·cosC=sinB·cosC+cosB·sinC 两边同除以cosB·cosC 得tanB +tanC =-2,tan(B +C)=tanB +tanC1-tanBtanC=-1=-tanA ,即tanA =1,因此A =π4.答案:A12.在△ABC 中,角A ,B ,C 所对的边别离为a ,b ,c.假设sin2B +sin2C -sin2A +sinBsinC =0,那么tanA 的值是( ) A.33 B .-33C. 3 D .-3解析:依题意及正弦定理可得,b2+c2-a2=-bc ,那么由余弦定理得cosA =b2+c2-a22bc =-bc 2bc =-12,又0<A <π,因此A =2π3,tanA =tan 2π3=-3,选D.答案:D 二、填空题13.假设点P(cosα,sinα)在直线y =-2x 上,那么1+cos2αcos2α+sin2α的值为________.解析:由已知得tanα=-2,那么1+cos2αcos2α+sin2α=2cos2αcos2α+2sinαcosα=2cos2αcos2αcos2αcos2α+2sinαcosαcos2α=21+2tanα=-23.答案:-2314.已知向量a =⎝ ⎛⎭⎪⎪⎫-12,32,OA→=a -b ,OB →=a +b ,假设△OAB 是以O 为直角极点的等腰直角三角形,那么△OAB 的面积为__________.解析:由题意得,|a|=1,又△OAB 是以O 为直角极点的等腰直角三角形,故OA →⊥OB →,|OA →|=|OB →|,那么(a -b)·(a+b)=|a|2-|b|2=0,即|a|=|b|,又|OA →|=|OB →|,故|a -b|=|a +b|,得a·b=0,因此|a +b|2=|a|2+|b|2=2,因此|OB →|=|OA →|=2,故S △ABO =12×2×2=1.答案:115.在△ABC 中,a 、b 、c 别离是角A 、B 、C 的对边,已知sin ⎝ ⎛⎭⎪⎫2A +π6=12,b =1,△ABC 的面积为32,那么b +csinB +sinC 的值为__________.解析:在△ABC 中,∵0<A <π,∴π6<2A +π6<13π6,又∵sin ⎝⎛⎭⎪⎫2A +π6=12,∴2A +π6=5π6,解得A =π3.∵S △ABC =12bcsinA =12×1×c×32=32,∴c =2.在△ABC 中,由余弦定理,得a2=b2+c2-2bccosA =1+4-2×1×2×12=3,∴a =3.由正弦定理,得bsinB =csinC =asinA =332=2, ∴b +csinB +sinC =2. 答案:216.某城市为增强对建筑文物的爱惜,打算对该市的所有建筑文物进行测量,如图是一座超级闻名的古老建筑,其中A 是烟囱的最高点,选择一条水平基线HG ,使得H 、G 、B 三点在同一条直线上,AB 与水平基线HG 垂直,在相距为60 m 的G 、H 两点用测角仪测得A 的仰角∠ACE 、∠ADE 别离为75°、30°,已知测角仪器的高BE =1.5 m ,那么AB =__________m .(参考数据:2≈1.4,3≈1.7)解析:∵∠ACE =75°,∠ADC =30°,∴∠CAD =45°,在△ACD 中,CD =60,由正弦定理得CDsin45°=ACsin30°,那么AC =302.在Rt △AEC 中,AE =ACsin75°,而sin75°=sin(30°+45°)=2+64,∴AE =15(1+3)≈40.5(m),故AB =AE +EB =40.5+1.5=42(m). 答案:42 三、解答题17.已知函数f(x)=sin2x -23sin2x +3+1.(1)求f(x)的最小正周期及其单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤-π6,π6时,求f(x)的值域.解析:f(x)=sin2x +3(1-2sin2x)+1=sin2x +3cos2x +1=2sin ⎝⎛⎭⎪⎫2x +π3+1.(1)函数f(x)的最小正周期T =2π2=π.由正弦函数的性质知,当2kπ-π2≤2x+π3≤2kπ+π2,即kπ-5π12≤x≤kπ+π12(k ∈Z)时,函数y =sin ⎝ ⎛⎭⎪⎫2x +π3为单调增函数,∴函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-5π12,kπ+π12(k ∈Z).(2)∵x ∈⎣⎢⎡⎦⎥⎤-π6,π6,∴2x +π3∈⎣⎢⎡⎦⎥⎤0,2π3,∴sin ⎝⎛⎭⎪⎫2x +π3∈[0,1], ∴f(x)=2sin ⎝⎛⎭⎪⎫2x +π3+1∈[1,3].∴f(x)的值域为[1,3].18.已知函数f(x)=2sinxcosx +23cos2x -3,x ∈R.(1)求函数f(x)的最小正周期;(2)在锐角△ABC 中,假设f(A)=1,AB →·AC →=2,求△ABC 的面积.解析:(1)∵f(x)=2sinxcosx +3(2cos2x -1)=sin2x +3cos2x =2sin ⎝⎛⎭⎪⎫2x +π3,∴函数f(x)的最小正周期T =2π2=π.(3)在锐角△ABC 中,有f(A)=2sin ⎝⎛⎭⎪⎫2A +π3=1, ∵0<A <π2,π3<2A +π3<4π3,∴2A +π3=5π6,∴A =π4.又AB →·AC →=|AB →|·|AC →|cosA =2,∴|AB →|·|AC →|=2.∴△ABC 的面积S =12|AB →|·|AC →|sinA =12×2×22=22.19.已知角α的极点在原点,始边与x 轴的正半轴重合,终边通过点P(-3,3).(1)求sin2α-tanα的值;(2)假设函数f(x)=cos(x -α)cosα-sin(x -α)sinα,求函数y =3f ⎝ ⎛⎭⎪⎫π2-2x -2f2(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的值域. 解析:(1)∵角α的终边通过点P(-3,3),∴sinα=12,cosα=-32,tanα=-33,∴sin2α-tanα=2sinαcosα-tanα=-32+33=-36.(2)∵f(x)=cos(x -α)cosα-sin(x -α)sinα=cosx ,x ∈R ,∴y =3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos2x =3sin2x -1-cos2x =2sin ⎝⎛⎭⎪⎫2x -π6-1.∵0≤x≤π2,∴-π6≤2x-π6≤5π6,∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1,∴-2≤2sin ⎝⎛⎭⎪⎫2x -π6-1≤1,∴函数y =3f ⎝ ⎛⎭⎪⎫π2-2x -2f2(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为[-2,1].20.已知函数f(x)=32sin2x -cos2x -12,x ∈R.(1)求函数f(x)的最大值和最小正周期;(2)设△ABC 的内角A ,B ,C 的对边别离为a ,b ,c ,且c =3,f(C)=0,假设sinB =2sinA ,求a ,b 的值.解析:(1)∵f(x)=32sin2x -1+cos2x 2-12=sin ⎝⎛⎭⎪⎫2x -π6-1,∴f(x)的最大值为0, 最小正周期T =2π2=π.(2)由f(C)=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0,得sin ⎝⎛⎭⎪⎫2C -π6=1.∵0<C <π,∴0<2C <2π, ∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3.∵sinB =2sinA ,∴由正弦定理得ab =12,①由余弦定理得c2=a2+b2-2abcos π3,即a2+b2-ab =9,② 由①②解得a =3,b =23. 21.在△ABC 中,内角A ,B ,C 的对边别离为a ,b ,c.已知cosA -3cosC cosB =3c -ab .(1)求sinCsinA的值;(2)假设B 为钝角,b =10,求a 的取值范围. 解析:(1)由正弦定理,设asinA =bsinB =csinC =k ,则3c -a b =3ksinC -ksinA ksinB =3sinC -sinA sinB ,因此cosA -3cosC cosB =3sinC -sinA sinB,即(cosA -3cosC)sinB =(3sinC -sinA)cosB ,化简可得sin(A +B)=3sin(B +C).又A +B +C =π,因此sinC =3sinA ,因此sinCsinA =3.(2)由sinC sinA=3,得c =3a.由题意知⎩⎪⎨⎪⎧a +c >b ,a2+c2<b2,又b =10,因此52<a <10.22.已知A ,B ,C 是△ABC 的三个内角,A ,B ,C 对的边别离为a ,b ,c ,设平面向量m =(cosB ,-sinC),n =(cosC ,sinB),m·n=23.(1)求cosA 的值;(2)设a =3,△ABC 的面积S =5,求b +c 的值.解析:(1)∵m =(cosB ,-sinC),n =(cosC ,sinB),且m·n=23,∴cosB·cosC-sinB·sinC=23,即cos(B +C)=23.∵A ,B ,C 是△ABC 的三个内角,∴B +C =π-A. ∴cos(π-A)=23,即cosA =-23.∴cosA =-23.(2)∵A 是△ABC 的一个内角,cosA =-23,∴sinA =53.∵S △ABC =12bc·sinA=56bc =5,∴bc =6.由余弦定理得a2=b2+c2-2bccosA=b2+c2+8.∴b2+c2+12=b2+c2+2bc=(b+c)2=a2+4=13.∴b+c=13.。
三角函数、解三角形综合测评试题(含答案)
高中数学阶段综合测评试题测试范围:三角函数、解三角形 (时间:120分钟 满分:150分)温馨提示:1.第Ⅰ卷答案写在答题卡上,第Ⅱ卷书写在试卷上;交卷前请核对班级、姓名、考号.2.本场考试时间为120分钟,注意把握好答题时间.3.认真审题,仔细作答,永远不要以粗心为借口原谅自己.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.终边与单位圆交点的横坐标是-22的钝角为( ) A.2π3 B.3π4 C.5π6 D.5π42.(改编题)点A (sin2 013°,cos2 013°)在直角坐标平面上位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(改编题)已知α∈(2 013π,2 014π),且sin(α+2 013π)=33,则cos(α-2 014π)等于( )A .±63B .-63 C.33D .-334.函数y =2sin(2x -π)cos[2(x +π)]是( ) A .周期为π4的奇函数B .周期为π4的偶函数C .周期为π2的奇函数 D .周期为π2的偶函数5.(2013·东北三校第一次联考)已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2, 直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2 6.(2013·东北四校联考)函数f (x )=2sin(ωx +φ),⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的图象 如图所示,AB →·BD →=( ) A .8 B .-8 C.π28-8D .-π28+87.设α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( ) A.2525 B.255 C.2525或255D.55或5258.(2013·郑州质检)已知曲线y =2sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|P 1P 5→|等于( )A .πB .2πC .3πD .4π9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )的三个相邻交点的横坐标分别是2,4,8,则f (x )的单调递增区间是( )A .[6k π,6k π+3],k ∈ZB .[6k -3,6k ],k ∈ZC .[6k,6k +3],k ∈ZD .无法确定10.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小为( )A .30°B .45°C .60°D .75°11.(2013·石家庄一模)若函数f (x )=A sin ⎝ ⎛⎭⎪⎫π2x +φ(A >0)满足f (1)=0,则( )A .f (x -2)一定是奇函数B .f (x +1)一定是偶函数C .f (x +3)一定是偶函数D .f (x -3)一定是奇函数12.(2013·长春调研)在△ABC 中,P 是BC 边的中点,角A ,B ,C 的对边分别是a ,b ,c ,若cAC →+aP A →+bPB →=0,则△ABC 的形状为 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则tan ⎝⎛⎭⎪⎫α+π4=________. 14.(2013·山西名校联考)已知{x 1,x 2,x 3,x 4}⊆{x >0|(x -3)·sinπx =1},则x 1+x 2+x 3+x 4的最小值为________.15.(2013·东北三校第一次联考)在△ABC 中,2sin 2A2=3sin A ,sin(B -C )=2cos B sin C ,则ACAB =________.16.(2013·唐山统考)在△ABC 中,C =60°,AB =3,AB 边上的高为43,则AC +BC =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f (x )=A sin(3x +φ)(A >0,x ∈(-∞,+∞),0<φ<π)在x =π12时取得最大值4.(1)求f (x )的最小正周期; (2)求f (x )的解析式;(3)若f ⎝ ⎛⎭⎪⎫23α+π12=125,求sin α. 18.(12分)(2013·石家庄质检二)已知f (x )=4cos x cos ⎝ ⎛⎭⎪⎫x -π3-2. (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.19.(12分)(2013·石家庄一模)如图,有两座建筑物AB 和CD 都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A 、C 之间的距离,但只有卷尺和测角仪两种工具.若此人在地面上选一条基线EF ,用卷尺测得EF 的长度为a ,并用测角仪测量了一些角度:∠AEF =α,∠AFE =β,∠CEF =θ,∠CFE =φ,∠AEC =γ.请你用文字和公式写出计算A 、C 之间距离的步骤和结果.20.(12分)(2013·安徽联谊中学联考)设函数f (x )=sin x -3cos x +x +1. (1)求函数f (x )在x =0处的切线方程;(2)记△ABC 的内角A ,B ,C 的对边长分别为a ,b ,c ,f ′(B )=3且a +c =2,求边长b 的最小值.21.(12分)(2013·湖北八校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积.(1)若4S =a 2+b 2-c 2,求角C ;(2)若43S =a 2+b 2+c 2,试判断△ABC 的形状.22.(12分)如图,点A ,B 是单位圆O 上的动点,且A ,B 两点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 为正三角形,记∠COA =α.(1)若点A 的坐标为⎝ ⎛⎭⎪⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值;(2)求|BC →|的取值范围.阶段综合测评 详解答案1.B 所求角为钝角,终边必落在第二象限,故其坐标为⎝⎛⎭⎪⎫-22,22,该角为3π4,故选B.2.C 由于2 013°=5×360°+213°,因此2 013°角终边落在第三象限,于是sin2 013°<0,cos2 013°<0,从而A 点在第三象限,选C.3.A 由α∈(2 013π,2 014π),知α为第三、四象限的角,而sin(α+2 013π)=-sin α=33,∴sin α=-33,于是cos(α-2 014π)=cos α =±1-sin 2α=±63,故选A.4.C y =2sin(2x -π)cos[2(x +π)] =2·(-sin2x )·cos2x =-22sin4x , 因此周期T =2π4=π2,且f (-x )=-f (x ),函数是奇函数,选C.5.D 由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A =2,由函数的最小正周期为π2,可知2πω=π2,可得ω=4,由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2. 6.C T =4×⎝ ⎛⎭⎪⎫π3-π12=π,∴A ⎝⎛⎭⎪⎫-π6,0,B ⎝⎛⎭⎪⎫π12,2,D ⎝⎛⎭⎪⎫712π,-2,∴AB →=⎝⎛⎭⎪⎫π4,2,BD →=⎝⎛⎭⎪⎫π2,-4,∴AB →·BD →=π4×π2+2×(-4)=π28-8.7.A 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2(α+β)=±45;又α,β均为锐角,因此0<α<α+β<π,cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525,选A.8.B 注意到y =2sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫π4-x =2sin 2⎝⎛⎭⎪⎫x +π4=1-cos2⎝ ⎛⎭⎪⎫x +π4=1+sin2x ,又函数y =1+sin2x 的最小正周期是2π2=π,结合函数y =1+sin2x 的图象(如图所示)可知,|P 1P 5→|=2π,选B.9.C 根据分析可得函数的半周期为3, 即12×2πω=3,得ω=π3. 函数在x =3处取得最大值,即A sin ⎝ ⎛⎭⎪⎫π3×3+φ=A , 即sin φ=-1,取φ=-π2.所以函数的解析式为f (x )=A sin ⎝ ⎛⎭⎪⎫π3x -π2. 令2k π-π2≤π3x -π2≤2k π+π2(k ∈Z ), 得6k ≤x ≤6k +3(k ∈Z ),故函数f (x )的单调递增区间是[6k,6k +3],k ∈Z ,故选C.10.B ∵tan ∠ADC =tan ∠DAB =6020=3,tan ∠DCA =6050-20=2,∴tan ∠DAC =tan(π-∠ADC -∠DCA )=-tan(∠ADC +∠DCA )=-tan ∠ADC +tan ∠DCA1-tan ∠ADC ·tan ∠DCA=-2+31-2×3=1,∴∠DAC =45°.11.D 由f (1)=0得,A sin ⎝⎛⎭⎪⎫π2+φ=0即π2+φ=k π(k ∈Z )φ=k π-π2(k ∈Z )故f (x )=A sin ⎝⎛⎭⎪⎫π2x +k π-π2=±A cos ⎝ ⎛⎭⎪⎫π2x 为偶函数,f (x -3)=±A cos ⎣⎢⎡⎦⎥⎤π2(x -3)=±A cos ⎝ ⎛⎭⎪⎫π2x -32π=±A sin ⎝ ⎛⎭⎪⎫π2x 为奇函数.故选D.12.C 依题意得,cAC →+aP A →+bPB → =cAC →-12a (AB →+AC →)+12b (AB →-AC →)=0,∴⎝⎛⎭⎪⎫c -a +b 2AC →-a -b 2AB →=0,∴⎝⎛⎭⎪⎫c -a +b 2·AC →=a -b 2AB →,又AB →、AC →不共线,∴⎩⎨⎧a -b2=0,c -a +b2=0,∴a =b =c ,∴△ABC 为等边三角形,选C.13.17解析:由α∈⎝ ⎛⎭⎪⎫π2,π且sin α=35 得cos α=-1-sin 2α=-45, 故tan α=-34,因此tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=17.14.12解析:由题意知{x 1,x 2,x 3,x 4}⊆{x >0|(x -3)·sinπx =1},∴x 1,x 2,x 3,x 4是sinπx =1x -3在(0,+∞)上的实数根.显然x 1,x 2,x 3,x 4均大于0.分别绘出sinπx 和1x -3在(0,+∞)上的函数图象如图所示,显然,sinπx 和1x -3均关于点(3,0)中心对称.要使x 1+x 2+x 3+x 4最小,x 1,x 2,x 3,x 4应为图象上的前四个交点的横坐标.显然x 1,x 4与x 2,x 3亦关于点(3,0)对称.∴x 1+x 42=3,x 1+x 4=6,同理x 2+x 3=6,∴x 1+x 2+x 3+x 4的最小值为12. 15.1+132解析:由2sin 2A 2=3sin A 可得1-cos A =3sin A ,cos A +3sin A =1,即sin ⎝ ⎛⎭⎪⎫A +π6=12,又0<A <π,π6<A +π6<7π6,故A +π6=5π6,A =2π3,由sin(B -C )=2cos B sin C ,可得sin B cos C =3cos B sin C .设a ,b ,c 分别为角A ,B ,C 的对边,由余弦定理可得a 2=b 2+c 2-2bc cosA =b 2+c 2+bc ,由sin B cos C =3cos B sin C 得b cos C =3cos B ,从而b (a 2+b 2-c 2)2ab =3c (c 2+a 2-b 2)2ca,故可得b 2-bc -3c 2=0, 从而可得⎝ ⎛⎭⎪⎫b c 2-⎝ ⎛⎭⎪⎫b c -3=0,从而b c =1+132. 16.11解析:∵S △ABC =12AB ×43=12AC ·BC sin60°,∴12×3×43=12AC ·BC sin60°,∴AC ·BC =83.由余弦定理可知cos60°=AC 2+BC 2-AB 22AC ·BC, ∴cos60°=AC 2+BC 2-32×83,∴AC 2+BC 2=173.又(AC +BC )2=AC 2+BC 2+2AC ·BC =173+163=11,∴AC +BC =11. 17.解:(1)∵f (x )=A sin(3x +φ),∴T =2π3,即f (x )的最小正周期为2π3.(2)∵当x =π12时,f (x )有最大值4,∴A =4.∴4=4sin ⎝ ⎛⎭⎪⎫3×π12+φ,∴sin ⎝ ⎛⎭⎪⎫π4+φ=1. 即π4+φ=2k π+π2(k ∈Z ),得φ=2k π+π4(k ∈Z ).∵0<φ<π,∴φ=π4.∴f (x )=4sin ⎝ ⎛⎭⎪⎫3x +π4. (3)∵f ⎝ ⎛⎭⎪⎫23α+π12=4sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫23α+π12+π4 =4sin ⎝ ⎛⎭⎪⎫2α+π2=4cos2α. 由f ⎝ ⎛⎭⎪⎫23α+π12=125,得4cos2α=125, ∴cos2α=35,∴sin 2α=12(1-cos2α)=15, ∴sin α=±55.18.解:(1)因为f (x )=4cos x cos ⎝ ⎛⎭⎪⎫x -π3-2 =4cos x ⎝ ⎛⎭⎪⎫12cos x +32sin x -2 =3sin2x +2cos 2x -2=3sin2x +cos2x -1=2sin ⎝ ⎛⎭⎪⎫2x +π6-1, 所以f (x ) 的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-2.19.解:第一步:在△AEF 中,利用正弦定理,AE sin β=EF sin (180°-α-β), 解得AE =αsin βsin (α+β); 第二步:在△CEF 中,同理可得CE =αsin φsin (θ+φ); 第三步:在△ACE 中,利用余弦定理,AC =AE 2+CE 2-2AE ·CE cos γ = a 2sin 2βsin 2(α+β)+a 2sin 2φsin 2(θ+φ)-2a 2sin βsin φcos γsin (α+β)sin (θ+φ) 20.解:(1)当x =0时,f (0)=1-3,则切点(0,1-3),∵f ′(x )=cos x +3sin x +1=2sin ⎝ ⎛⎭⎪⎫x +π6+1, ∴k =f ′(0)=2sin π6+1=2. ∴切线方程l :y -(1-3)=2(x -0),即y =2x +(1-3).(2)由(1)可知f ′(B )=2sin ⎝ ⎛⎭⎪⎫B +π6+1=3, 即sin ⎝⎛⎭⎪⎫B +π6=1,∴B =π3.由余弦定理可知:b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac =4-3ac ≥4-3·⎝ ⎛⎭⎪⎫a +c 22=4-3=1,当且仅当a =c =1时取“=”, ∴b 2≥1,由b >0可知b ≥1,∴b min =1.21.解:(1)由余弦定理得a 2+b 2-c 2=2ab cos C ,所以4S =a 2+b 2-c 2=2ab cos C =4×12ab sin C ,即tan C =1. 而C ∈(0,π),故C =π4.(2)c 2=a 2+b 2-2ab cos C ,于是43S =43×12ab sin C =a 2+b 2+(a 2+b 2-2ab cos C ) 即3ab sin C +ab cos C =a 2+b 2,所以2ab sin ⎝⎛⎭⎪⎫C +π6=a 2+b 2≥2ab , 即sin ⎝ ⎛⎭⎪⎫C +π6≥1, 所以sin ⎝ ⎛⎭⎪⎫C +π6=1,而C +π6∈⎝ ⎛⎭⎪⎫π6,7π6, 所以C +π6=π2,即C =π3,将C =π3代入条件得2ab =a 2+b 2,即a =b ,故△ABC 为正三角形.22.解:(1)因为A 点的坐标为⎝ ⎛⎭⎪⎫35,45, 所以0<α<π2,sin α=45,cos α=35,所以sin 2α+sin2αcos 2α+cos2α=sin 2α+2sin αcos α3cos 2α-1=20. (2)因为三角形AOB 为正三角形,所以∠AOB =60°,所以cos ∠COB =cos(∠COA +60°)=cos(α+60°), sin ∠COB =sin(∠COA +60°)=sin(α+60°), 所以B 点坐标为(cos(α+60°),sin(α+60°)).所以|BC →|=[cos (α+60°)-1]2+sin 2(α+60°) =2-2cos (α+60°).因为点A 、B 分别在第一、二象限,所以30°<α<90°, ∴-32<cos(α+60°)<0,所以2<|BC →|<2+ 3.。
2021年高考数学一轮复习 质量检测(二)三角函数、解三角形、平面向量 文
2021年高考数学一轮复习 质量检测(二)三角函数、解三角形、平面向量 文一、选择题(本大题共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合题目要求的)1.若a =(1,2),b =(-3,0),(2a +b )∥(a -m b ),则m =( ) A .-12 B.12C .2D .-2解析:由题意知2(1,2)+(-3,0)=λ[(1,2)-m (-3,0)],即(2,4)+(-3,0)=(λ,2λ)+(3λm,0),则有λ=2,3λm =-3,即6m =-3,则m =-12,所以选A.答案:A2.(xx·广州综合测试(二))对于任意向量a 、b 、c ,下列命题中正确的是( )A .|a ·b |=|a ||b |B .|a +b |=|a |+|b |C .(a ·b )c =a (b ·c )D .a ·a =|a |2解析:对于A ,|a ·b |=|a |·|b |·|cos θ|;对于B ,|a +b |≤|a |+|b |;对于C ,(a ·b )·c 运算结果与向量c 平行,a ·(b ·c )所得结果与向量a 平行,而向量a 与向量c 的关系条件中并未明确;对于D ,a ·a =|a |·|a |cos 0°=|a |2,故选D.答案:D3.(xx·北京东城综合练习(二))已知sin ⎝ ⎛⎭⎪⎫π4-x =35,那么sin 2x 的值为( )A.325 B.725 C.925 D.1825解析:sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =1-2sin 2⎝ ⎛⎭⎪⎫π4-x =725,故选B.答案:B4.在△ABC 中,角A ,B 均为锐角,且cos A >sin B ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等腰三角形解析:cos A =sin ⎝ ⎛⎭⎪⎫π2-A >sin B ,π2-A ,B 都是锐角,则π2-A >B ,A +B <π2,C >π2.答案:C5.计算tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α的值为( )A .-2B .2C .-1D .1解析:tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α·cos 2α2sin 2⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2αsin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+α=cos 2αsin ⎝ ⎛⎭⎪⎫π2+2α=cos 2αcos 2α=1,选D.答案:D6.(xx·湖北八校高三第一次联考)在△ABC 中,sin(A -B )+sin C =32,BC =3AC ,则∠B =( )A.π3 B.π6 C.π6或π3 D.π2解析:∵sin(A -B )+sin C =32∴sin(A -B )+sin(A +B )=2sin A cos B =32①又∵a =3b ,∴a b =sin A sin B =3,∴sin A =3sin B 代入①得23sin B cos B =32,∴sin 2B =32,∴2B =120°或60°, ∴B =60°或30°当B =60°代入①sin A =32(舍),故B =30°,选B.答案:B 7.(xx·淄博检测)如图,平行四边形ABCD 中,AB =2,AD =1,∠A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →等于( )A .-32 B.32C .-1D .1 解析:DM →=DA →+AM →=DA →+13DC →,DB →=DA →+DC →,∠ADC =120°,∴DM →·DB →=⎝ ⎛⎭⎪⎫DA →+13DC →·(DA →+DC →)=DA →2+13DC →2+43DA →·DC →=1+43+43×1×2×⎝ ⎛⎭⎪⎫-12=1,选D.答案:D8.(xx·福建质检)已知函数f (x )=2sin 2x +23sin x cos x -1的图象关于点(φ,0)对称,则φ的值可以是( )A .-π6 B.π6 C .-π12 D.π12解析:f (x )=-cos 2x +3sin 2x =2sin ⎝⎛⎭⎪⎫2x -π6,关于(φ,0)对称,则2φ-π6=k π(k ∈Z ),φ=π12+k π2(k ∈Z ),令k =0,φ=π12,选D. 答案:D9.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若b 2+c 2-bc =a 2,且ab=3,则角B 的值为( )A .30° B.45° C.90° D.120°解析:b 2+c 2-bc =a 2,则cos A =12,A =60°,a b =3,sin A sin B =3,则sin B =12,又可知b <a ,故B 为锐角,B =30°.答案:A 10.(xx·河北高三质量监测)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象如图所示,为了得到g (x )=-A cos ωx 的图象,可以将f (x )的图象( )A .向右平移π12个单位长度B .向右平移5π12个单位长度C .向左平移π12个单位长度D .向左平移5π12个单位长度解析:由图象可得A =1,ω=2,φ=π3,则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,g (x )=-A cos ωx =-cos 2x =sin ⎝⎛⎭⎪⎫2x -π2=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -512π+π3,故将f (x )的图象向右平移5π12个单位长度,可以得到g (x )的图象.答案:B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 11.(xx·石家第二次模拟)tan(-1 410°)的值为__________. 解析:tan(-1 410°)=tan(-180°×8+30°)=tan 30°=33. 答案:3312.(xx·山西太原模拟(一))已知向量a ,b 满足|a |=2,|b |=2,(a -b )⊥a ,则向量a 与b 的夹角为________.解析:∵(a -b )⊥a ,∴(a -b )·a =a 2-ab =2-22cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22,∴夹角为π4.答案:π413.如图所示,把两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =__________,y =__________.解析:解法一:结合图形特点,设向量AB →,AC →为单位向量,由AD →=xAB →+yAC →知,x ,y 分别为AD →在AB →,AC →上的投影,又|BC |=|DE |=2,∴|BD →|=|DE →|·sin 60°=62.∴AD →在AB →上的投影x =1+62cos 45°=1+62×22=1+32,AD →在AC →上的投影y =62sin 45°=32.解法二:∵AD →=xAB →+yAC →,又AD →=AB →+BD →, ∴AB →+BD →=xAB →+yAC →,∴BD →=(x -1)AB →+yAC →. 又AC →⊥AB →,∴BD →·AB →=(x -1)AB →2. 设|AB →|=1,则由题意|DE →|=|BC →|= 2.又∠BED =60°,∴|BD →|=62.显然BD →与AB →的夹角为45°.∴由BD →·AB →=(x -1)AB →2, 得62×1×cos 45°=(x -1)×12,∴x =32+1. 同理,在BD →=(x -1)AB →+yAC →两边取数量积可得y =32.答案:1+32 3214.△ABC 的外接圆的圆心为O ,半径为1,若AB →+AC →=2AO →,且|OA →|=|AC →|,则向量BA →在向量BC →方向上的投影为__________.解析:由已知条件可以知道,△ABC 的外接圆的圆心O 在线段BC 的中点处,因此△ABC 是直角三角形,且∠A =π2.又|OA →|=|AC →|,所以∠C =π3,∠B =π6,AB =3,AC =1,故BA→在BC →上的投影|BA →|cos π6=32.答案:32三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤)15.(12分)(xx·资阳一模)设函数f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin 2x . (1)求函数f (x )的单调递增区间;(2)若f ⎝ ⎛⎭⎪⎫12α-π6=13,且α∈⎝ ⎛⎭⎪⎫π2,π,求f (α)的值.解:f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin 2x =cos 2x cos π6-sin 2x sin π6+sin 2x=32cos 2x +12sin 2x =sin ⎝⎛⎭⎪⎫2x +π3.(1)令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,则k π-5π12≤x ≤k π+π12,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). (2)由(1)f ⎝ ⎛⎭⎪⎫12α-π6=sin α=13,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-223,故sin 2α=2×13×⎝ ⎛⎭⎪⎫-223=-429, cos 2α=2⎝ ⎛⎭⎪⎫-2232-1=79,∵f (α)=sin ⎝ ⎛⎭⎪⎫2α+π3=12sin 2α+32cos 2α=12×⎝ ⎛⎭⎪⎫-429+32×79=73-4218.16.(12分)已知a =(sin ωx +3cos ωx,2cos ωx ),b =(sin ωx ,cos ωx ),设f (x )=a ·b ,其中f (α)=32,f (β)=12,且|α-β|的最小值为π4.(1)求ω的值和函数f (x )的单调增区间;(2)设A ,B 为三角形的内角,且f (A )=2,求f (B )的取值范围. 解:(1)f (x )=sin 2ωx +3sin ωx cos ωx +2sin 2ωx=sin ⎝⎛⎭⎪⎫2ωx +π6+32. 由f (α)=32, f (β)=12,得到sin ⎝⎛⎭⎪⎫2ωα+π6=0,sin ⎝⎛⎭⎪⎫2ωβ+π6=-1,所以|α-β|的最小值为T 4=π4,所以T =π,所以ω=1,函数的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ).(2)f (A )=2,f (A )=sin ⎝⎛⎭⎪⎫2A +π6+32=2, 则sin ⎝ ⎛⎭⎪⎫2A +π6=12,0<A <π,π6<2A +π6<7π6,所以2A +π6=5π6,A =π3,0<B <2π3,所以π6<2B +π6<3π2, 所以f (B )的取值范围为⎝ ⎛⎦⎥⎤12,52.17.(13分)(xx·河北联考)在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且4sin2B +C2-cos 2A =72. (1)求角A 的大小;(2)若BC 边上高为1,求△ABC 面积的最小值. 解:(1)因为A +B +C =π, 所以sinB +C2=sinπ-A 2=cos A2, 所以由已知得4cos 2A 2-cos 2A =72, 变形得2(1+cos A )-(2cos 2A -1)=72,整理得(2cos A -1)2=0,解得cos A =12.因为A 是三角形的内角,所以A =π3.(2)△ABC 的面积S =12bc sin A=12×1sin C ×1sin B ×32 =34sin B sin C.设y =4sin B sin C , 则y =4sin B sin2π3-B =23sin B cos B +2sin 2B =3sin 2B +1-cos 2B =2sin2B -π6+1. 因为0<B <π2,0<2π3-B <π2, 所以π6<B <π2,从而π6<2B -π6<5π6,故当2B -π6=π2,即B =π3时,S 的最小值为33. 18.(13分)(xx·浙江六校联考)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2-a 2-c 2ac =cos A +Csin A cos A.(1)求角A ;(2)若a =2,求bc 的取值范围.解:(1)∵b 2-a 2-c 2ac =cos A +Csin A cos A,∴-2ac cos Bac=-cos B sin A cos A, ∵△ABC 为锐角三角形,∴cos B ≠0,∴2sin A cos A =1,即sin 2A =1, ∴2A =π2,A =π4. (2)根据正弦定理可得:a sin A =b sin B =csin C ,∴bc =4sin B sin C , 又C =3π4-B , ∴bc =4sin B sin ⎝ ⎛⎭⎪⎫3π4-B=4sin B ⎝⎛⎭⎪⎫22cos B +22sin B=2sin 2B +2(1-cos 2B )⇒bc =2sin ⎝⎛⎭⎪⎫2B -π4+ 2. 又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<B <π2,0<3π4-B <π2,得到B 的范围为⎝ ⎛⎭⎪⎫π4,π2.∴2B -π4∈⎝ ⎛⎭⎪⎫π4,3π4,则bc 的范围为(22,2+2].35312 89F0 觰-I/ U40393 9DC9 鷉vaB 23872 5D40 嵀402249D20 鴠z。
高中三角函数综合题及答案(2021年整理)
(完整)高中三角函数综合题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中三角函数综合题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中三角函数综合题及答案(word版可编辑修改)的全部内容。
三角函数习题1.在ABC ∆中,角A . B .C 的对边分别为a 、b 、c ,且满足(2a —c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值2.在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值3.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin xx b ππ=,x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。4.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值与最小正周期;(II )求使不等式3()2f x ≥成立的x 的取值集合。5.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (1)求)(x f 的最大值和最小值;(2)2)(<-m x f 在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围. 6.在锐角△ABC 中,角A . B .C 的对边分别为a 、b 、c ,已知.3tan )(222bc A a c b =-+(I)求角A;(II)若a=2,求△ABC 面积S 的最大值。7.在锐角ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,且(tanA -tanB )=1+tanA·tan B.(1)若a 2-ab =c 2-b 2,求A . B .C 的大小;(2)已知向量m=(sinA ,cosA ),n =(cosB ,sinB),求|3m -2n|的取值范围.三角函数习题答案1。
专题06三角函数及解三角形-2021年高考真题和模拟题数学(文)分项汇编(全国通用)(解析版)
专题06 三角函数及解三角形1.(2021·江苏高考真题)若函数()()4sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则它的一条对称轴是( ) A .12x π=- B .0x = C .6x π=D .23x π=【答案】A 【分析】由2T πω=,可得2ω=,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈,从而可得到本题答案. 【详解】由题,得222T ππωπ===,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈, 所以()f x 的对称轴为51()122x k k Z ππ=+∈, 当1k =-时,12x π=-,所以函数()f x 的一条对称轴为12x π=-.故选:A2.(2021·全国高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3π2B .3π和2C .6π2D .6π和2【答案】C【分析】利用辅助角公式化简()f x ,结合三角函数最小正周期和最大值的求法确定正确选项.【详解】由题,()234x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T 2故选:C .3.(2021·北京高考真题)函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值( )A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98【答案】D【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭, 所以当1cos 4x =时,()f x 取最大值98. 故选:D.4.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.5.(2021·浙江高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值2A .0B .1C .2D .3【答案】C【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>,2故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.6.(2021·全国高考真题(文))在ABC 中,已知120B =︒,AC =2AB =,则BC =( )A .1BCD .3【答案】D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a =+-⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形. 7.(2021·全国高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 【答案】A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α. 8.(2021·全国高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++B .4sin sin y x x=+C .222x x y -=+D .4ln ln y x x=+【答案】C【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242xxx x y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.9.(2021·全国高考真题(文))22π5πcoscos 1212-=( )A .12B .3 C .2D 【答案】D【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解. 【详解】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D.10.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.11.(2021·全国高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP ==,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α=====,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC12.(2021·江苏高考真题)已知5cos 213πθ⎛⎫+= ⎪⎝⎭,且,22ππθ⎛⎫∈- ⎪⎝⎭,则()tan 9θπ-的值是_________. 【答案】512-【分析】先用诱导公式化简,再通过同角三角函数的基本关系求得. 【详解】55cos sin 21313πθθ⎛⎫+=⇒=- ⎪⎝⎭,因为,22ππθ⎛⎫∈- ⎪⎝⎭,所以,02πθ⎛⎫∈- ⎪⎝⎭,所以212cos 1sin 13θθ=-=,所以sin θ5tan θcos θ12,所以()5tan 9tan 12θπθ-==-. 故答案为:512-. 13.(2021·浙江高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则12S S =___________.【答案】25【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可. 【详解】由题意可得,大正方形的边长为:23345a +=, 则其面积为:21525S ==, 小正方形的面积:212543412S ⎛⎫=-⨯⨯⨯=⎪⎝⎭, 从而1225251S S ==.故答案为:25.14.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=_______________. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【分析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解.【详解】(cos ,sin )P θθ与cos ,sin 66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可). 15.(2021·全国高考真题(文))已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】3-【分析】首先确定函数的解析式,然后求解2f π⎛⎫⎪⎝⎭的值即可.【详解】由题意可得:31332,,241234T T Tπππππω=-=∴===, 当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈, 令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 362266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:3-.【点睛】已知f (x )=Acos (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.16.(2021·浙江高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =,则AC =___________,cos MAC ∠=___________.【答案】21323913【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅, 即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =在AMC 中,由余弦定理得222cos2AC AM MC MAC AM AC +-∠===⋅.故答案为:17.(2021·江苏高考真题)已知向量()223sin ,cos a x x =-,()cos ,6b x =,设函数()f x a b =⋅.(1)求函数()f x 的最大值;(2)在锐角ABC 中,三个角A ,B ,C 所对的边分别为a ,b ,c ,若()0,f B b ==3sin 2sin 0A C -=,求ABC 的面积.【答案】(1)max ()3f x =;(2【分析】(1)结合平面向量的数量积运算、二倍角公式和辅助角公式,可得2()233f x x π⎛⎫=++ ⎪⎝⎭,进而可得()f x 的最大值; (2)由锐角ABC ,推出22333B πππ-<-<,再结合f (B )0=,求得3B π=,由正弦定理知32a c =,再利用余弦定理求出2a =,3c =,最后由三角形面积公式得解. 【详解】(1)因为()223sin ,cos a x x =-,()cos ,6b x =,所以函数()f x a b =⋅2cos 6cos 23cos23x x x x x =-+=++2233x π⎛⎫=++ ⎪⎝⎭∴当2sin 213x π⎛⎫+= ⎪⎝⎭时,max ()3f x = (2)∵ABC 为锐角三角形,02B π∴<<.25233B πππ∴<+< 又()0f B =2si n 232B π⎛⎫∴+=-⎪⎝⎭24233B ππ∴+= 3B π∴= 3sin 2sin 032A C a c -=∴=2221cos 22a cb B ac +-==即222971432a a a +-= 2,3a c ∴==123222ABCS∴=⨯⨯⨯=18.(2021·天津高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c,已知sin :sin :sin A B C =,b =(I )求a 的值; (II )求cos C 的值; (III )求sin 26C π⎛⎫-⎪⎝⎭的值. 【答案】(I)(II )(III)116【分析】(I)由正弦定理可得::a b c = (II )由余弦定理即可计算;(III )利用二倍角公式求出2C 的正弦值和余弦值,再由两角差的正弦公式即可求出. 【详解】(I)因为sin :sin :sin A B C =::a b c = 2b =,2a c ∴==;(II)由余弦定理可得2223cos 24a b c C ab +-===; (III )3cos 4C =,sin C ∴==,3sin 22sin cos 24C C C ∴===,291cos 22cos 121168C C =-=⨯-=,所以sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=-⨯=.19.(2021·全国高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【答案】(1)4;(2)存在,且2a =. 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果; (2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯=△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =.20.(2021·北京高考真题)已知在ABC 中,2cos c b B =,23C π=. (1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =;②周长为4+ABC S ∆=; 【答案】(1)6π;(2)答案不唯一,具体见解析. 【分析】(1)由正弦定理化边为角即可求解;(2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =,2sin 2sin 3B π∴==,23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭, 23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得sin 21sin 2c Cb B===,与c =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin6a b R R π===,22sin3c R π==,则周长24a b c R ++==+ 解得2R =,则2,a c ==由余弦定理可得BC 边上的中线的长度为:=;若选择③:由(1)可得6A π=,即a b =,则211sin 22ABCSabC a ===a =则由余弦定理可得BC 边上的中线的长度为:==. 21.(2021·全国高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠. 【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)由题设2,,33b bBD b AD DC ===,应用余弦定理求cos ADB ∠、cos CDB ∠,又ADB CDB π∠=-∠,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC ∠.【详解】(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠, ∴acBD b=,又2b ac =, ∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===, ∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, ∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =, ∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=. 【点睛】关键点点睛:第二问,根据余弦定理及ADB CDB π∠=-∠得到,,a b c 的数量关系,结合已知条件及余弦定理求cos ABC ∠.22.(2021·浙江高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)1+【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解; (2)由三角恒等变换可得sin 242y x π⎛⎫=-+ ⎪⎝⎭,再由三角函数的图象与性质即可得解. 【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin 2sin 2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2222sin sin cos 2sin 2sin cos 22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222222sin 2sin 2cos 2sin 22222242x x x x x π-⎛⎫=⋅+=-+=-+⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以当242x ππ-=即38x π=时,函数取最大值212+.1.(2020·江苏高三一模)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos 21αα=+,则3cos 2πα⎛⎫+=⎪⎝⎭( ) A .15B 5C 25D .5【答案】B【分析】首先根据二倍角公式得到1tan 2α=,从而得到5sin α=,再利用诱导公式求解即可.【详解】22sin 2cos 214sin cos 2cos ααααα=+⇒=, 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 0α≠,所以1tan 2α=. 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以5sin α=. 所以35cos sin 2παα⎛⎫+== ⎪⎝⎭故选:B2.(2021·全国高三其他模拟(文))ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b A +=,若ABC 的周长为15,且三边的长成等差数列,则ABC 的面积为( )A .214B .154CD【答案】D【分析】利用正弦定理和余弦定理化简22cos a c b A +=可得222a c b ac +-=-,可得1cos 2B =-,故b 为最大边,由数列性质设5a t =-,5c =,5b t =+,再由余弦定理即可得解.【详解】由余弦定理可得22222cos 22b c a a c b A b bc+-+==⋅,整理得222a c b ac +-=-,所以2221cos 22a c b B ac +-==-,sin B =, 故b 为最大边,不失一般性,设5a t =-,5c =,5b t =+(0t >), 代入222a c b ac +-=-得2t =, 所以3a =,5c =,ABC的面积为1sin 2ac B =, 故选:D.3.(2021·福建高三其他模拟)已知π0,2θ⎛⎫∈ ⎪⎝⎭,且cos 2π5sin 4θθ=-⎛⎫- ⎪⎝⎭,则tan 2θ=( ). A .724B .247C .724±D .247±【答案】D【分析】由余弦的二倍角公式和两角差正弦公式可得7cos sin 5θθ+=, 结合22cos sin 1θθ+=求出tan θ的值,再根据正切的二倍角公式即可.【详解】)22cos2cos sin 5s in 42θθθπθ==+=-⎛⎫- ⎪⎝⎭,故7cos sin 5θθ+=, 又因为π0,2θ⎛⎫∈ ⎪⎝⎭,且22cos sin 1θθ+=. 故3cos 5θ=,4sin 5θ=或4cos 5θ=,3sin 5θ=,则4tan 3θ=或34,故22tan 24tan21tan 7θθθ==±-,故选:D .4.(2021·全国高三其他模拟(文))设2log 0.3a =,0.32b =,sin 5c π=,则a ,b ,c 的大小关系是( )A .c b a <<B .b a c <<C .a c b <<D .a b c <<【答案】C【分析】利用指数、对数三角函数的性质判定a ,b ,c 与0,1的大小关系,即可得到a ,b ,c 的大小关系. 【详解】22log 0.3log 10a =<=,0.30221b =>=,sin (0,1)5c π=∈,所以a c b <<, 故选:C.5.(2021·全国高三其他模拟(文))已知322ππθ<<,sin 2cos 1θθ-=,则tan θ=( )A B .34C .D .34-【答案】B【分析】根据同角三角函数关系式直接计算即可. 【详解】sin 2cos 1θθ-=,sin 2cos 1θθ∴=+,两边同时平方可得22sin 4cos 4cos 1θθθ=++, 又22sin cos 1θθ+=, 故25cos 4cos 0θθ+=,解得4cos 5θ=-或cos 0θ=, 又322ππθ<<, 4cos 5θ∴=-,3sin 5θ=-,3tan 4θ=, 故选:B.6.(2021·全国高三其他模拟(文))把函数()()sin 3f x x ϕ=+的图象向左平移5π12个单位后,得到函数()y g x =的图象,若函数()y g x =是偶函数,则下列数中可能是ϕ的值的为( )A .3π4B .π3C .π6D .π4【答案】D【分析】由平移变换写出变换后函数解析式,再根据诱导公式得出结论. 【详解】由题意55()sin 3sin 3124g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 它为偶函数,则5,42k k Z ππϕπ+=+∈,3,4k k Z πϕπ=-∈,只有1k =时4πϕ=满足. 故选:D .7.(2021·四川省绵阳南山中学高三其他模拟(文))将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位长度得到函数()y f x =的图象,下列说法正确的是( ) A .()f x 是奇函数B .()f x 的周期是2π C .()f x 的图象关于直线12x π=-对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 【答案】D【分析】利用三角函数图象变换可得函数()y f x =的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得()2sin 22sin 22cos 2662f x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对于A ,函数()y f x =是偶函数,A 错误:对于B ,函数()y f x =最小周期是22ππ=,B 错误;对于C ,由12f π⎛⎫-= ⎪⎝⎭,则直线12x π=-不是函数()y f x =图象的对称轴,C 错误; 对于D ,由04f π⎛⎫-= ⎪⎝⎭,则,04π⎛⎫- ⎪⎝⎭是函数()y f x =图象的一个对称中心,D 正确. 故选:D.8.(2020·江苏高三一模)已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,若3g π⎛⎫= ⎪⎝⎭118f π⎛⎫= ⎪⎝⎭__________.【分析】由题意求出=0=22A ϕω=,,,进而得出函数()f x 的解析式,将118x π=代入()f x 即可. 【详解】函数()=sin()(00)f x A x A ωϕωϕπ+>><,,是奇函数,则=0ϕ, 因为()f x 的最小正周期为π,所以=2ω,将()f x 的图像上所有点的横坐标变为原来的2倍(纵坐标不变), 所得图像对应的函数为()=sin g x A x ,又()3g π=,所以sin3A π=,解得2A =,所以()=2sin 2f x x所以1111()2sin 84f ππ==9.(2021·贵州黔东南苗族侗族自治州·凯里一中高三三模(文))在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos a b C =,则B =___________. 【答案】2π 【分析】本题可通过余弦定理得出结果. 【详解】由余弦定理易知:222cos 2a b c a b C b ab+-==⨯,即222a c b +=, 则ABC 是以角B 为直角顶点的直角三角形,2B π=,故答案为:2π. 10.(2021·贵州省瓮安中学高三其他模拟(文))已知过球面上三点、、A B C 的截面到球心距离等于球半径的一半,且6,4AB BC AC ===,则球面面积为__________. 【答案】54π【分析】利用余弦定理求得cos B ,进而得到sin B 的值,利用正弦定理求得△ABC 的外接圆半径,进而利用球的截面圆心与球心的连线垂直于截面,利用直角三角形中边角关系求得外接球的半径,利用球的面积公式计算即可.【详解】如图所示,设外接球O ,截面圆圆心为1O ,连接11,,BO BO OO ,则11OO BO ⊥.2226647cos 2669B +-==⨯⨯,∴sin B =,∴12sin AC BO B ==∵12OB OO =, ∴16OBO π∠=,∴12cos6BO BO π==∴球的面积为2454S R ππ==, 故答案为:54π11.(2021·合肥一六八中学高三其他模拟(文))南宋数学家秦九韶著有《数书九章》,创造了“大衍求一术”,被称为“中国剩余定理”.他所论的“正负开方术”,被称为“秦九韶程序”.世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则.科学史家称秦九韶:“他那个民族、他那个时代,并且确实也是所有时代最伟大的数学家之一”.在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上:以小斜幂乘大斜帮,减上,余四约之,为实:一为从隅,开平方得积可用公式2222221()42⎡⎤+-=-⎢⎥⎣⎦c a b S c a a ,b ,c ,S 为三角形的三边和面积)表示.在ABC 中,a ,b ,c 分别为角A 、B 、C 所对的边,若3a =,且22cos cos 3c b C c B -=则ABC 面积的最大值为______.93【分析】利用余弦定理化简已知条件得到,b c 的关系式,将,b c 的关系式代入所给的面积公式中,将面积S 转化为关于c 的函数形式,根据二次函数的对称轴求解出面积的最大值即可.【详解】因为22cos cos 3c b C c B -=,所以22222222223a b c a c b c a a +-+--=, 所以222233b c c -=,所以223b c =, 所以()22222219319()42243944ABCc c c Sc ⎡⎤+-⎡⎤=-⎢⎥⎢⎥⎣⎦⎣--+⎦所以当29c =时,ABC S有最大值为()max 12439344ABC S=⋅=, 93. 【点睛】关键点点睛:解答本题的关键在于余弦定理边角互化的运用以及对新的三角形面积公式的分析,先通过余弦定理分析边之间的关系,再根据二次函数模型求解最值.12.(2020·全国高三其他模拟(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B b A +=,2b =,c =a =___________.【分析】由已知结合正弦定理及余弦定理即可直接求解. 【详解】解:因为asin cos 0B b A +=, 由正弦定理得sin sin sin cos 0A B B A +=, 因为0,2B π⎛⎫∈ ⎪⎝⎭,所以sin 0B >, 所以sin cos 0A A +=,又0,2A π⎛⎫∈ ⎪⎝⎭,所以34A π=,因为2b =,c =由余弦定理得2222cos22b c a A bc +-=-==,解得:a =.【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.13.(2020·江苏高三一模)已知函数()cos 2cos 2sin 2sin 26633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-++++--⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域; (2)设在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且()1f A =,1a =,求ABC 的面积S 的最大值.【答案】(1)⎡⎤⎣⎦;(2)14【分析】(1)利用两角和与差的三角函数化简函数得到()=2sin(2)3f x x π+,结合角的范围,求出相位的范围,再求函数()f x 的值域.(2)利用余弦定理和基本不等式化简即可推出ABC 的面积的最大值. 【详解】(1)由函数()=cos 2cos 2sin 2sin 2=2sin 266333f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-++++--+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为]2[0x π∈,,所以42[]333x πππ+∈,, 即()f x的值域为[2]; (2)由题意知,在锐角ABC 中()=2sin(2)1=34f A A A ππ+=⇒,又1a =,由余弦定理和基本不等式可得2222cos 2(1cos )a b c bc A bc A =+-≥-,有12bc ≤=+,当且仅当b c =时等号成立,所以11sin (122S bc A =≤+=即ABC 的面积S. 14.(2021·陕西高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC ∠的平分线交线段AC 于点D,且sin BD A =. (1)求cos ABC ∠;(2)若3a c =,4b =,求ABC 的面积. 【答案】(1)13;(2)【分析】(1)在ABD △中,利用正弦定理sin sin BD ADA ABD=∠,结合sin BD A =求解; (2)在ABC 中,根据3a c =,4b =,利用余弦定理求得a ,c ,再利用三角形的面积公式求解. 【详解】(1)如图所示:在ABD △中,由正弦定理得sin sin BD ADA ABD=∠, 因为3sin BD AD A =, 所以3sin ABD ∠=所以21sin c 3os 12A AB C D B -∠∠==; (2)在ABC 中,因为3a c =,4b =, 由余弦定理得:2222cos b a c a ABC =+-∠, 解得2,32c a ==所以ABC 的面积是1sin 2S ac ABC =∠, 122322222=⨯=. 15.(2021·广东揭阳市·高三其他模拟)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积为31516,11cos 16B =,(1)求边b 的最小值; (2)若19sin sin 14sin 4=-+b B A C ,求ABC 的面积. 【答案】(1)3158;(2)3154. 【分析】(1)根据sin sin =≥b cc B C建立不等关系求解即可; (2)由正余弦定理及三角形的面积公式求解即可. 【详解】(1)2315sin 1cos B B =-=,1sin 2ABC S ac B ===△, 所以2c =,由sin sin =≥b c c B C ,得sin ≥⋅b c B =,所以b ; (2)由19sin sin 14sin 4=-+b B A C 及正弦定理, 得219144=-+b a c , 由余弦定理及2c =,得2221144cos 44=+-⋅=+-b a a B a a , 所以19284-+a 21144=+-a a ,即22240a a +-=, 解得4a =.∴1sin 2ABC S ac B ==△16.(2021·全国高三其他模拟(文))在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos 2cos C a cB b-=. (1)求证:三内角A ,B ,C 成等差数列;(2)若ABC 2sin 3sin A C =,求ABC 的周长.【答案】(1)证明见解析;(2)5【分析】(1)由正弦定理化边为角后,利用两角和的正弦公式及诱导公式变形求得B 角后可证得结论; (2)由三角形面积求得ac ,再由正弦定理得23a c =,可解得,a c ,用余弦定理求得b 后可得周长. 【详解】(1)由正弦定理得cos 22sin sin cos sin C a c A CB b B--==. cos sin 2sin cos sin cos C B A B C B =-,2sin cos sin cos cos sin sin()sin A B C B C B B C A =+=+=,又(0,)A π∈,所以sin 0A ≠,所以1cos 2B =,(0,)B π∈,所以3B π=,所以2233A CB πππ+=-==,所以,,A B C 成等差数列;(2)由题意11sin sin 223ABC S ac B ac π===△6ac =, 又2sin 3sin A C =,由正弦定理得23a c =,由623ac a c =⎧⎨=⎩,解得32a c =⎧⎨=⎩(边长为正,负的舍去),b ===所以三角形周长为5a c b ++=17.(2021·全国高三其他模拟(文))已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且()()()sin sin sin 0a c A C B a b -+--=.(1)求C ;(2)若ABCS=2c =,求ABC 周长.【答案】(1)3C π=;(2)2.【分析】(1)利用正弦定理进行角化边,然后根据余弦定理求解出C 的值;(2)先根据三角形的面积公式求解出ab 的值,然后根据余弦定理求解出a b +的值,由此可求解出ABC 周长值.【详解】(1)因为()()()sin sin sin 0a c A C B a b -+--=,所以()()()0a c a c b a b -+--=, 所以2220a c ab b --+=,所以222222cos c a b ab a b ab C =+-=+-, 所以2cos 1C =且()0,C π∈,所以3C π=;(2)因为1sin 2ABCSab C ==8ab =, 又因为()22222cos 34c a b ab C a b ab =+-=+-=,所以()2384a b +-⨯=,所以a b +=所以周长为2a b c ++=.18.(2021·全国高三其他模拟(文))已知锐角ABC 的内角,,A B C 的对边分别为,,.a b c 且cos cos 2cos a B b A c C +=;(1)求角C ;(2)如图,边AB 的垂直平分线ED 交AB 于E ,交边AC 于,3,10D AE BC ==AD 长. 【答案】(1)3C π=;(2)22AD =.【分析】(1)由正弦定理得:sin cos cos sin 2sin cos A B A B C C +=,化简计算即可求得结果; (2)由已知可得223AB AE ==ABC 中,由正弦定理可求得sin A ,在Rt AED △中,由cos AEAD A=计算即可求得结果. 【详解】(1)cos cos 2cos a B b A c C +=,由正弦定理得:sin cos cos sin 2sin cos A B A B C C +=, 则()sin 2sin cos ,A B C C A B C π+=++=,即1cos 2C =, 又C 是锐角三角形的内角,故;3C π=(2),AD DB ADB =∴是等腰三角形,且A ∠是一个底角,故0,2A E π<<为AB 的中点,则223AB AE == 在ABC 中,23,,103AB C BC π===,由正弦定理得3sin 102:sin 1023C A BC AB =⋅==故6cos A =,故在Rt AED △中,22cos AE AD A == 19.(2021·黑龙江哈尔滨市·哈九中高三其他模拟(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A A =30,27a =2b =.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD 为角A 的平分线,试求三角形ABD 的面积;(3)在(2)的条件下,点E 为线段BD 的中点,若AE AB AC λμ=+,分别求λ和μ的值. 【答案】(1)23A π=;4c =;(2)433;(3)23λ=,13μ=. 【分析】(1)由已知利用同角三角函数基本关系式可得tan 3A =-,结合()0,A π∈,可求A 的值,进而根据余弦定理可求c 的值. (2)由角平分线的性质可知:2BD AB DC AC==,进而根据三角形的面积公式即可求解. (3)由题意可得2CE EB =,根据平面向量的基本定理、共线定义以及平面向量的运算可得2133AE AB AC =+,即可得,λμ的值. 【详解】(1)因为tan 3A =-,∴23A π=在ABC 中,由余弦定理得22844cos120c c =+-°,∴4c = (2)由角分线性质知:2BD AB c DC AC a ===,所以23BD BC = 过A 做AE 垂直BC 于E 点,则11,22ABD ABC S AE BD S AE BC =⋅=⋅△△ 所以24333ABDABC S S ==△△(3)由题意可知:()22CE EB AE AC AB AE =⇒-=-32AE AB AC ⇒=+2133AE AB AC ⇒=+, ∴23λ=,13μ=.【点睛】关键点点睛:在解决第(2)问时,要注意内角角平分线定理的使用,这是解决这题的关键. 20.(2021·吉林松原市·高三月考)在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知sin B a =+.(1)若4B π=,c =ABC 的面积;(2)若26cos 26a B c ⎛⎫+= ⎪⎝⎭,求角C .【答案】(1)3(2)12C π=或712C π=. 【分析】(1)结合正弦定理、同角的商数关系以及恒等变换,然后化简求3A π=,进而结合面积公式即可求解;(2)结合正弦定理以及恒等变换,然后化简求值即可. 【详解】在ABC 中,由正弦定理得sin sin sin a b c A B C ==,且sin tan cos B B B=,sin B a =+sin B a -=)sin sin cos cos sin B C C B A -=,所以()sin B C A +=,而A B C π=--sin A A =,即tan A =A 为ABC 内角,0A π∴<<,3A π∴=. (1)4B π=,512C π∴=,由正弦定理得sin sin b c B C=,b ∴= 11πsin sin 3223bc A ∴=⨯⨯=+ABC ∴的面积为3+(2)由26cos 26a B c ⎛⎫+= ⎪⎝⎭,得22212sin B a c =,在ABC 中,由正弦定理得sin sin sin a b cA B C ==,且3A π=,1sin sin 4B C ∴=, 2π3B C =-,22π11sin sin sin cos 324C C C C C ⎛⎫∴-== ⎪⎝⎭,()111cos2444C C -+=,cos2C C ,得tan2C =4π20,3C ⎛⎫∈ ⎪⎝⎭,π26C ∴=或7π26C =,1π2C ∴=或712C π=.21.(2021·福建高三三模)在ABC 中,AB =,AC 45B =︒. (1)求ABC 的面积;(2)在边BC 上取一点D ,使得4cos 5ADB,求tan DAC ∠. 【答案】(1)32;(2)211.【分析】法一:(1)由已知利用余弦定理可得2230BC BC --=,解方程可得BC 的值,进而根据三角形的面积公式即可求解.(2)在ABC 中,由正弦定理得sin C 的值,利用同角三角函数基本关系式可求tan C ,3tan 4ADB ∠=,进而根据两角差的正切公式即可求解tan DAC ∠的值.法二:(1)同解法一.(2)在ABC 中,由正弦定理可求sin BAC ∠,利用同角三角函数基本关系式可求tan BAC ∠,3tan 4ADB ∠=,进而利用两角和与差的正切公式即可求解. 【详解】解:法一:(1)由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅,由题设知252cos45BC BC =+-⋅︒,所以2230BC BC --=,又0BC >, 所以3BC =,所以113sin 32222ABC S AB BC B =⋅⋅=⨯=△. (2)在ABC 中,由正弦定理得sin sin AB ACC B=,所以sin sin AB BC AC⋅===, 又AB AC <,所以04C π<<,所以1tan 2C =, 在ABD △中,4cos 5ADB ,所以3tan 4ADB ∠=, 因为DAC ADB C ∠=∠-∠,所以31tan tan 242tan tan()311tan tan 11142ADB C DAC ADB C ADB C -∠-∠∠=∠-∠===+∠⋅∠+⨯. 法二: (1)同解法一.(2)在ABC 中,由正弦定理得sin sin BC ACBAC B=∠,所以3sin 2sin 5BC BBAC AC⨯⋅∠=== 因为AB AC <,4B π=,所以04C π<<,所以2BAC π∠>.所以tan 3BAC ∠=-, 在ABD △中,因为4cos 5ADB,所以3tan 4ADB ∠=. 在ABD △中,()BAD B ADB π∠=-∠+∠,所以tan tan tan tan()1tan tan B ADB BAD B ADB B ADB ∠+∠∠=-∠+∠=--∠⋅∠31473114+=-=--⨯, 因为DAC BAC BAD ∠=∠-∠, 所以tan tan tan tan()1tan tan BAC BAD DAC BAC BAD BAC BAD ∠-∠∠=∠-∠=+∠⋅∠3(7)21(3)(7)11---==+-⨯-.【点睛】关键点睛:本小题关键是正弦定理、余弦定理、两角和差公式等基础知识的运用,考查运算求解能力.考查化归与转化思想等.22.(2021·广东高三其他模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos a c B b C -=.(1)求B 的大小;(2)如图,在AC 边的右侧取点D ,使得24AD CD ==,若b c =,求当ADC ∠为何值时,四边形ABCD 的面积最大,并求其最大值. 【答案】(1)3B π=;(2)当56ADC π∠=时,四边形ABCD 的面积取得最大值853+. 【分析】(1)利用正弦定理边化角,然后求解出cos B 的值,则B 的大小可求; (2)设ADC α∠=,利用余弦定理表示出2AC ,再分别表示出,ABCADCSS,将四边形ABCD 的面积表示为α的函数,利用辅助角公式以及三角函数的性质求解出面积的最大值以及对应ADC ∠的大小. 【详解】(1)在△ABC 中,由正弦定理得(2sin sin )cos sin cos A C B B C -=, 所以2sin cos sin cos sin cos A B B C C B =+, 所以2sin cos sin A B A =. 因为sin 0A ≠,所以1cos 2B =. 又0B π<<,故3B π=.(2)由(1)知,3B π=且AB AC =,所以△ABC 为等边三角形.设ADC α∠=,则在△ACD 中,由余弦定理得216416cos 2016cos AC αα=+-=-, 所以211sin 5343cos ,42sin 4sin 232ABCACDSAC S πααα=⨯⨯=-=⨯⨯=, 四边形ABCD 的面积5343cos 4sin 538sin 3S πααα⎛⎫=-+=+- ⎪⎝⎭. 因为0απ<<,所以2333πππα-<-<. 当32ππα-=,即56πα=时,max 853S =+. 所以当56ADC π∠=时,四边形ABCD 的面积取得最大值853+. 23.(2021·银川市第六中学高三其他模拟(文))如图,在ABC 中,点D 是边BC 上的一点,2AD DC ==,4BD =,3AC =.(1)求ACD △的面积; (2)求sin BAC ∠. 【答案】(137(2)144【分析】(1)利用余弦定理求cos ACD ∠,再求sin ACD ∠,利用面积公式计算即可. (2)根据余弦定理求出AB ,再依据正弦定理即可求解. 【详解】(1)在ACD △中,因为2AD DC ==,3AC =,由余弦定理得2222323cos 2234ACD +-∠==⨯⨯,所以2237sin 1cos 14ACD ACD ⎛⎫∠=-∠=-= ⎪⎝⎭,又由2DC =,3AC =,所以1737232ACD S ∆=⨯⨯=. 2()在ABC 中,由余弦定理得222633cos 2634AB ACB +-∠==⨯⨯,解得32AB =。
2021年高考数学三角函数与解三角形多选题与热点解答题组合练含答案
2021年高考数学三角函数与解三角形多选题与热点解答题组合练含答案一、三角函数与解三角形多选题1.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为3B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为223+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 的面积为31- 【答案】ACD【分析】利用三角形面积公式,余弦定理基本不等式,以及三角换元,数形结合等即可判断选项A ;利用勾股定理的逆定理即可判断选项B ;利用正弦定理和三角恒等变换公式即可判断选项C ;由已知条件可得ABC 是直角三角形,从而可以求出其内切圆的半径,即可得AOB 的面积即可判断选项D.【详解】对于选项A :2221sin 1sin 222cos 2222cos bc A S A b c a bc b c bc A bc A c b==⨯++-+++- 1sin 4cos 2A A ≤-⨯-(当且仅当b c =时取等号). 令sin A y =,cos A x =,故21242S y a bc x ≤-⨯+-, 因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2y z x =-上,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =时,取得最小值-故可得,023y z x ⎡⎫=∈-⎪⎢⎪-⎣⎭,又21242S y x bc x ≤-⨯+-,故可得2124S a bc ⎛≤-⨯= +⎝⎭, 当且仅当60A =,b c =,即三角形为等边三角形时,取得最大值,故选项A 正确; 对于选项B :因为sin 2sin B C =,所以由正弦定理得2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得c =,故选项B 错误; 对于选项C ,由2A C =,可得π3B C =-,由sin 2sin B C =得2b c =, 由正弦定理得,sin sin b c B C=,即()2sin π3sin c c C C =-, 所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=,因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos C =,则1sin 2C =, 所以sin 2sin 1B C ==,所以π2B =,π6C =,π3A =,因为2a =,所以3c =,b =,所以ABC 的周长为2+,故选项C 正确;对于选项D ,由C 可知,ABC 为直角三角形,且π2B =,π6C =,π3A =,3c =,b =,所以ABC 的内切圆半径为1212333r ⎛⎫=+-=- ⎪ ⎪⎝⎭,所以ABC 的面积为11122cr ⎛== ⎝⎭所以选项D 正确,故选:ACD【点睛】关键点点睛:本题的关键点是正余弦定理以及面积公式,对于A 利用面积公式和余弦定理,结合不等式得21sin 1sin 224cos 222cos S A A b c a bc A A c b=⨯≤-⨯+-++-,再利用三角换元、数形结合即可得证,综合性较强,属于难题.2.函数()sin()f x x ωϕ=+的部分图像如图中实线所示,图中的M 、N 是圆C 与()f x 图像的两个交点,其中M 在y 轴上,C 是()f x 图像与x 轴的交点,则下列说法中正确的是( )A .函数()y f x =的一个周期为56 B .函数()f x 的图像关于点4,03成中心对称C .函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增D .圆C 的面积为3136π 【答案】BD【分析】 根据图象,结合三角函数的对称性、周期性、值域以及圆的中心对称性,可得,,C M N 的坐标,进而可得()f x 的最小正周期、对称中心、单调减区间,及圆的半径,故可判断选项的正误.【详解】 由图知:1(,0)3C ,3)M ,23()3N , ∴()f x 中111()2362T =--=,即1T =;对称中心为1,0,23k k Z ⎛⎫+∈ ⎪⎝⎭;单调减区间为17,,1212k k k Z ⎡⎤++∈⎢⎥⎣⎦;圆的半径221331()()326r =+=,则圆的面积为3136π; 综上,知:AC 错误,而BD 正确.故选:BD.【点睛】本题考查了三角函数的性质,结合了圆的中心对称性质判断三角函数的周期、对称中心、单调区间及求圆的面积,属于难题.3.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a b B A =,则ABC 为等腰三角形 B .若cos cos a b B A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形D .若sin cos a b C c B =+,则4C π∠=【答案】ACD【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断;对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得 tan A tan tan B C ++sin sin sin =cos cos cos A B C A B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断;对于D :利用正弦定理判断得cos sin C C =求出角C .【详解】对于A :∵由正弦定理得:sin sin a b A B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a b A B=, ∴若cos cos a b B A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误;对于C :∵A+B+C=π, ∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B C A B C ++ sin cos sin cos sin =cos cos cos A B B A C A B C ++ sin sin =cos cos cos C C A B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭ cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B C A B C. ∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>>∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形.故C 正确; 对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+,即sin cos sin cos sin sin sin cos B C C B B C C B +=+∴cos sin C C =∵()0,C π∈∴4Cπ.故D 正确.故选:ACD【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考:(1)从题目给出的条件,边角关系来选择;(2)从式子结构来选择.4.函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称 D .函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数【答案】BCD【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断;对于选项C ,利用正弦函数的对称中心直接判断;对于选项D ,利用复合函数的单调性“同增异减”判断;【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误; 对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确; 对于选项D ,函数2y x 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数,所以选项D 正确.故选:BCD.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.5.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线3x π=对称,则( ) A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数 B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的图象向右平移()0a a >个单位长度得到的函数的图象关于6x π=对称,则a 的最小值是3π D .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则12x x -的最大值为3π 【答案】ACD【分析】由条件可得13f π⎛⎫=± ⎪⎝⎭,可得6πϕ=-从而得出()f x 的解析式, 选项A 先得出12f x π⎛⎫+ ⎪⎝⎭的表达式,可判断;选项B 求出函数的单调区间,可判断;选项C 根据图象平移变换得出解析式,可得答案;选项D 作出函数的图像,根据图象可判断.【详解】 根据条件可得23sin 333f ππϕ⎛⎫⎛⎫=+=±⎪ ⎪⎝⎭⎝⎭,所以2,32k k Z ππϕπ+=+∈ 则,6k k Z πϕπ=-∈,由22ππϕ-<<,所以6πϕ=- 所以()3sin 26f x x π⎛⎫=-⎪⎝⎭ 选项A. 3sin 212f x x π⎛⎫+= ⎪⎝⎭为奇函数,故A 正确. 选项B. 由3222262k x k k Z πππππ+≤-≤+∈, 2522233k x k k Z ππππ+≤≤+∈, 536k x k k Z ππππ+≤≤+∈, 当0k =时,536x ππ≤≤,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故选项B 不正确. 选项C. 函数()f x 的图象向右平移()0a a >个单位长度得到,()3sin 23sin 2266y x a x a ππ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭ 根据条件可得当6x π=时,3sin 23sin 23366a a πππ⎛⎫⎛⎫--=-=± ⎪ ⎪⎝⎭⎝⎭ 所以2,62a k k Z πππ-=+∈,则1,26a k k Z ππ=--∈ 由0a >,则当1k =-时,a 有的最小值是3π,故C 正确. 选项D. 作出()3sin 26f x x π⎛⎫=-⎪⎝⎭的图象,如图 当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()3f x =,可得3x π= 由33sin 662f ππ⎛⎫== ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()32f x =,可得2x π=当332a ≤<时,方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则1x +223x π= 设1x <2x ,则1211122233x x x x x ππ⎛⎫-=--=-⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭, 如图当32a =时,1x ,2x 分别为6π,2π时,12x x -最大,最大值为3π,故D 正确. 故选:ACD【点睛】关键点睛:本题考查三角函数()sin y A x ωϕ=+的图像性质,考查三角函数的图象变换,解答本题的关键是根据正弦型函数的对称性求出ϕ的值,根据三角函数的对称性得到1211122233x x x x x ππ⎛⎫-=--=- ⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭,,属于中档题.6.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC =B .0AB AC ⋅>C .若6c =,则ABC 的面积是3D .若8+=b c ,则ABC 73 【答案】ACD【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D.【详解】依题意,设4,5,6b c k c a k a b k +=+=+=,所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==,故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯= 222222.5 1.5 3.515028k k +-==-<, 故选项B 不正确;若6c =,则4k =,所以14,10a b ==, 所以222106141cos 21062A +-==-⨯⨯,所以sin A =,故ABC 的面积是:11sin 61022bc A =⨯⨯= 故选项C 正确;若8+=b c ,则2k =,所以7,5,3a b c ===, 所以2225371cos 2532A +-==-⨯⨯,所以sin A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin a A ⨯=, 故选项D 正确;故选:ACD.【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.7.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+= )A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ= 【答案】BC【分析】 先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】①因为4παπ≤≤,所以222παπ≤≤, 又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 555αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-,所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.8.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()11sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<,此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.9.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.10.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则下列正确的是( )A .2()2sin 23f x x π⎛⎫=+⎪⎝⎭B .(2021)1f π=C .函数|()|y f x =为偶函数D .,066x f x f x ππ⎛⎫⎛⎫∀∈++-=⎪ ⎪⎝⎭⎝⎭R 【答案】AD 【分析】先利用图象得到2A =,T π=,求得2ω=,再结合12x π=-时取得最大值求得ϕ,得到解析式,再利用解析式,结合奇偶性、对称性对选项逐一判断即可. 【详解】由图象可知,2A =,5212122T πππ=+=,即2T ππω==,2ω=, 由12x π=-时,()2sin 2212f x =πϕ⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦,得22,122=k k Z ππϕπ⎛⎫⨯-++∈ ⎪⎝⎭, 即22,3=k k Z πϕπ+∈,而0ϕπ<<,故2=3πϕ,故2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,A 正确;22(2021)2sin 22021=2sin 33f ππππ⎛⎫=⨯+ ⎪⎝⎭B 错误; 由2()2sin 23y f x x π⎛⎫==+⎪⎝⎭知,222sin 2=2sin 233x x ππ⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭不是恒成立,故函数|()|y f x =不是偶函数,故C 错误; 由6x π=时,22sin 22sin 0663f =ππππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,故06π⎛⎫⎪⎝⎭,是2()2sin 23f x x π⎛⎫=+⎪⎝⎭的对称中心,故,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R ,故D 正确. 故选:AD. 【点睛】 方法点睛:三角函数模型()sin()f x A x b ωϕ=++求解析式时,先通过图象看最值求A ,b ,再利用特殊点(对称点、对称轴等)得到周期,求ω,最后利用五点特殊点求初相ϕ即可.。
2021年高中数学三角函数与解三角形多选题100附解析
2021年高中数学三角函数与解三角形多选题100附解析一、三角函数与解三角形多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||2πϕ≤)的图象与x 轴交于点,A B ,与y 轴交于点C ,2BC BD =,,||23OCB OA π∠==,221||3AD =.则下列说法正确的有( )A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD 【分析】由题意可得:3|sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据221||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论. 【详解】由题意可得:||3||OB OC =,3sin 2A πϕω∴=+,sin(2)0ωϕ+=, (2,0)A ,(2B πω+,0),(0,sin )C A ϕ,sin 1,22A D πϕω⎛⎫∴+ ⎪⎝⎭, 2213AD =,222sin 281243A πϕω⎛⎫∴-+= ⎪⎝⎭,把|sin |(2)3A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω.解得6πω=,6πω∴=,可得周期212T ωπ==,sin()03πϕ∴+=,||2πϕ≤,解得3πϕ=-.可知:B 不对,3sin 263A π⎛⎫∴-=+ ⎪⎝⎭,0A >,解得163A =,函数16()sin()363f x x ππ=-,可知C 正确.()14,17x ∈ 时,52,632x ππππ⎛⎫⎛⎫-∈⎪ ⎪⎝⎭⎝⎭,可得:函数()f x 在()14,17x ∈单调递增. 综上可得:ACD 正确.故选:ACD 【点睛】关键点点睛:本题的关键是表示点,,B C D 的坐标,并利用两点间距离表示等量关系后,求解各点的坐标,问题迎刃而解.3.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.4.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD 【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解. 【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复.5.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>- 所以sin 1tan 0cos θθθ-<=<,所以tan θ的值可能是13-,12-. 故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.6.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭, 由于(0)30f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确; 2sin 22sin 2sin 3222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=-≠± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.7.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.8.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈⎪⎝⎭C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确; 对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确.故选:AC【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.9.已知函数()()tan (0)6ωωπ=->f x x ,则下列说法正确的是( ) A .若()f x 的最小正周期是2π,则12ω=B .当1ω=时,()f x 的对称中心的坐标为()π0()6π+∈Z k k , C .当2ω=时,π2π()()125-<f f D .若()f x 在区间()π3π,上单调递增,则203ω<≤ 【答案】AD 【分析】根据正切函数的性质,采用整体换元法依次讨论各选项即可得答案. 【详解】解:对于A 选项,当()f x 的最小正周期是2π,即:2T ππω==,则12ω=,故A 选项正确;对于B 选项,当1ω=时,()()tan 6f x x π=-,所以令,62k x k Z ππ-=∈,解得:,62k x k Z ππ=+∈,所以函数的对称中心的坐标为()0()62k k ππ+∈Z ,,故B 选项错误; 对于C 选项,当2ω=时,()()tan 26f x x π=-,()()()()ππ10tan 2tan tan 12126330f πππ⎡⎤-=⨯--=-=-⎢⎥⎣⎦,()()()2π2π1911tan 2tan tan 5563030f πππ=⨯-==-,由于tan y x =在,02π⎛⎫- ⎪⎝⎭单调递增,故()()π2π125f f ->,故C 选项错误; 对于D 选项,令,262k x k k Z ππππωπ-+<-<+∈,解得:233k k x ππππωωωω-+<<+所以函数的单调递增区间为:2,,33k k k Z ππππωωωω⎛⎫-++∈ ⎪⎝⎭,因为()f x 在区间()π3π,上单调递增,所以33,23k k Z k πππωωπππωω⎧-+≤⎪⎪∈⎨⎪+≥⎪⎩,解得:213,3k k k Z ω-+≤≤+∈,另一方面,233T ππππω=≥-=,32ω≤,所以2332k +≤,即56k ≤,又因为0>ω,所以0k =,故203ω<≤,故D 选项正确. 故选:AD【点睛】 本题考查正切函数的性质,解题的关键在于整体换元法的灵活应用,考查运算求解能力,是中档题.其中D 选项的解决先需根据正切函数单调性得213,3k k k Z ω-+≤≤+∈,再结合233T ππππω=≥-=和0>ω得0k =,进而得答案. 10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()124F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( )A.tan ϕ= B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到 【答案】ABC【分析】 首先得到()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可.【详解】 解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2))cos 22423F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭,因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan 6πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+ ⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误.故选:ABC .【点睛】关键点点睛:本题解答的关键是先根据()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数、向量、解三角形、数列综
合测试(含答案)
欧阳光明(2021.03.07)
大冶一中 孙雷
一、选择题(每题只有一个正确选项,共
60分)
1.若向量===BAC CB AB ∠),0,1-(),2
3
,
21(则( ) A.30° B.60° C. 120° D. 150°
2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是( )
A.-8
B. -14
C.-26
D.-30
3.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB ( ) A.5
185
8
-+
B.7
4718-
+ C.5
8
518-
+ D.
7
18
74-+
4.已知)2π-απ-(523-
αsin -αcos <<=,则=+α
ααtan -1)
tan 1(2sin ( ) A.7528-
B.7528
C.7556-
D. 75
56
5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=m ( ) A.6- B.5- C.3- D.2-
6.已知α为锐角,且2)8
π
-α(tan =,则=α2sin ( )
A.
10
2 B.
10
23 C.
10
27 D.
4
2
3 7.已知向量)sin 41-(α,=a ,)4
πα0)(1-α(cos <<=,,且//,则
=)4
π
-αcos(( )
A.21-
B.2
1 C.2
3-
D.
2
3 8.在ABC △中,3:2:1::=A B C ,则=a b c ::( )
A.1:2:3
B.3:2:1
C.1:3:2
D. 2: 3:1
9.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,
5
3
cos =
C ,且4=ABC S △,则=c ( ) A.
3
64 B.4 C.3
62
D.5
10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且
7
7
2sin =
∠BAD ,则CD =( )
A.
3
34 B.4
3 C.3
3
D.
3
3
2 11.我国古代数学巨著《九章算术》中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上述问题的已知条件,若该女子共织布
31
35
尺,则这位女子织布的天数是( ) A.2 B.3 C.4 D.1
12.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1
{2
n a 前2019项和为( )
A.20194036
B.
1010
2019 C.
2019
4037
D.
2020
4039
二、填空题(共20分)
13.已知等差数列}{n a 的前n 项和n S 有最大值,且
1-2019
2020
<a a ,则当0<n S 时n 的最小值为_____________.
14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.
15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.
16.ABC △中,A
b B a B
A c C
B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取
值范围是___________. 三、解答题(共70分)
17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S (1)求n a ,n S ;
(2)设||||||21n n a a a T +++= ,求n T .
18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且5
52
sin =
B
,
6=•BC BA
(1)求ABC △的面积; (2)若8=+c a ,求b 的值.
19.已知函数)(|2||-|)(R a x a x x f ∈++= (1)当1=a 时,求不等式5≥)(x f 的解集;
(2)当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围. 20.已知函数)0(2
3
-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6
π
个单位长度,再向下平移2
1
个单位长度,得到函数=y )(x g 的图象 (1)求函数)(x f 的单调递减区间;
(2)在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2
(==a A g ,求ABC △面积的最大值.
21.已知关于x 的函数1-2-2
π3cos(cos 2)(2)x x x f += (1)求不等式0)(>x f 的解集;
(2)若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4
π
3,
3π[上有解,求实数a 的取值范围.
22.已知数列}{n a 的前n 项和为n S ,且3
1-34n n a S =,等差数列}{n b 各项均
为正数,223b a =,4246b b a += (1)求数列}{n a ,}{n b 的通项公式;
(2)设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n
n b na c a c a c
=++ 22
1
12成立,求n T .。