企业电力网络智能化监控系统设计

合集下载

智慧电力系统监控室设计方案

智慧电力系统监控室设计方案

智慧电力系统监控室设计方案智慧电力系统监控室作为电力系统的重要组成部分,需要具备高效、方便、安全的监控功能。

设计一个合理的智慧电力系统监控室,可以提高电力生产运营的效率和质量,降低各类风险。

以下是一个1200字的设计方案:一、布局设计:智慧电力系统监控室的布局设计应合理分区,以提高工作效率。

1.主控区:放置电力系统监控设备,主要包括监控主机、人机界面终端、大屏显示器等。

主机放置在中央位置,方便操作员监控整个电力系统。

2.管理区:放置文件柜和办公设备,方便操作员处理各类电力系统管理文件和文件登记工作。

3.会议区:设有会议室,用于开展重要会议、培训和讨论等活动。

二、设备配置:智慧电力系统监控室的设备配置应满足监控需求,具备高效性和稳定性。

1.监控主机:配置高性能的监控主机,能够实时监控各类电力设备的状态,提供及时的告警和分析功能。

2.人机界面终端:使用易于操作的人机界面终端,操作员可以通过终端进行实时监控和管理。

3.大屏显示器:使用大尺寸的高清显示器,通过多屏显示方式展示电力系统的运行状态和监控画面,方便操作员查看信息。

4.监控摄像头:布置摄像头覆盖整个监控室,全方位监控室内设备和工作人员的安全状态。

5.服务器和存储设备:配备高性能的服务器和大容量的存储设备,提供数据管理和备份功能,确保数据的安全性和可靠性。

三、环境设计:智慧电力系统监控室的环境设计应考虑舒适性和工作效率,同时要保证电力设备的安全运行。

1.照明设计:采用柔和、均匀的照明方式,利用自然光线和合适的照明灯具,确保监控室内照明效果良好,不产生眩光和影响操作员的观察。

2.空调系统:选用符合能效要求的空调设备,对监控室内进行恒温、恒湿控制,保持适宜的工作环境。

3.隔音设计:在监控室的墙壁、地板和天花板等位置采用隔音材料,以减少外界噪音对操作员工作的干扰。

4.地面防静电设计:对监控室的地面进行防静电处理,确保地面的导电性,减少静电对设备的影响。

基于人工智能的智能化电力安全监测与控制系统设计

基于人工智能的智能化电力安全监测与控制系统设计

基于人工智能的智能化电力安全监测与控制系统设计引言:随着人工智能技术的不断发展和应用,越来越多的领域开始重视智能化系统的设计与应用。

在电力行业中,电力安全监测与控制是至关重要的一项任务。

利用人工智能技术,可以实现对电力系统的智能化监测与控制,提高电力安全性和运行效率,降低事故风险。

本文将讨论基于人工智能的智能化电力安全监测与控制系统的设计,重点介绍系统的结构和关键技术。

一、智能化电力安全监测与控制系统的结构智能化电力安全监测与控制系统主要由四个部分组成,分别是数据采集模块、数据处理模块、决策模块和控制模块。

1. 数据采集模块:该模块负责采集来自电力系统的各种数据,包括电压、电流、温度等关键指标,以及设备状态信息等。

常见的数据采集技术有传感器、智能电表等。

2. 数据处理模块:数据采集模块采集到的原始数据需要进行处理和分析,以得出有价值的信息。

数据处理模块主要包括数据清洗、特征提取、数据挖掘等步骤,通过应用机器学习算法对数据进行分析,提取出潜在的隐含规律和异常情况。

3. 决策模块:该模块根据数据处理模块得出的结果,进行相应的决策。

决策模块可以根据电力系统的运行情况预测潜在的安全风险,提供及时的警报和预警信息。

同时,该模块还可以根据系统需求对电力系统进行优化调度,提高系统的运行效率和经济性。

4. 控制模块:控制模块根据决策模块的指令,对电力系统进行控制和调节。

通过智能化算法和控制策略,控制模块可以自动调整电力系统的运行状态,例如减少负载、重新配电等。

二、关键技术1. 人工智能:智能化电力安全监测与控制系统的核心技术之一是人工智能。

通过应用机器学习、深度学习和专家系统等人工智能技术,系统可以对大量的电力数据进行分析和处理,从中发现潜在的规律和异常情况,并作出相应的决策。

2. 数据挖掘:数据挖掘是智能化电力安全监测与控制系统的另一个关键技术。

通过对大量的电力数据进行挖掘和分析,可以发现隐藏在数据背后的有价值的信息,从而实现对电力系统的智能化监测和预测。

电力企业信息系统性能一体化监控系统的设计研究

电力企业信息系统性能一体化监控系统的设计研究

电力企业信息系统性能一体化监控系统的设计研究摘要当前,随着计算机技术、网络技术以及信息通信技术等的快速发展与普及,使得一体化监控系统已然成为电力企业信息系统运维工作中的关键技术手段。

然而,由于现阶段电力企业通过IT运维监控系统所获取到的信息存在零散性与差异性,且未能制定出明确的管理衡量标准,致使信息系统缺乏一体化的监控管理。

对此,本文对电力企业信息系统性能一体化监控系统的设计展开研究,望能为电力企业的可持续发展做出贡献。

关键词电力企业;信息系统;性能一体化前言随着我国各行业信息化程度的不断加深,电力企业的信息化水平也得到了显著的提升。

并且,电力企业在信息化建设过程中所生成的IT基础设备、业务系统信息化产物,也成为其业务开展中不可或缺的支柱型技术形式。

但基于电力企业的长期发展目标与规划标准,其信息化程度仍有待完善。

为此,本文的研究便具有极为重要的作用与价值。

1 性能一体化监控建设内容分析性能监控建设环节中所涉及的建设内容多样,如服务器、数据库、中间件以及互联网等方面的总体运行情况,都是性能监控建设中所应分析与考量的内容形式。

并且,针对不同的建设内容,所设立出的计算指标也不尽相同。

例如,服务器指标包含服务器总体MTBF、服务器总体运行率以及服务器总体可用率等因素,除此之外,还应将性能各项监控指标的计算公式融入其中,以此便于后期的指标计算。

同时,性能一体化监控建设内容中,也应对数据向下的钻取与挖掘工作给予充分的支持,以此,才能通过各个角度与维度,进行性能监控详细信息的观察及应用[1]。

2 系统总体架构设计2.1 技术架构设计通过B/S来建设系统的总体架构,并采用MVC的设计思路,促使业务逻辑与数据库间的耦合现象得以降低,并能够促使系统结构既满足灵活性特点,又具备良好的后期维修性能。

而作为信息性能一体化监控管理系统中的重要组成部分,性能监控在技术架构上也要与该系统相符合。

且通过展现技术、数据挖掘技术、数据处理技术以及数据库技术等,更能够对该系统的核心技术及关联性做出集中性展现。

智能化电力监控系统

智能化电力监控系统

智能化电力监控系统在当今科技飞速发展的时代,电力系统的稳定运行对于社会的正常运转和经济的持续发展至关重要。

为了确保电力供应的可靠性、安全性和高效性,智能化电力监控系统应运而生。

智能化电力监控系统是一种集成了先进的传感器技术、通信技术、数据分析技术和控制技术的综合性系统。

它能够实时监测电力系统的各项参数,如电压、电流、功率、频率等,并对这些数据进行分析和处理,及时发现潜在的故障和异常情况,为电力系统的运维人员提供决策支持,从而保障电力系统的安全稳定运行。

首先,智能化电力监控系统的核心组成部分之一是传感器。

这些传感器被广泛分布在电力系统的各个关键节点,如变电站、输电线路、配电设备等,它们能够精确地测量各种电力参数,并将这些数据实时传输给监控系统的中央处理单元。

与传统的传感器相比,现代智能化传感器具有更高的精度、更快的响应速度和更强的抗干扰能力,能够在复杂的电力环境中稳定工作。

通信技术在智能化电力监控系统中也起着关键作用。

通过高速、可靠的通信网络,如光纤通信、无线通信等,传感器采集到的数据能够迅速传输到监控中心,实现远程监控和管理。

同时,监控中心的控制指令也能够及时下达给现场设备,实现对电力系统的实时控制和调整。

这种双向的通信机制大大提高了电力系统的运行效率和管理水平。

数据分析是智能化电力监控系统的“大脑”。

系统接收到大量的实时数据后,需要运用复杂的数据分析算法和模型对这些数据进行处理和分析。

通过对历史数据和实时数据的对比、趋势分析和模式识别,系统能够发现潜在的故障隐患和异常情况,并提前发出预警信号。

例如,如果某段输电线路的电流突然增大且超过了正常范围,系统就会判断可能存在短路故障,并及时通知运维人员进行检修。

除了监测和预警功能,智能化电力监控系统还具备强大的控制功能。

当电力系统出现故障或异常情况时,系统能够自动采取相应的控制措施,如切断故障线路、调整变压器分接头、启动备用电源等,以保障电力系统的稳定运行。

基于物联网技术的智能电力系统设计

基于物联网技术的智能电力系统设计

基于物联网技术的智能电力系统设计智能电力系统是基于物联网技术的一种创新应用,它将传统电力系统与智能化技术相结合,实现了电力设备的远程监控、自动化控制和智能化管理。

这种系统能够提高电力系统的安全性、可靠性和能源利用效率,为用户提供更加便捷、可靠的电力服务。

本文将详细介绍基于物联网技术的智能电力系统的设计原理、功能和应用。

一、智能电力系统的设计原理智能电力系统的设计基于物联网技术的核心思想,即将各种电力设备通过物联网技术连接起来,形成一个统一的网络。

这个网络可以实现电力设备之间的信息交互和数据传输,从而实现电力设备的远程监控和智能化控制。

智能电力系统的设计原理主要包括以下几个方面:1.传感器技术:通过在电力设备上安装各种传感器,可以实时监测电力设备的状态和工作情况,如温度、电压、电流等。

传感器将监测到的数据通过物联网技术上传至云平台,供用户和管理人员进行实时查看和分析。

2.通信技术:智能电力系统利用无线通信技术实现设备之间的远程通信。

通过物联网技术,电力设备可以实现相互之间的通信,以便进行数据交换和指令传输。

3.数据分析与处理:智能电力系统通过对传感器收集到的数据进行分析和处理,可以实现对电力设备的状态、性能和能耗的评估。

通过这些数据的分析,可以实现对电力系统的实时监控和预测,以及对设备的故障进行预警和诊断。

4.智能控制与优化:智能电力系统可以根据监测到的数据,对电力设备进行智能化控制和优化。

系统可以根据需求和环境条件自动调整设备的工作状态和运行参数,以实现节能和优化电力供应。

二、智能电力系统的功能智能电力系统具备多种功能,可以满足不同用户的需求。

以下是智能电力系统的主要功能:1.远程监控与管理:用户可以通过智能手机、平板电脑或电脑等终端设备,实时监控电力设备的运行状态和能耗情况。

用户可以远程开关设备、调整设备参数,以及查看历史数据和报表。

2.能耗管理与优化:智能电力系统可以对电力设备的能耗进行精确的监测和管理。

云智慧电力监控系统设计方案

云智慧电力监控系统设计方案

云智慧电力监控系统设计方案设计方案:云智慧电力监控系统背景介绍:随着电力行业的不断发展与智能化进程的加快,传统的电力监控系统已经无法满足电力企业对于监控数据的高效获取与分析的需求。

因此,云智慧电力监控系统应运而生。

该系统将传感器、云计算、大数据技术等结合在一起,实现电力设备的远程监控与管理,提高电力设备的运行效率、可靠性和安全性。

设计方案:1. 系统架构设计云智慧电力监控系统的设计包括前端采集层、数据传输层、云计算层和应用服务层。

前端采集层:通过安装在电力设备上的传感器,采集设备的电流、电压、功率、温度等信息,并进行处理和数据的采集。

数据传输层:将采集到的数据通过网络传输到云端系统,并进行压缩和加密保护,确保数据的安全性和完整性。

云计算层:在云端系统中,利用云计算技术对传感器采集到的数据进行处理、存储、分析和计算,并提供相应的数据服务。

应用服务层:通过专门的应用服务接口,向用户提供实时监控数据、报警信息、历史数据查询等功能。

2. 功能设计(1)实时监控:通过云端系统,用户可以实时查看电力设备的运行状态,包括电压、电流、功率等数据。

同时,系统会对设备进行实时监测,一旦出现异常情况,系统会及时报警并提供应急处理措施。

(2)历史数据分析:系统会将采集到的数据进行存储,并提供历史数据查询与分析服务。

用户可以通过系统的数据分析功能,了解设备的运行情况和效率,从而优化运行和维护策略。

(3)远程控制:用户可以通过云端系统对电力设备进行远程控制,包括开关控制、电源控制等。

这方便了用户对设备的管理和维护。

(4)报警管理:系统会对电力设备的异常情况进行实时监测,并通过短信、邮件等方式及时通知用户,提供报警管理功能。

(5)数据安全管理:系统采用加密传输、权限管理等方式,确保数据的安全性和可靠性。

3. 技术实现(1)传感器技术:采用高精度、高灵敏度的传感器,对电力设备的各项参数进行实时采集。

(2)云计算技术:利用云计算平台,对大量的实时数据进行存储、处理和计算,提供高效、弹性的数据服务。

电厂智慧监盘系统设计方案

电厂智慧监盘系统设计方案

电厂智慧监盘系统设计方案设计方案:电厂智慧监控系统一、方案背景随着电厂规模的不断扩大和电力行业的发展,电厂监控系统日益重要。

为了提高电厂运行的安全性、可靠性和经济性,智慧监控系统成为电厂必不可少的一部分。

本方案旨在设计一个智慧监控系统,实现对电厂运行状态的实时监控和智能控制。

二、系统架构1. 数据采集层:该层采集电厂各类设备的运行数据,包括发电机组、输电系统、变压器和开关设备等。

数据采集方式包括传感器、接口采集和互联网接口采集。

2. 数据传输层:将采集到的数据传输到数据处理层。

采用高速数据传输方式,确保数据的及时性和可靠性。

3. 数据处理层:该层对传输过来的数据进行预处理和分析,包括数据清洗、数据转换和数据存储。

同时,利用数据分析算法进行数据分析,得出电厂运行状态的评估结果。

4. 数据展示和控制层:该层将处理好的数据呈现给用户,并提供控制界面,可以通过该界面实时监控电厂运行状态,并进行远程控制。

三、系统功能1. 实时监控功能:系统通过数据采集层采集电厂的运行数据,并通过数据处理层实时处理和分析数据,最终将处理好的数据展示给用户。

用户可以实时查看电厂各项数据,如电压、电流、功率、温度等。

2. 预警功能:系统通过数据分析算法对电厂运行数据进行实时分析,一旦发现异常情况,如电压过高、电流过载等,系统会立即发出预警,提醒用户及时采取措施。

3. 故障诊断功能:系统会对电厂运行数据进行历史记录和存储,并根据历史数据进行故障诊断。

用户可以通过系统查询历史数据,分析电厂的故障情况,并给出故障诊断结果和建议。

4. 远程控制功能:用户可以通过系统远程控制电厂设备的运行状态。

例如,用户可以在系统界面上对设备进行开关操作、调整参数等,实现对电厂设备的远程控制。

四、系统优势1. 实时性和可靠性:系统使用高速数据传输和实时处理技术,能够实时监控电厂的运行状态,提高运行安全性。

2. 自动化和智能化:系统通过数据分析算法和故障诊断技术,能够自动分析电厂运行数据,发现异常情况,并提供相应的预警和建议。

基于物联网的智能电力配电网监测与管理系统设计

基于物联网的智能电力配电网监测与管理系统设计

基于物联网的智能电力配电网监测与管理系统设计随着社会的发展和人们对能源需求的增加,电力配电网的安全与稳定性成为了重要的关注点。

为了保证电力系统的正常运行,提高电力供应的可靠性和效率,基于物联网的智能电力配电网监测与管理系统应运而生。

本文将介绍该系统的设计、功能和优势。

一、系统设计该智能电力配电网监测与管理系统基于物联网技术实现,由以下几个主要模块组成:1. 数据采集模块:通过传感器和智能电表等设备,实时监测电力设备的电压、电流、功率因数等关键参数,并将数据上传至系统服务器。

2. 数据传输模块:系统采用无线传输技术,将采集到的数据通过WiFi、蓝牙或移动通信网络传输给系统服务器,确保数据的实时性和准确性。

3. 数据存储模块:系统服务器负责存储接收到的所有监测数据,包括历史数据和实时数据,并建立相应的数据库进行管理和查询。

4. 数据分析模块:系统使用数据分析算法对电力设备的监测数据进行处理和分析,提取关键信息,如设备工作状态、负荷变化趋势等。

5. 远程控制模块:系统可以通过远程操作界面实现对具体设备的远程控制功能,包括打开/关闭设备、调整电流电压等。

6. 告警管理模块:系统能够根据设定的阈值和规则,实时监测电力设备的状态,一旦发现异常情况,立即发出告警信息,以便进行及时处理。

二、系统功能1. 实时监测:系统能够实时、准确地监测电力设备的运行状态和关键参数,包括电压、电流、功率因数等,提供实时数据展示和监控功能。

2. 远程管理:通过远程操作界面,用户可以远程控制电力设备的开/关,调整电流电压等,提供便利的设备管理和控制功能。

3. 数据分析:系统能够对从设备采集的数据进行处理、分析,提取设备的工作状态、负荷变化趋势等关键信息,为电力系统的优化和调整提供决策依据。

4. 告警提醒:系统能够根据设定的阈值和规则,实时监测电力设备的状态,一旦发现异常情况,如过载、欠压等,即时发出告警信息,保证设备的安全运行。

5. 巡检管理:系统可以通过定位技术对电力设备进行巡检管理,减少人工巡检工作量,提高巡检的效率和准确性。

智能化电力监控系统技术方案

智能化电力监控系统技术方案

智能化电力监控系统技术方案智能化电力监控系统技术方案深圳某某技术有限公司二00九年九月XXX智能化电力监控系统技术方案深圳市中电电力技术有限公司 1、概述深圳某某是隶属于深圳某某的国有控股,员工持股的股份制公司,总公司是深发展的第二大股东,资金实力雄厚,公司各部门负责人均是硕士,博士。

核心技术人员均持有公司股份,保证了技术发展的连续性和技术人员的稳定。

大量的实际运行经验也证明了我公司在承接的系统中的工程经验和细节部分的严谨。

深圳某某出于对客户高度负责的态度,一直致力于为用户提供最先进、可靠的产品和最迅速的服务,深圳某某是国内唯一一家承诺装置十年质量保证的公司,深圳某某为深圳市XXX工程提供售后服务承诺:接到用户需求后1小时内作出服务响应,如需现场服务2小时赶到现场。

相对供电监控系统来说,其早些时候还属于新鲜事物,随着楼宇对自动化要求的不断提高,计算机技术、网络技术、工业控制技术的不断发展,越来越多的用户开始重视智能化电力监控系统,近几年电力监控系统更是以前所未有速度在发展.供电监控系统给人们带来的节省人力成本、提供工作效率、提高生产安全可靠性等诸多优点得到了业内人事的一致认同。

供电监控系统起点应该高,使所配置的供电监控系统应该在今后相当长的一段时间内保持技术上的领先优势。

2、系统结构2.1 工程概况本工程采用两路10KV高压电源供电(互为备用),以单母线分段方式运行。

共用4台变压器,总容量8000KVA;另外自备2套柴油发电机组。

该工程对XXX的变电所内的高、低压设备供配电系统进行监控。

做为整个XXX的智能化电力监控系统,需要考虑配置的共有四部分:一、高压(10KV)进线、母联、馈线部分(采用PMC—6510微机型综合保护测控监视装置)二、低压(380V)变压器进线、联络回路部分(采用PMC-530C高端三相数字式1XXX智能化电力监控系统技术方案深圳市中电电力技术有限公司多功能测控电表)三、低压(380V)的电容补偿、电源切换等回路部分(采用PMC—530A三相数字式多功能测控装置)四、低压(380V)馈线回路部分(开关额定电流250A及以上回路采用PMC—530C高端三相数字式多功能测控电表;开关额定电流250A以下回路采用PMC—530A三相数字式多功能测控装置)针对于深圳市XXX智能化电力监控系统的监控装置具体配置,深圳某某公司的PMC监控装置具有以下特点:(1)、测量高、低压各回路的U、I、P、Q、COSφ、f、KWH、KVARH等所有三相电量。

输配电智能化监控系统设计

输配电智能化监控系统设计

输配电智能化监控系统设计随着经济的快速发展和人口的不断增长,电力需求日益增加,对输配电系统的稳定运行与高效管理提出了更高的要求。

智能化监控系统作为电力系统自动化的重要组成部分,其设计对于保障电力供应的可靠性、经济性和安全性具有重要意义。

本文将详细探讨输配电智能化监控系统的设计理念、关键技术和实施策略。

1. 系统设计理念输配电智能化监控系统的设计理念是以提高系统运行效率和可靠性为核心,通过现代化的信息技术、通信技术和自动控制技术,实现对输配电设备的实时监控、故障诊断、预测维护和优化调度。

系统应具备高度的集成性、扩展性和兼容性,以适应不断变化的电力市场需求。

2. 关键技术2.1 数据采集与传输数据采集是智能化监控系统的基础。

系统应采用高精度、高可靠性的传感器和监测设备,实时采集输配电设备的运行参数,包括电压、电流、功率、温度、振动等。

在数据传输方面,应使用可靠的通信协议和网络技术,确保数据的实时性和完整性。

2.2 故障诊断与预测维护故障诊断是智能化监控系统的重要功能之一。

通过分析实时数据和历史数据,采用算法,如机器学习和深度学习,对潜在的故障进行预测和诊断,从而实现对设备的及时维护,避免或减少故障带来的影响。

2.3 优化调度智能化监控系统应具备优化调度能力,根据实时电力需求和设备运行状态,动态调整输配电设备的运行参数,实现能源的高效利用和系统运行成本的最小化。

3. 实施策略3.1 系统集成在系统集成方面,需要将输配电设备的控制系统、监测系统和信息系统等进行整合,形成一个统一的监控平台。

这要求系统设计时充分考虑各子系统的兼容性和互操作性。

3.2 渐进式实施考虑到输配电系统的复杂性和庞大,智能化监控系统的实施应采取渐进式策略,即先在局部区域或关键节点进行试点,验证系统性能和稳定性,逐步扩展到整个系统。

3.3 人才培养与技术支持系统的成功实施离不开专业人才的支持。

应加强相关领域人才的培养,同时建立技术支持体系,为系统的运行维护提供有力保障。

智能化监控系统的设计与实现

智能化监控系统的设计与实现

智能化监控系统的设计与实现随着科技的发展,越来越多的企业开始引入智能化监控系统,以提升管理效率、保障安全。

本文将围绕着智能化监控系统的设计与实现,从多角度进行探讨。

一、智能化监控系统的设计1. 系统功能设计智能化监控系统的功能设计必须考虑公司的实际需要。

常见的监控功能包括视频监控、环境监测、报警管理、设备状态监测等等。

在设计功能时,应该综合考虑这些监控因素的权衡,以适应不同企业的需求。

2. 硬件系统设计除了考虑功能需求,智能化监控系统的硬件设计也是十分重要的。

硬件的选择要考虑到成本、可扩展性、可靠性、灵活性等方面。

面对不同类型的监控需求,硬件设备也有所区别。

3. 软件系统设计软件系统设计必须能够支持硬件设备,能够与系统的数据库及扩展设备进行交互。

开发方案需要考虑到应用环境的不同需求。

同时,对于监控视频等大数据,存储、处理及分析也需要相应的管理。

二、智能化监控系统的实现1. 数据采集在数据采集环节,智能化监控系统需要收集并整合一系列不同来源的数据。

例如,视频监控、传感器设备、环境监测等等。

数据的采集也面临不同厂商设备之间的协调问题,在实现过程中需要解决这些问题。

2. 数据存储和处理数据采集后,需要立即被处理和存储,以确保及时反馈监控信息。

数据处理可以使用人工智能技术,如机器学习、图像处理等。

而数据存储可以按照当前使用的系统情况下,使用专业的数据存储方案,如云存储等。

3. 数据传输数据采集和存储后,数据传输就显得至关重要。

智能化监控系统必须具备高效稳定的数据传输能力,避免出现监管信息延迟或遗漏的情况。

建议使用高速Internet和大容量光纤等传输方式。

三、智能化监控系统的应用1. 远程监控通过智能化监控系统,企业可以随时随地的远程监控现场。

可以通过手机、平板电脑等移动设备进行在线监控,方便企业管理无地址限制。

2. 报警管理智能化监控系统还可以及时进行报警管理,避免损失发生。

可以对异常情况进行及时警告,有效地减少企业损失。

智能电表远程监控系统设计

智能电表远程监控系统设计

智能电表远程监控系统设计随着科技的不断发展,智能电表远程监控系统逐渐成为现代电力行业的关键技术之一。

它通过利用物联网、云计算以及各种传感器等技术手段,实现了对电能消耗情况的实时监测和远程管理。

本文将深入探讨智能电表远程监控系统的设计原理和关键技术,以及其在实际应用中的优势与挑战。

一、智能电表远程监控系统的设计原理智能电表远程监控系统的设计原理可以分为硬件和软件两个方面。

硬件方面主要包括电能计量单元、通信模块和数据传输模块等;而软件方面主要包括数据采集与处理、远程监控和数据分析等。

首先,电能计量单元是智能电表远程监控系统的核心组成部分。

它通过使用先进的电能计量芯片,可以准确地测量电能消耗情况,并将数据传输给通信模块。

其次,通信模块负责将电能计量单元采集到的数据传输给数据传输模块。

通信模块可以选择使用有线通信方式,如以太网、串口等,也可以选择使用无线通信方式,如GPRS、NB-IoT等。

通过通信模块,电能计量单元和数据传输模块之间可以实现远程通信,方便数据的传输和管理。

最后,数据传输模块将采集到的电能消耗数据传输给后台服务器或云端。

数据传输模块可以借助物联网技术,将数据通过互联网发送到指定的服务器或云平台。

这样,用户就能够通过互联网随时随地实时监控电能消耗情况。

在软件方面,数据采集与处理模块负责对采集到的电能消耗数据进行处理和分析。

它可以通过使用数据挖掘和大数据分析技术,对电能消耗情况进行预测和分析,为用户提供更加准确的用能建议。

远程监控模块则允许用户通过手机App、电脑等终端设备,随时随地监控电能消耗情况。

用户可以通过远程监控模块实时查看电能消耗曲线图、报表等,方便掌握用电情况。

此外,远程监控模块还可以提供告警功能,当电能消耗异常时,系统可以及时向用户发送告警信息,以便用户及时采取相应的措施。

数据分析模块则通过对采集到的电能消耗数据进行统计和分析,为用户提供用电分析报告。

通过数据分析模块,用户可以了解电能消耗的季节差异、用电特点等,有针对性地采取节能措施,优化用电结构。

基于嵌入式系统的智能电网远程监控系统设计与实现

基于嵌入式系统的智能电网远程监控系统设计与实现

基于嵌入式系统的智能电网远程监控系统设计与实现随着人们对能源的依赖日益增长,智能电网已经成为一种迫切需要的新型基础设施,实现了分布式、智能化、高效能、可靠性等特点。

而智能电网的远程监控则成为现代工业发展和全球环境保护的必不可少的一部分。

基于此,本文提出了一种基于嵌入式系统的智能电网远程监控系统设计方案,并针对其进行了详细分析与实现。

一、系统设计方案首先,本文对智能电网远程监控系统的硬件和软件架构进行了设计。

硬件方面,本系统的核心是嵌入式系统,包括单片机、传感器和通信模块等。

传感器负责采集电力信息,通信模块则负责实现数据的远程传输,单片机则负责系统的控制和处理。

软件方面,本系统采用嵌入式实时操作系统(RTOS)以及相关的嵌入式开发环境,如Keil,IAR等,在编程语言方面使用C语言和汇编语言来实现。

本系统的工作流程如下:(1)采集数据:传感器负责采集电力信息,包括电压、电流、功率等信息,并将数据传给单片机;(2)数据处理:单片机根据采集的数据进行处理,包括电能计算、峰谷平电量比较等处理,并将处理后的数据存储在嵌入式系统的内存中;(3)数据传输:通信模块负责将处理后的数据通过以太网或GPRS等网络传输至远程服务器;(4)远程处理:远程服务器负责对传输到服务器上的数据进行处理,并对网格系统进行监控和控制,包括故障诊断、负荷预测、能耗分配等。

二、系统实现过程本系统的实现过程根据设计方案,分为硬件实现和软件实现两部分:硬件实现:本系统采用LPC2148作为主控芯片,并结合12位ADC芯片MAX1231使用。

此外,为了保证系统的稳定性和可靠性,我们确保系统的供电电源电压在3.3V±0.3V之间,采用100uF/10V固体电解电容来实现滤波。

软件实现:系统的软件实现工作主要分为两个方面,即单片机程序设计和服务器端程序设计。

单片机程序设计我们主要采用C语言来实现,包括了(1)采样程序;(2)数据存储程序;(3)数据处理程序;(4)以太网模块驱动程序等。

电力行业智能电网监控系统升级方案

电力行业智能电网监控系统升级方案

电力行业智能电网监控系统升级方案第一章智能电网监控系统概述 (2)1.1 智能电网监控系统简介 (2)1.2 智能电网监控系统的重要性 (2)第二章现有智能电网监控系统分析 (3)2.1 系统现状分析 (3)2.2 存在的问题与不足 (3)第三章智能电网监控系统升级目标 (4)3.1 升级目标设定 (4)3.2 升级原则与策略 (4)第四章通信网络升级方案 (5)4.1 通信网络现状分析 (5)4.2 通信网络升级方案设计 (5)第五章数据采集与处理系统升级方案 (6)5.1 数据采集与处理系统现状分析 (6)5.2 数据采集与处理系统升级方案设计 (7)5.2.1 数据采集设备升级 (7)5.2.2 数据传输通道升级 (7)5.2.3 数据处理能力升级 (7)5.2.4 数据存储与备份升级 (7)第六章监控中心升级方案 (7)6.1 监控中心现状分析 (7)6.2 监控中心升级方案设计 (8)6.2.1 硬件设施升级 (8)6.2.2 软件系统升级 (8)6.2.3 人员配置优化 (8)6.2.4 安全保障措施 (8)第七章安全防护与应急响应系统升级方案 (8)7.1 安全防护与应急响应系统现状分析 (8)7.1.1 安全防护现状 (8)7.1.2 应急响应现状 (9)7.2 安全防护与应急响应系统升级方案设计 (9)7.2.1 安全防护升级方案 (9)7.2.2 应急响应升级方案 (10)第八章人工智能应用与大数据分析 (10)8.1 人工智能在智能电网监控系统中的应用 (10)8.1.1 概述 (10)8.1.2 人工智能在智能电网监控系统中的应用领域 (10)8.2 大数据分析在智能电网监控系统中的应用 (11)8.2.1 概述 (11)8.2.2 大数据分析在智能电网监控系统中的应用领域 (11)第九章培训与运维管理升级方案 (12)9.1 培训与运维管理现状分析 (12)9.2 培训与运维管理升级方案设计 (12)第十章项目实施与验收 (12)10.1 项目实施计划 (13)10.1.1 实施目标 (13)10.1.2 实施阶段 (13)10.1.3 实施步骤 (13)10.2 项目验收标准与流程 (13)10.2.1 验收标准 (13)10.2.2 验收流程 (14)第一章智能电网监控系统概述1.1 智能电网监控系统简介智能电网监控系统是电力行业中对电网运行状态进行实时监测、分析与控制的系统。

电力监控系统设计方案

电力监控系统设计方案

电力监控系统设计方案电力监控系统设计方案一、项目背景随着电力行业的快速发展,电力设备的安全运行和正常供电变得尤为重要。

为了确保电力设备能够及时发现故障并及时处理,提高供电的稳定性和可靠性,建立一套高效的电力监控系统势在必行。

二、功能需求分析1.电力设备实时监控:包括变压器、开关设备、断路器等的实时运行状态监控,监测其电流、电压、温度等参数,并能及时报警。

2.电力设备故障预警:通过对设备运行的数据进行分析,提前发现设备存在的故障隐患,预警并及时维护。

3.电力设备运行数据记录与分析:对电力设备的运行数据进行持续记录,并进行相关数据分析,提供科学的决策依据。

4.监控系统远程控制:对电力设备的远程控制,可通过监控系统进行远程开关控制,提供远程操作便利。

三、系统架构设计1.硬件设备:包括采集设备、通信设备和服务器设备。

2.软件系统:包括数据采集系统、数据处理与分析系统、监控平台系统。

3.通信系统:通过有线或无线方式实现设备与服务器之间的数据传输。

四、技术方案设计1.数据采集系统:采用传感器和采集设备对电力设备的运行状态数据进行监测和采集,包括电流电压数据和温度数据等。

2.数据处理与分析系统:对采集到的数据进行处理和分析,包括实时监控、故障预警、数据存储和分析统计等功能。

3.监控平台系统:提供用户界面,实现对电力设备的远程监控和控制,包括查看实时数据、远程开关操作、故障警报等功能。

4.通信系统:通过有线或无线网络实现设备与服务器之间的数据传输,保证数据的实时性和可靠性。

五、技术优势与亮点1.高效性:实时监控和故障预警能够及时发现设备故障,提高设备运行的可靠性。

2.智能化:通过对数据的处理和分析,实现设备的智能控制和优化调度,提高供电效率。

3.可扩展性:系统设计具备良好的可扩展性,可适应不同规模和复杂度的电力系统需求。

4.安全性:通过严密的权限控制和数据加密等措施,保障系统的安全性和稳定性。

六、总结电力监控系统是电力设备安全运行和供电可靠性的保证,设计一套高效的电力监控系统对维护电力系统的稳定运行起到了重要的作用。

《电网工作站智能安全监控系统的设计与实现》

《电网工作站智能安全监控系统的设计与实现》

《电网工作站智能安全监控系统的设计与实现》一、引言随着电力系统的快速发展和智能化水平的不断提高,电网工作站的安全监控问题显得尤为重要。

为了确保电网的稳定运行和电力供应的可靠性,设计并实现一套智能安全监控系统成为当前迫切的需求。

本文将详细介绍电网工作站智能安全监控系统的设计与实现过程,包括系统架构、功能模块、技术实现及系统应用等方面。

二、系统架构设计1. 硬件架构电网工作站智能安全监控系统的硬件架构主要包括数据采集设备、传输设备、服务器和工作站等部分。

数据采集设备负责实时采集电网运行数据,传输设备将数据传输至服务器,服务器对数据进行处理和存储,工作站则负责显示和处理数据。

2. 软件架构软件架构包括操作系统、数据库系统、监控软件和应用软件等部分。

操作系统为服务器和工作站提供基础支持,数据库系统负责存储和管理数据,监控软件对电网运行状态进行实时监控,应用软件则提供各种功能模块的实现。

三、功能模块设计1. 数据采集模块数据采集模块负责实时采集电网运行数据,包括电压、电流、功率因数等。

该模块通过与各种传感器和设备进行通信,获取实时数据并传输至服务器。

2. 数据处理与存储模块数据处理与存储模块负责对采集到的数据进行处理和存储。

该模块包括数据清洗、数据分析和数据存储等功能,能够保证数据的准确性和可靠性。

3. 实时监控模块实时监控模块负责对电网运行状态进行实时监控。

该模块通过监控软件对电网进行实时监控,及时发现并处理异常情况,确保电网的稳定运行。

4. 报警与故障处理模块报警与故障处理模块负责在发现异常情况时进行报警和故障处理。

该模块能够及时发出报警信息,通知相关人员进行处理,同时提供故障诊断和恢复功能,减少故障对电网的影响。

四、技术实现1. 数据采集与传输技术数据采集与传输技术采用物联网技术和通信技术实现。

通过传感器和设备与物联网平台进行连接,实现数据的实时采集和传输。

同时,采用通信协议进行数据传输,保证数据的准确性和可靠性。

智慧配电室监控系统系统设计方案

智慧配电室监控系统系统设计方案

智慧配电室监控系统系统设计方案智慧配电室监控系统是一个基于物联网和人工智能技术的智能化配电室管理系统。

它可以实时监测配电室的运行状态,包括电气设备的温度、湿度、电流等参数,并能够及时报警和进行故障诊断。

以下是一个智慧配电室监控系统的设计方案:一、系统架构设计:智慧配电室监控系统主要包括传感器节点、数据采集服务器、云平台和用户终端四个部分。

传感器节点负责对配电室的电气设备进行数据采集,数据采集服务器将采集到的数据进行汇总存储和处理,云平台提供数据存储和分析功能,用户终端可以通过手机、电脑等设备实时查看配电室的运行情况。

二、传感器节点设计:传感器节点包括温度传感器、湿度传感器、电流传感器等多种传感器。

它们通过无线网络与数据采集服务器进行通信,将采集到的数据传输给数据采集服务器。

三、数据采集服务器设计:数据采集服务器主要负责对传感器节点采集到的数据进行处理和存储。

它可以实时监测传感器节点的状态,并根据设定的阈值进行报警。

同时,数据采集服务器还能够对采集到的数据进行分析,进行故障诊断和预测。

四、云平台设计:云平台负责对数据进行存储和分析。

它可以将历史数据存储在云端,用户可以随时查看配电室的历史运行情况。

同时,云平台还可以对数据进行分析,提供故障诊断和预测等功能。

五、用户终端设计:用户终端可以通过手机、电脑等设备实时查看配电室的运行情况。

用户可以设置报警阈值、查看历史数据、接收报警信息等。

六、系统功能设计:1. 实时监测配电室的运行情况,包括温度、湿度、电流等参数。

2. 设置报警阈值,当参数超过设定的阈值时,即可发送报警信息给用户。

3. 对采集到的数据进行分析,提供故障诊断和预测。

4. 提供历史数据查询功能,用户可以随时查看配电室的历史运行情况。

5. 多用户管理功能,可以为不同用户提供不同的权限和服务。

七、系统优势:1. 实时监测:能够实时监测配电室的运行情况,及时发现故障和异常。

2. 故障诊断和预测:能够对传感器采集到的数据进行分析,提供故障诊断和预测,降低故障率。

智能电网监控系统

智能电网监控系统

一、总体目标随着计算机、网络传输、多媒体、大规模数据存储等新技术的发展,需对智能电网监控提出更高的需求:在变电站端视频需要与环境数据监控、开关、报警、门禁、综合自动化及安防等系统的紧密关联。

与遥调、遥控、遥测、遥信相结合,实现电力系统“五遥”可视化调度功能,真正实现无人监守变电站。

二、设计依据及原则本设计以行业标准及最新的《南方电网公司变电站及发电厂视频及环境监控系统技术规范Q/CSG110023-2012》、《智能变电站辅助系统综合监控平台技术规范》、国家电网公司《电网视频监控系统及接口第一部分:技术要求》、《国家标准GBT28181-2011安全防范视频监控作为设计依据》和《ONVIF规范2.0》作为设计依据,结合项目的具体情况,用最佳设计方案体现最高的性能价格比,是本方案设计的指导思想,也是本方案设计的基本出发点和追求的目标。

本设计主要贯彻“高质量”及“低价格”两条主线来进行并按照以下原则进行设计:CAN总线分支器1.先进性:在投资费用许可的情况下,系统采用当今先进的技术和设备,一方面能反映系统所具有的先进水平,另一方面又使系统具有强大的发展潜力,以便该系统在尽可能的时间内与社会发展相适应。

2.可靠性:系统最重要的就是可靠性,系统一旦瘫痪的后果将是难以想象的,因此系统必须可靠地、能连续地运行,系统设计时在成本接受的条件下,从系统结构、设备选择、产品供应商的技术服务及维修响应能力等各方面均应严格要求,使得故障发生的可能性尽可能少。

即便是出现故障时,影响面也要尽可能小。

3.安全性:对于一个系统来说,其内外部的安全性也非常重要,应具有密码、多级控制级别、撤设防级别;操作人权限可划分为系统设置、2超级用户、值班员等,各种系统控制、报警时间应具有记录及共享功能。

4.可扩充性:系统设计时应充分考虑今后的发展需要,系统应具有预备容量的扩充与升级换代的可能。

5.规范性:由于本系统是一个严格的综合性系统,在系统的设计与施工过程中应参考各方面的标准与规范,严格遵从各项技术规定,做好系统的标准化设计与施工。

电力监控系统方案

电力监控系统方案

03
数据传输层
采用高可靠的通信协议,将采集的数 据传输至数据处理层,确保数据的完 整性和实时性。
05
04
数据处理层
对传输来的数据进行处理和分析,包 括数据校验、存储、计算等,为上层 应用提供有效数据支撑。
硬件架构
硬件设备
包括电力检测设备(如电流互 感器、电压互感器等)、传感 器、数据采集装置、通信设备
应用软件
开发专门的电力监控应用软件,实现 数据采集、处理、分析、展示等功能 。
数据存储方案
设计合理的数据存储方案,支持实时 数据、历史数据、报警数据等的存储 和查询。
数据安全策略
实施严格的数据安全策略,包括数据 加密、备份恢复、访问权限控制等, 确保系统数据安全。
03
功能设计
数据采集与传
01
02
等。
设备连接
通过工业总线、以太网等方式 连接硬件设备,构建高效、稳 定的数据传输通道。
设备冗余设计
关键硬件设备采用冗余设计, 提高系统可靠性,确保数据传 输不中断。
设备选型
选用工业级、高性能硬件设备 ,以适应恶劣环境和长
采用成熟的操作系统、数据库、中间 件等基础软件,确保系统稳定性和可 扩展性。
03
实时数据采集
电力监控系统应能实时采 集各电力设备的电压、电 流、频率、功率因数等电 气参数。
数据传输网络
采用高可靠性的工业以太 网,确保数据在复杂电磁 环境下稳定传输。
数据压缩与存储
采用高效的数据压缩算法 ,降低存储空间需求,同 时确保数据的完整性和可 查询性。
数据处理与分析
数据预处理
对原始数据进行清洗和滤 波,消除噪声和异常值, 提高数据质量。
能源数据分析与优化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

企业电力网络智能化监控系统设计
发表时间:2018-08-17T09:37:53.633Z 来源:《电力设备》2018年第15期作者:林荣秋
[导读] 摘要:现代企业的快速发展,在用电需求上变得更加智能化和多元化,加强企业电力网络监控,不仅能确保企业的各项生产任务得到高效的实施,而且还能确保整个电力网络的安全性,从而结合监控的情况,确定企业的电力需求,并对电力资源进行合理地分配和优化,在符合节能环保理念的同时,还能更好地适应时代发展所需。

(广东电网有限责任公司湛江供电局 524000)
摘要:现代企业的快速发展,在用电需求上变得更加智能化和多元化,加强企业电力网络监控,不仅能确保企业的各项生产任务得到高效的实施,而且还能确保整个电力网络的安全性,从而结合监控的情况,确定企业的电力需求,并对电力资源进行合理地分配和优化,在符合节能环保理念的同时,还能更好地适应时代发展所需。

因而本文在这样的背景下,设计了一种用于监控企业电力网络的智能化监控系统。

关键词:企业;电力网络;智能化监控系统;设计
现代电力企业要想满足企业用户在电力方面的需求,避免电能资源的浪费,达到节能环保和可持续发展的目的,就必须切实加强企业用户电力网络的监控,并提高其智能化水平,因此设计一套电力网络监控智能化系统就显得尤为必要。

本文设计的这一系统的基本情况是:①载体为PIC单片机;②包含的模块主要是智能显示终端:GSM模块、无线通讯模块、操作模块。

以下笔者就此展开详细分析。

1.企业电力网络智能化监控系统的基本作用分析
第一,采集与处理企业用电数据。

其监控系统已经实现了网络智能化,系统安装于智能化监控设备中,其设备包括:电网服务器和用电设备、以及用户手机、智能显示终端,还有就是采集装置。

对于办公设备和照明灯具,以及生产设备和运输设备等用电设备在工作后所用电数据实施采集,并及时做好处理。

第二,高效地实施用电综合管理。

有关于电设备运行状态数据,由智能显示终端数据接收以及进行发送,优化和监控用电的实际状况,最后事项对用电状况的综合管理。

第三,移动式远程监管用电情况。

智能显示终端和用户手机两者之间所进行的通讯主要由通过GSM网络得以实现。

促进供电方案的优化完善。

智能显示终端同电网服务器之间的在通讯,其途径还可以同工业以太网得以实现,积极地为为工厂为用电公司合理地制定供电的方案此充分地提供基础性的数据。

其工厂用电数据由数据存储设备进行存储,这样就有利于对数据进行综合分析过程中,能够及时调用[1]。

2.企业电力网络智能化监控系统的工作方式分析
本地监控和远程监控是企业电力网络智能化监控系统的两种工作方式,所以,作为用户完全可以根据需要对这两种方式进行选择。

就本地监控方式而言,其核心主要是智能显示终端,而智能显示终端在同数据采集装置数实现及时据通讯过程中,主要是通过无线网络基于实现,在对用电设备数据的实现采集和及时处理,是通过采集装置来实现。

进而准确地完成对用电情况的有效监控。

而远程监控模式中,智能显示终端同用户手机的理解依赖于GSM网络得以实现,工作原理是:本地监控数据由智能显示终端向用户手机进行发送,与此同时还接受用户手机发出的一些指令控制,进而实现远程监控和管理等重要的功能。

3.企业电力网络智能化监控系统
企业电力网络智能化监控系统,如下图所示。

在系统中,主要由以下几个部分组成:监控用户和控制中心,以及变电站前端。

系统在工作中,其变电站的前端积极收集所采集到的关于监控对象的一席额数据能够及时地传到控制中心。

信息一旦传到了控制中心之后,并对其进行管理和有效地控制,及时对对用户的请求展开请求。

而在监控用户端中,用于监控的方式主要采用浏览器模式实施监控,主要是负责对电站前端的图像实施控制。

在实现智能化监控中,本论文设计中最核心的部件是智能显示终端,在运算处理数据采集装置的信号过程中是通过PIC单片机得以实现,并将用电设备运行状态在显示磨矿上给予显示。

[2]。

4.企业电力网络智能化监控系统各大模块的设计
4.1GSM模块的设计要点分析
GSM模块选用TV35i无线通讯模块。

其芯片工作电压范围是3.3V到3.5V之间,有1800MHz和900MHz两种工作频率,设备的功耗为1w,2w,其工作模式有三种,第一种为TALK模式,第二种模式为IDLE模式,第三种模式为省电模式。

在连接语音控制信号线、电源和指令数据线过程中,采用的是40脚ZIF连接器进行连接。

在芯片的内部集成着留个组件:ZIF连接器、天线接口,以及基带处理器和射频模块,还有供电模块和闪存存储器。

4.2无线通讯模块设计的要点
在显示终端和数据采集装置之间进行数据是有效传输过程中,其载体为无线通讯模块,智能显示终端将控制指令通过数据采集装置进行发送,进而实现有效地对工厂用电设备实现严格管理和控制。

就通信技术比较多,就最常用的通信技术Zig Bee无线通讯技术而言,在其安全性和课操作性以及成本上的优势非常明显,能够满足无线传感器监控系统的实际需要。

该技术为一种近距离通讯技术,在传输距离上不是很远,一般为10米到100米之间,但是具有数据加密的功能,完全可以组成网型网络和串行网络、星型网络。

其无线模块选用CC2530无线模块。

其协议非常简单,可编程的输出功率能够达到4.5dBm,有极高的抗干扰性能,其接收灵敏度较高。

所需要的外接元件较少。

4.3操作模块的设计要点分析
操作模块的设计要点如下:
①电阻式的触摸屏并非尖锐物,具有较高的稳定性,响应速度在10ms以下,同时成本低,具有较强的抗电磁和抗强光干扰能力,又能适应高温,为纯平类显示器。

②电容式的触摸屏为带静电的物体,其稳定性一般,响应速度在15ms以下,成本较高,抗电磁和抗强光干扰能力分别是一般和较差,能适应高温,显示器类型没有限制。

③表面声波式的触摸屏为手指软胶,具有较高的稳定性,响应速度在10ms以下,而成本适中,抗电磁和抗强光干扰能力分别是一般和较好,又能适应高温,为纯平类显示器。

④红外式式的触摸屏为截面触摸物,其稳定性较高,响应速度在20ms以下,成本较高,抗电磁和抗强光干扰能力分别是较好和较差,不能适应高温,显示器类型没有限制。

就以上的四种触摸屏而言,其性价比最高的为电阻式触摸屏,该触摸屏药比其他的触摸屏在性价上高很多,与此同时,由于具有企业电力网络智能化监控所需要的一席而需求,比如实时性和抗干扰性以及相同稳定性等。

故而在外界指令输入模块的选择中选用电阻式触摸屏。

该类型的触摸屏的结构有五层,其中顶层和低层实际上为光滑玻璃结构,其目的在于对屏体进行稳固和保护。

而中间玻璃珠层具备隔离功能。

主要是隔离2、4层的导电涂层,确保这两层不接触[3]。

5.结语
综上所述,在当前的新形势下,作为电力企业,应针对企业用户在电力网络监控方面不断地提升其智能化水平,切实强化智能化的基于企业用户的电力网络监控系统的设计,并切实注重对其运行状态的维护和优化,才能更好地促进电力网络监控水平的提升和优化,最终提供更加优质的电力服务。

同时在不断地发展中,还要切实做到未雨绸缪,加强对未来发展需求的考虑,做好相关冗余设计,才能更好地适应未来发展的需要。

参考文献:
[1]王旭强.电力系统自动化的计算机技术应用及设计[J].科技通报,2018,34(03):163-166.
[2]拉巴次仁.试论低压配电系统的智能化节能控制方法[J].中国高新科技,2018(04):25-28.
[3]郎福成,杨华松.企业电力网络智能化监控系统设计[J].电子元器件与信息技术,2017,1(02):33-36.。

相关文档
最新文档