高二数学选修2-2测试题(含答案).doc

合集下载

人教a版(数学选修2-2)测试题及参考答案

人教a版(数学选修2-2)测试题及参考答案

人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。

高中数学选修22:第一章导数及其应用单元测试题.doc

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。

新高二数学人教A版选修2-2试题:第1章1.5.3 定积分的概念

新高二数学人教A版选修2-2试题:第1章1.5.3 定积分的概念

一、选择题1.关于定积分m =⎠⎛02⎝⎛⎭⎫-13d x ,下列说法正确的是( ) A .被积函数为y =-13xB .被积函数为y =-13C .被积函数为y =-13x +CD .被积函数为y =-13x 3【解析】 被积函数为y =-13.【答案】 B2.已知定积分⎠⎛06f (x )d x =8,且f (x )为偶函数,则⎠⎛-66f (x )d x )=( )A .0B .16C .12D .8【解析】 偶函数图象关于y 轴对称,故⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.故选B.【答案】 B3.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A. ⎠⎛-11x 2d xB. ⎠⎛-112x d xC. ⎠⎛-10x 2d x +⎠⎛012x d xD. ⎠⎛-102x d x +⎠⎛01x 2d x【解析】 被积函数f (x )是分段函数,故将积分区间[-1,1]分为两个区间[-1,0]和[0,1],由定积分的性质知选D.【答案】 D4.变速直线运动的物体的速度为v (t )≥0,初始t =0时所在位置为s 0,则当t 1秒末它所在的位置为( )A .⎠⎛0t 1∫t 10v (t )d tB .s 0+⎠⎛0t 1v (t )d tC .⎠⎛0t 1v (t )d t -s 0D .s 0-⎠⎛0t 1v (t )d t【解析】 由位移是速度的定积分,同时不可忽视t =0时物体所在的位置,故当t 1秒末它所在的位置为s 0+⎠⎛0t 1v (t )d t .【答案】 B5.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x ),积分区间[a ,b ]和ξi 的取法都有关【解析】 定积分的大小与被积函数以及区间有关,与ξi 的取法无关. 【答案】 A 二、填空题6.定积分⎠⎛13(-3)d x =__________.【解析】 由定积分的几何意义知,定积分 ⎠⎛13(-3)d x 表示由x =1,x =3与y =-3,y =0 所围成图形面积的相反数.所以⎠⎛13(-3)d x =-(2×3)=-6.【答案】 -67.定积分⎠⎛-12|x |d x =__________.【解析】 如图,⎠⎛-12|x |d x =12+2=52.【答案】 528.曲线y =1x 与直线y =x ,x =2所围成的图形面积用定积分可表示为________.【解析】 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121x d x =⎠⎛12⎝⎛⎭⎫x -1x d x .【答案】 ⎠⎛12⎝⎛⎭⎫x -1x d x 三、解答题9.已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛023x 3d x ;(2)⎠⎛146x 2d x ;(3)⎠⎛12(3x 2-2x 3)d x .【解】 (1)⎠⎛023x 3d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3⎝⎛⎭⎫14+154=12. (2)⎠⎛146x 2d x =6⎠⎛14x 2d x=6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6⎝⎛⎭⎫73+563=126. (3)⎠⎛12 (3x 2-2x 3)d x =3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=-12.10.利用定积分的几何意义,求⎠⎛-111-x 2d x 的值.【解】 y =1-x 2(-1≤x ≤1)表示圆x 2+y 2=1在x 轴上方的半圆(含圆与x 轴的交点).根据定积分的几何意义,知⎠⎛-111-x 2d x 表示由曲线y =1-x 2与直线x =-1,x =1,y =0所围成的平面图形的面积,所以⎠⎛-111-x 2d x =S 半圆=12π.[能力提升]1.设曲线y =x 2与直线y =x 所围成的封闭区域的面积为S ,则下列等式成立的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y【解析】 作出图形如图,由定积分的几何意义知,S =⎠⎛01(x -x 2)d x ,选B.【答案】 B2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图1-5-4所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )图1-5-4A .在t 1时刻,甲车在乙车前面B .t 1时刻后,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面【解析】 根据定积分的概念以及几何意义等有关知识可知,由题图可知,曲线v 甲比v 乙在0~t 0,0~t 1与x 轴所围成图形面积大,则在t 0,t 1时刻,甲车均在乙车前面,故选A.【答案】 A3.定积分⎠⎛2 0162 0172 017 d x =________________.【解析】 由定积分的几何意义知,定积分表示由直线x =2 016,x =2 017与y =2 017,y =0所围成矩形的面积,所以⎠⎛2 0162 0172 017d x =(2 017-2 016)×2 017=2 017.【答案】 2 0174.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[-2,2),2x ,[2,π),cos x ,[π,2π],求f (x )在区间[-2,2π]上的积分.【解】 由定积分的几何意义知⎠⎛-22x 3d x =0,⎠⎛2π2x d x =(2π+4)(π-2)2=π2-4, ⎠⎛π2π∫2ππcos x d x =0. 由定积分的性质得⎠⎛-22πf (x )d x =⎠⎛-22x 3d x +⎠⎛2π2x d x +⎠⎛π2πcos x d x =π2-4.。

高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。

类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

高二数学选修2-2练习题.doc.docx

高二数学选修2-2练习题.doc.docx
0.2
0.3
0.4
⑶P(2
x<4)
P( x
2)
P( x
3)
0.20.3
0.5
B组答案
13—17. BABDD 18.
16
19. 15
21
22、解:(1)由题知,总得分X的概率分布列为:
2
3
21. 0.135
X-300-100100300
P
0.23
C320.220.8 C320.2 0.82
0.83
∴EX=3000.23( 100) C320.220.8100 C320.2 0.82300 0.83
X的数学期望EX
6
X
0
1
2
3
P
a
1
1
b
3
6
则a=_____
___.
9、一个袋中有
10个大小相同的小球,其中
6个红球,4个白球,现从中摸
3个,至少摸到2
个白球的概率是__________________.
三.解答题:本大题共
3小题,共
41分,解答题应写出文字说明、证明过程或演算步骤
.
10、(本题
12分)有品,其中
21、已知Y~N(3,1),P(4<Y<5)=_____________.
六、解答 :本大 共3小 ,共41分,解答 写出文字 明、 明 程或演算步 。
22、某考生参加一种 ,需回答三个 , 定:每 回答正确得
100分,回答不正确得
-100
分。已知 考生每 回答正确的概率都是
0.8,且各 回答正确与否相互之 没有
∴所求概率P(A)=19
36
(2)由 分析知,X的可能取0,1,2,

高二理科数学选修2-2测试题及答案(最新整理)

高二理科数学选修2-2测试题及答案(最新整理)
3
1
B. sin1+cos1
3
1
C. sin1-cos1
3
D.sin1+cos1
3、设 a R ,函数 f x ex aex 的导函数为 f ' x ,且 f ' x 是奇函数,则 a 为( )
A.0
B.1
C.2
D.-1
4、定积分
1
(2
x
e
x
)dx
的值为(

0
A. 2 e
B. e
C. e
2
3
3 27
为极大值,而 f (2) 2 c ,则 f (2) 2 c 为最大值,要使 f (x) c2 , x [1, 2]
恒成立,则只需要 c2 f (2) 2 c ,得 c 1,或c 2 …………12 分
21 解:(1) f (x) 6x2 6x, f (2) 12, f (2) 7, ………………………2 分
x
h x hx
0, x2

A
x2
0 极小值
x2,

A
1
依题意,
1 8a2 1,即 a2 3 ,
4
∵ a 0 ,∴ a 3 .
(2)解:对任意的 x1, x2 1,e 都有 f x1 ≥ g x2 成立等价于对任意的 x1, x2 1,e 都
有 f xmin ≥ g xmax . 当 x [1, e ]时, g x 1 1 0 .

A.f(0)+f(2) 2 f(1)
B.f(0)+f(2) 2 f(1)
C.f(0)+f(2)> 2 f(1)
D.f(0)+f(2) 2 f(12)
0

高中数学选修2-2分章节测试卷(含答案)

高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。

上海市高中数学选修2-2第二章《变化率与导数》检测题(含答案解析)

上海市高中数学选修2-2第二章《变化率与导数》检测题(含答案解析)

一、选择题1.直线2y x b =+是曲线ln y x x =的一条切线,则实数b =( )A .eB .2eC .e -D .2e -2.如图,()y f x =是可导函数,直线l :2y kx =+是曲线()y f x =在3x =处的切线,令2()()g x x f x =,()g x '是()g x 的导函数,则()3g '等于( )A .3B .0C .2D .4 3.设点P 是曲线()233x f x e x =-+上的任意一点,点P 处的切线的倾斜角为α,则角α的取值范围是( )A .2,3ππ⎡⎫⎪⎢⎣⎭B .20,,23πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭C .50,,26πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭D .5,26ππ⎡⎫⎪⎢⎣⎭ 4.已知()sin cos f x x x =-,定义1()()f x f x '=,[]'21()()f x f x =,…[]1()()n n f x f x '+=,(*n N ∈),经计算,1()cos sin f x x x =+,2()sin cos f x x x =-+,3()cos sin f x x x =--,…,照此规律,2019()f x =( ) A .cos sin x x -- B .cos sin x x - C .sin cos x x + D .cos sin x x -+ 5.已知()ln f x x =,217()(0)22g x x mx m =++<,直线l 与函数()f x ,()g x 的图象都相切,且与()f x 图象的切点为(1,(1))f ,则m 的值为( ) A .2-B .3-C .4-D .1- 6.曲线2x y x =-在点()1,1-处的切线方程为 A .21y x =-+B .32y x =-+C .23y x =-D .2y x =- 7.直线2y kx =+与曲线32y x ax b =++相切于点(1,4),则4a b +的值为( ) A .2 B .-1 C .1 D .-28.已知函数()f x 的导函数为()f x ',且满足()2()f x xf e ='lnx +,则()f e =( ) A .e B .1e - C .1- D .e -9.已知(,()),(,())M t f t N s g s 是函数()ln f x x =,()21g x x =+的图象上的两个动点,则当MN 达到最小时,t 的值为 ( ) A .1 B .2 C .12 D .35510.对任意的a ∈R ,曲线y =e x (x 2+ax+1-2a)在点P(0,1-2a)处的切线l 与圆C :(x-1)2+y 2=16的位置关系是( )A .相交B .相切C .相离D .以上均有可能 11.设点P ,Q 分别是曲线x y xe -=(e 是自然对数的底数)和直线+3y x =上的动点,则P ,Q 两点间距离的最小值为( )A .22B .322C .(41)22e -D .(41)22e + 12.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2020S 的值为( )A .20202021B .20192020C .20182019D .20172018二、填空题13.已知函数()x f x e =,则过原点且与曲线()y f x =相切的直线方程为____________. 14.直线y b =分别与直线21y x =+和曲线2ln y x x =+相交于点A 、B ,则AB 的最小值为________.15.已知223,1()ln ,1x x x f x x x ⎧--+≤=⎨>⎩,若函数1()2y f x kx =-+有4个零点,则实数k 的取值范围是______.16.若直线y kx b =+是曲线ln 3y x =+的切线,也是曲线ln(1)y x =+的切线,则b =______17.曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为_____________.18.已知函数为偶函数,若曲线的一条切线的斜率为,则该切点的横坐标等于______.19.设曲线x y e =上点P 处的切线平行于直线10x y --=,则点P 的坐标是__________.20.已知函数()f x 的导函数为()f x ',且满足2()32(2)f x x xf ,则(3)f '=_______.三、解答题21.设函数f (x )=x 3+ax 2+bx+c 满足f'(0)=4,f'(-2)=0.(1)求a ,b 的值及曲线y=f (x )在点(0,f (0))处的切线方程;(2)若函数f (x )有三个不同的零点,求c 的取值范围.22.已知函数24(),(1)2,'(1)13f x ax ax b f f =-+==; (1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.23.已知二次函数f (x )=ax 2+ax ﹣2b ,其图象过点(2,﹣4),且f′(1)=﹣3. (Ⅰ)求a ,b 的值;(Ⅱ)设函数h (x )=xlnx+f (x ),求曲线h (x )在x=1处的切线方程.24.已知函数()x f x xe =.(1)求这个函数的导数;(2)求这个函数的图象在点1x =处的切线方程.25.设2012(21)...()n n n x a a x a x a x x R +=++++∈展开式中仅有第1011项的二项式系数最大.(1)求n ;(2)求0123...(1)n n a a a a a -+-+-;(3)求12323...n a a a na ++++26.求下列函数的导函数.(1)()521y x =+(2)1log 32a y x =+【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求导得到()'ln 1fx x =+,计算切点为(),e e ,代入直线方程得到答案.【详解】 ()ln y f x x x ==,则()'ln 1f x x =+,取()'ln 12f x x =+=,解得x e =, 当x e =时,ln y e e e ==,故切点为(),e e ,代入直线得到2e e b =+,故b e =-. 故选:C.【点睛】本题考查了根据切线方程求参数,意在考查学生的计算能力和转化能力.2.A解析:A【分析】2y kx =+是曲线()y f x =在3x =处的切线求出=(3)k f ,由图(3)=1f ,对2()()g x x f x =求导取值可得.【详解】2y kx =+是曲线()y f x =在3x =处的切线,所以切点(3,1)代入切线方程得1=(3)=3k f ,又(3)=1f 2()()g x x f x =,2()2()+()g x xf x x f x ''=,(3)6(3)+9(3)=3g f f ''∴=故选:A.【点睛】本题考查导数的几何意义.根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点00)(P x y ,既在曲线上又在切线上构造方程组求解.3.B解析:B【分析】先对函数进行求导,然后表示出切线的斜率,求出斜率范围,再由切线的斜率与倾斜角之间的关系求倾斜角范围即可.【详解】由()23xf x e =+,所以()'=x f x e又P 是曲线()23x f x e =+上的任意一点,点P 处的切线的倾斜角为α,所以点P 处的切线的斜率为tan α==x k e 0x e >,所以tan α>所以角α的取值范围为20,,23πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭. 故选:B.【点睛】本题主要考查导数的几何意义及导数的求法,属于基础题 . 4.A解析:A【分析】根据归纳推理进行求解即可.【详解】解:由题意知:()sin cos f x x x =-,1()()cos sin f x f x x x '==+,[]1'2()()sin cos f x f x x x ==-+,[]'23()()cos sin f x f x x x ==--,[]'34()()sin cos f x f x x x ==-,照此规律,可知:[]'201923()()co )s (s in f x f x x x f x ==--=,故选:A.【点睛】本题考查函数值的计算,利用归纳推理是解决本题的关键. 5.A解析:A【分析】先利用导数求切线斜率,再根据点斜式方程得切线方程,最后根据判别式为零得结果.【详解】1()f x x'=, 直线l 是函数()f x lnx =的图象在点(1,0)处的切线,∴其斜率为k f ='(1)1=,∴直线l 的方程为1y x =-.又因为直线l 与()g x 的图象相切, ∴211722y x y x mx =-⎧⎪⎨=++⎪⎩,消去y ,可得219(1)022x m x +-+=, 得△2(1)902(4m m m =--=⇒=-=不合题意,舍去),故选A【点睛】本题主要考查函数导数的几何意义,考查直线和曲线的位置关系,意在考查学生对这些知识 的理解掌握水平和分析推理能力.6.A解析:A【分析】求得函数的导数,可得切线的斜率,运用点斜式方程可得切线的方程.【详解】2x y x =-的导数为22'(2)y x =--, 可得曲线22y x =-在点()1,1-处的切线斜率为1'|2x k y ===-, 所以曲线2x y x =-在点()1,1-处的切线方程为12(1)y x +=--, 即21y x =-+,故选A.【点睛】该题考查的是有关曲线在某点处的切线方程的问题,涉及到的知识点有求导公式,导数的几何意义,直线方程的点斜式,属于简单题目.7.A解析:A【解析】【分析】求得函数的导数,可得切线的斜率,由切点满足切线的方程和曲线的方程,解方程即可求解,得到答案.【详解】由题意,直线2y kx =+与曲线32y x ax b =++相切于点(1,4),则点(1,4)满足直线2y kx =+,代入可得412k =⨯+,解得2k =,又由曲线()32f x x ax b =++,则()232f x x a '=+, 所以()213122f a '=⨯+=,解得12a =-,即()3f x x xb =-+, 把点(1,4)代入()3f x x x b =-+,可得3411b =-+,解答4b =, 所以144()422a b +=⨯-+=,故选A .【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义,合理准确计算是解答的关键,着重考查了推理与运算能力,属于基础题. 8.C解析:C【分析】求得()12()f x f e x '='+,令x e =,解得1()f e e '=-,得到()2f x x lnx e=-+,即可求解()f e 的值,得到答案.【详解】由题意,函数()2()f x xf e ='lnx +,则()12()f x f e x '='+, 令x e =,则()12()f e f e e '='+,解得1()f e e '=-,即()2f x x lnx e =-+, 令x e =,则()2ln 1f e e e e=-⨯+=-,故选C. 【点睛】 本题主要考查了导数运算,以及函数值的求解,其中正确求解函数的导数,求得()f e '的值,得出函数的解析式是解答的关键,着重考查了运算与求解能力,属于基础题. 9.C解析:C【分析】求得()f x 图像上切线斜率为2的切点的横坐标,即是t 的值.【详解】依题意可知,当()f x 图像上的切线和()21g x x =+平行时,MN 取得最小值,令()'12f x x ==,解得12x =,故12t =,所以选C. 【点睛】本小题考查函数导数,考查切线斜率与导数的对应关系,属于基础题.10.A解析:A【解析】【分析】求出曲线y =e x (x 2+ax +1﹣2a )在点P (0,1﹣2a )处的切线l 恒过定点(﹣2,﹣1),代入:(x ﹣1)2+y 2﹣16,可得9+1﹣16<0,即定点在圆内,即可得出结论.【详解】∵y=e x (x 2+ax+1-2a ),∴y′=e x (x 2+ax+2x+1-a ),x=0时,y′=1-a ,∴曲线y=e x (x 2+ax+1-2a )在点P (0,1-2a )处的切线y-1+2a=(1-a )x ,恒过定点(-2,-1),代入:(x-1)2+y 2=16,可得9+1-16<0,即定点在圆内, ∴切线l 与圆C :(x-1)2+y 2=16的位置关系是相交.故选:A .【点睛】本题考查导数的几何运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.11.B解析:B【分析】对曲线y =xe ﹣x 进行求导,求出点P 的坐标,分析知道,过点P 直线与直线y =x +2平行且与曲线相切于点P ,从而求出P 点坐标,根据点到直线的距离进行求解即可.【详解】∵点P 是曲线y =xe ﹣x 上的任意一点,和直线y =x +3上的动点Q ,求P ,Q 两点间的距离的最小值,就是求出曲线y =xe ﹣x 上与直线y =x +3平行的切线与直线y =x +3之间的距离.由y ′=(1﹣x )e ﹣x ,令y ′=(1﹣x )e ﹣x =1,解得x =0,当x =0,y =0时,点P (0,0),P ,Q 两点间的距离的最小值,即为点P (0,0)到直线y =x +3的距离,∴d min故选B.【点睛】此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,是基础题. 12.A解析:A【分析】由2()f x x bx =+,求导得到()2f x x b '=+,再根据函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,由(1)23f b '=+=求解,从而得到()2()1f x x x x x =+=+,则()1111()11f n n n n n ==-++,再利用裂项相消法求解. 【详解】因为2()f x x bx =+,所以()2f x x b '=+,因为函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,所以(1)23f b '=+=,解得1b =,所以()2()1f x x x x x =+=+, 数列()1111()11f n n n n n ==-++, 所以202011111111...12233420202021S =-+-+-++-, 12020120212021=-=. 故选:A【点睛】本题主要考查导数的几何意义以及数列的裂项法求和,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】因为函数设切点坐标为利用导数求出曲线在切点的切线方程将原点代入切线方程求出的值即可求得所求的切线方程【详解】设切点坐标为则曲线在点处的切线方程为:由于该直线过原点则得则过原点且与曲线相切的直 解析:0ex y -=【分析】因为函数()x f x e =,设切点坐标为(),t t e ,利用导数求出曲线()y f x =在切点(),t t e 的切线方程,将原点代入切线方程,求出t 的值,即可求得所求的切线方程.【详解】设切点坐标为(),t t e , ()x f x e =,()x f x e '∴=,()t f t e '=,则曲线()y f x =在点(),t t e 处的切线方程为:()t ty e e x t -=-, 由于该直线过原点,则t t e te -=-,得1t =,∴则过原点且与曲线()y f x =相切的直线方程为y ex =,故答案为:0ex y -=.【点睛】本题考查导数的几何意义,考查求函数图象的切线方程,解题关键是掌握求过线外一点曲线切线方程的求法,考查了分析能力和计算能力,属于中档题.14.【分析】求出函数的斜率为2的切线方程与两条平行线的交点间的横坐标之差为的最小值【详解】如图作出函数的图象作直线平移到与函数图象相切由图象知直线与这两条平行线的交点的横坐标之差为所求最小值由得令得此时 解析:3ln 22- 【分析】求出函数2ln y x x =+的斜率为2的切线方程,y b =与两条平行线的交点间的横坐标之差为AB 的最小值.【详解】如图,作出函数2ln y x x =+的图象,作直线21y x =+,平移到与函数图象相切,由图象知直线y b =与这两条平行线的交点的横坐标之差为所求最小值.由2ln y x x =+得21y x '=+,令212y x'=+=得2x =,此时22ln 2y =+,即切点为(2,22ln 2)+,由22ln 221y y x =+⎧⎨=+⎩得1ln 2222ln 2x y ⎧=+⎪⎨⎪=+⎩,∴min 132(ln 2)ln 222AB =-+=-. 故答案为:3ln 22-.【点睛】本题考查导数的几何意义,考查函数图象交点问题,解题关键是转化与化归思想的应用,把直线y b =与直线21y x =+和曲线2ln y x x =+交点间距离的最小值转化为直线21y x =+与函数图象的平行切线间的问题.利用导数几何意义即可迅速求解. 15.【分析】转化条件得有4个零点令画出两函数的图象后可得当函数过点和时函数与的图象相切时函数与的图象恰有3个交点;当在两者范围之间时满足条件利用导数的性质求出函数与的图象相切时的值即可得解【详解】由题意解析:1(2e 【分析】转化条件得1()2f x kx =-有4个零点,令()12g x kx =-,画出两函数的图象后可得当函数()g x 过点10,2⎛⎫- ⎪⎝⎭和()1,0时、函数()g x 与()ln 1y x x =>的图象相切时,函数()g x 与()f x 的图象恰有3个交点;当k 在两者范围之间时,满足条件,利用导数的性质求出函数()g x 与()ln 1y x x =>的图象相切时k 的值即可得解.【详解】由题意1()2y f x kx =-+有4个零点即1()2f x kx =-有4个零点, 设()12g x kx =-,则()g x 恒过点10,2⎛⎫- ⎪⎝⎭, ∴函数()g x 与()f x 的图象有4个交点,在同一直角坐标系下作出函数()g x 与()f x 的图象,如图,由图象可知,当12k <时,函数()g x 与()f x 的图象至多有2个交点; 当函数()g x 过点10,2⎛⎫-⎪⎝⎭和()1,0时,12k =,此时函数()g x 与()f x 的图象恰有3个交点; 当函数()g x 与()ln 1y x x =>的图象相切时,设切点为(),ln a a ,1y x'=, ∴1k a =,∴1ln 12a a a+=,解得a e =, ∴e k e=,此时函数()g x 与()f x 的图象恰有3个交点; 当e k e>时,两函数图象至多有两个交点; ∴若要使函数1()2y f x kx =-+有4个零点,则1(,)2k e e∈. 故答案为:1(,)2e e.【点睛】本题考查了函数的零点问题和导数的几何意义,考查了数形结合思想,属于中档题. 16.【分析】对两条曲线对应的函数求导设出两个切点的横坐标令它们的导数相等求出两条曲线在切点处的切线方程对比系数求得的值【详解】依题意设直线与相切切点的横坐标为即切点为设直线与相切切点的横坐标为即切点为令 解析:2ln 3-【分析】对两条曲线对应的函数求导,设出两个切点的横坐标,令它们的导数相等,求出两条曲线在切点处的切线方程,对比系数求得b 的值.【详解】依题意,()()''11ln 3,ln 11x x x x +=+=⎡⎤⎣⎦+,设直线y kx b =+与ln 3y x =+相切切点的横坐标为0x ,即切点为()00,ln 3x x +,设直线y kx b =+与()ln 1y x =+相切切点的横坐标为1x ,即切点为()()11,ln 1x x +,令01111x x =+,解得101x x =-,故直线y kx b =+与()ln 1y x =+相切切点为()001,ln x x -.由此求出两条切线方程为()()0001ln 3y x x x x -+=-和()0001ln 1y x x x x -=-+;即001ln 2y x x x =++和000111ln y x x x x =-++,故0001ln 21ln x x x +=-++,013x =,故0ln 22ln3b x =+=-.【点睛】本小题主要考查两条曲线共切线方程的问题,考查切线方程的求法,考查导数的运算,属于中档题.17.【分析】对函数求导求写出切线方程与y=0y=x 联立求交点的坐标即可求面积【详解】∵∴∴切线的斜率且过点(02)∴切线为∴∴切线与x 轴交点为(10)与的交点为∴切线与直线和围成的三角形的面积为故答案为 解析:13【分析】对函数求导,求()0f ' ,写出切线方程,与y=0,y=x 联立求交点的坐标,即可求面积.【详解】∵21x y e -=+,∴22x y e -=-',∴切线的斜率02x k y ='==-,且过点(0,2),∴切线为22y x -=-,∴22y x =-+,∴切线与x 轴交点为(1,0),与y x =的交点为22,33⎛⎫ ⎪⎝⎭,∴切线与直线0y =和y x =围成的三角形的面积为1211233S =⨯⨯=.故答案为1.3【点睛】本题考查了导数的几何意义,在某点处的切线,属于基础题.18.ln3【解析】【分析】函数f(x)=ex+ae-x 为偶函数利用f(-x)=f(x)可得:a=1f(x)=ex+e-x 利用导数的几何意义即可得出【详解】∵函数f(x)=ex+ae-x 为偶函数∴f(-x 解析:【解析】【分析】 函数为偶函数,利用,可得:,利用导数的几何意义即可得出. 【详解】 函数为偶函数, ,即, 可得:.,, 设该切点的横坐标等于,则, 令,可得,化为:,解得. ,解得. 则该切点的横坐标等于. 故答案为:. 【点睛】本题考查了利用导数研究切线的斜率、函数的奇偶性,考查了推理能力与计算能力,属于中档题. 19.【解析】【详解】∵切线与直线平行∴斜率为∵∴∴∴∴切点为因此本题正确答案是:解析:(0,1)【解析】【详解】∵切线与直线10x y -+=平行,∴斜率为1,∵x y e =,e x y '=,∴0()1y x '=,∴01x e =,∴00x =,∴切点为(0,1),因此,本题正确答案是:(0,1).20.-6【解析】则解得则故答案为解析:-6【解析】()()()()232'2,'62'2f x x xf f x x f=+∴=+,则()()'2622'2f f=⨯+,解得()'212f=-,则()()'624,'318246f x x f=-∴=-=-,故答案为6- .三、解答题21.(1)a=b=4,y=4x+c;(2)(0,32 27).【解析】试题分析:(1)求出f(x)的导数,由f'(0)=4,f'(-2)=0求得a,b的值,再求得切线的斜率和切点,进而得到所求切线的方程;(2)由f(x)=0,可得-c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由-c介于极值之间,解不等式即可得到所求范围.试题(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,根据题意得:()()0421240f bf a b⎧==⎪⎨-=-+=''⎪⎩,解得4,4a b==.可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b=4,切点为(0,c),可得切线的方程为y=4x+c;(2)由(1)f(x)=x3+4x2+4x+c,由f(x)=0,可得−c= x3+4x2+4x,由g(x)= x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2)当23x>-或x<−2时,g′(x)>0,g(x)递增;当−2<x<−23时,g′(x)<0,g(x)递减.即有g(x)在x=−2处取得极大值,且为0;g(x)在x=−23处取得极小值,且为−3227,由函数f(x)有三个不同零点,可得−3227<−c<0,解得0<c<32 27,则c的取值范围是(0,32 27).22.(1)235()222f x x x =-+;(2)10x y -+=. 【解析】 试题分析: (1)由题意得到关于实数a,b 的方程组,求解方程组可得函数的解析式为()235222f x x x =-+ (2)利用导函数与切线方程的关系可得f (x )在(1,2)处的切线方程为x -y +1=0.试题(1)f ′(x )=2ax -a .由已知得解得∴f (x )=x 2-2x +.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.23.(Ⅰ)a=b=﹣1;(Ⅱ)2x+y ﹣2=0.【解析】试题分析:(Ⅰ)由题意可得f (2)=﹣4,代入f (x )解析式,求出f (x )的导数,代入x=1,解方程可得a=b=﹣1;(Ⅱ)求出h (x )的解析式,求得导数,可得切线的斜率,再由点斜式方程可得切线的方程.解:(Ⅰ)由题意可得f (2)=﹣4,即为4a+2a ﹣2b=﹣4,又f′(x )=2ax+a ,可得f′(1)=3a=﹣3,解方程可得a=b=﹣1;(Ⅱ)函数h (x )=xlnx+f (x )=xlnx ﹣x 2﹣x+2,导数h′(x )=lnx+1﹣2x ﹣1=lnx ﹣2x ,即有曲线h (x )在x=1处的切线斜率为ln1﹣2=﹣2,切点为(1,0),则曲线h (x )在x=1处的切线方程为y ﹣0=﹣2(x ﹣1),即为2x+y ﹣2=0.考点:利用导数研究曲线上某点切线方程;导数的运算.24.(1)()x x f x e xe '=+;(2).【分析】(1)因为()x f x xe =,则()()''()x x x x f x x e x e e xe =+=+'(2)因为(1)2k f e '==,过点(1,e ),那么可知切线方程为2(1)y e e x -=-【详解】(1)()()''()x xx x f x x e x e e xe =+=+'.(2)(1)2k f e '==,当1x =时,y e =,因此,这个函数的图象在点1x =处的切线方程是2(1)y e e x -=-, 即. 本试题主要是考查了函数的导数的求解以及导数的几何意义的运用.25.(1) 2020;(2) 1;(3) 201940403⨯.【分析】(1)根据二项展开式的项数与指数n 的关系,再根据中间项的位置特点,就可以判断出展开 式中总共有多少项,从而可以求出指数n 的值;(2)根据(1)式求得的n 值,观察所求与2012(21)...n nn x a a x a x a x +=++++的特点,令1x =-,即可求得所需要的结果;(3) 根据(1)式求得的n 值,观察所求与2012(21)...n nn x a a x a x a x +=++++的特点,令 2012()(21)...n n n f x x a a x a x a x =+=++++,求出()f x ',再令1x =,即可求得所需要的结果.【详解】(1)根据二项式系数的对称性,2020n =;(2)由(1)及题意2020220200122020(21)...x a a x a x a x +=++++,∴令1x =-, 则[]20202020012301232020...(1)...(1)2(1)11n n a a a a a a a a a a -+-+-=-+-+-=⨯-+=;(3)由(1)及题意令2020220200122020()(21)...f x x a a x a x a x =+=++++,20192019122020()4040(21)2...2020f x x a a x a x '∴=+=+++,2019123123202023...23...2020(1)40403n a a a na a a a a f '∴++++=++++==⨯.【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于中档题. 26.(1)410(21)y x '=+;(2)3(32)ln y x a'=-+ 【分析】根据复合函数求导法则计算.【详解】(1)445(21)210(21)y x x '=+⨯=+;(2)log (32)a y x =-+,133(32)ln (32)ln y x a x a'=-⨯=-++. 【点睛】 本题考查复合函数求导法则,掌握复合函数的求导运算法则是解题基础.。

期末高二数学选修2-2、2-3测试题(含答案)

期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。

(完整版)高中数学选修2-2综合测试题(附答案)

(完整版)高中数学选修2-2综合测试题(附答案)

高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。

已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。

【高二数学】选修2-2综合测试含答案解析

【高二数学】选修2-2综合测试含答案解析

选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(3)

一、选择题1.0xdx +=( )A .2π B .12π+ C .4π D .π2.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .34.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 5.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-6.侧面与底面所成的角是45︒,则该正四棱锥的体积是( )A .23B .43C .3D .37.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .28.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .929.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .2310.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 11.()211x dx --=⎰( )A .1B .4π C .2π D .π12.204x dx -=( )A .4B .1C .4πD .33π二、填空题13.()2208x x dx -=⎰______.14.曲线2yx x 和2yx x 所围成的封闭图形的面积是_______.15.两个函数12y x =与2y x =-,它们的图象及y 轴围成的封闭图形的面积为______ 16.在直线0x =,1x =,0y =,1y e =+围成的区域内撒一粒豆子,则落入0x =,1y e =+,e 1x y =+围成的区域内的概率为__________.17.1321(tan sin )x x x x dx -++⎰的值为______________________18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________. 19.由直线0x =, 23x π=,0y =与曲线2sin y x =所围成的图形的面积等于________. 20.定积分120124x x dx π⎫--⎪⎭⎰的值______.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积. 22.已知函数1()ln ()f x x b x b R x=--∈,且曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直. (Ⅰ)求b 的值;(Ⅱ)设2()g x x =,求证()()2ln 2g x f x >-.23.已知定义域为R 的函数f (x)有一个零点为1, f (x)的导函数()12f x x '=()()2212ax a g x f x +-=+,其中a R ∈.(1)求函数f (x)的解析式; (2)求()g x 的单调区间;(3)若()g x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.24.已知曲线C :322321y x x x =--+,点1(,0)2P ,求过P 的切线l 与C 围成的图形的面积.25.已知()y f x =是二次函数,方程0f x 有两相等实根,且()22f x x '=+(Ⅰ)求()f x 的解析式.(Ⅱ)求函数()y f x =与函数241y x x =--+所围成的图形的面积.26.(1)已知0a >,求a-⎰;(2)求证:椭圆22221(0)x y a b a b+=>>的面积为ab π.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果.【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案A 。

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

高中数学选修2-2综合测试题与答案.doc

高中数学选修2-2综合测试题与答案.doc

选修 2-2 综合测试题2一、选择题1.在数学归纳法证明“1 a a2an 1 a n 1(a,N ) ”时,验证当 n1时,等式的左1 n1 a边为( )A. 1B. 1aC. 1 aD. 1 a22.已知三次函数f ( x)1 x 3 (4 m 1)x 2(15m22m7) x 2 在 x ( ∞ , ∞ ) 上是增函数,则 m 的3取值范围为( )A. m 2 或 m4B. 4 m2C. 2 m 4 D.以上皆不正确3.设 f ( x)( axb)sin x(cxd )cos x ,若 f ( x) x cosx ,则 a , b , c , d 的值分别为( )A. 1,1,0, 0B. 1,0,1,0C. 0,1,0,1D. 1,0,0,14.已知抛物线 y ax2 bx c 通过点 P(11), ,且在点 Q(2, 1) 处的切线平行于直线 yx 3,则抛物线方程为( )A. y 3x211x 9B. y3x211x9C. y 3x211x 9D. y3x 2 11x92a n ,0≤ a n ≤1,26,则 a 2004 的值为(5.数列 a n满足 a n 11若 a 1)2a ≤ a n,7n,112A.6B. 5C.3D.177776.已知 a , b 是不相等的正数,x a b, ya b ,则 x , y 的关系是()2A. x yB. yxC. x2 yD.不确定7.复数 zm 2i( m R) 不可能在()1 2iA.第一象限B.第二象限C.第三象限D.第四象限8.定义A B,B C, C D, D A 的运算分别对应下图中的(1),(2),(3),(4),那么,图中(A),(B)可能是下列()的运算的结果A. B D,A DB.B D,A CC.B C,A DD.C D,A D- 1 -9.用反证法证明命题“a, b N ,如果 ab 可被5整除,那么 a , b 至少有1个能被5整除.”则假设的内容是()A. a , b 都能被5整除B. a , b 都不能被 5 整除C. a 不能被5整除D. a , b 有 1 个不能被 5 整除10.下列说法正确的是()A.函数C.函数y x 有极大值,但无极小值B.函数y x 既有极大值又有极小值D.函数y x 有极小值,但无极大值y x 无极值11.对于两个复数 1 3 i , 1 3 i,有下列四个结论:① 1 ;② 1 ;③ 1 ;2 2 2 2④33 1).其中正确的个数为(A. 1 B. 2 C. 3 D. 412.设f ( x)在[ a,b]上连续,则 f ( x)在[ a,b]上的平均值是()A. f ( a) B. b C.1D.f (b) f (x)dx b f ( x) dx 1 b f ( x)dx2 a 2 a b a a二、填空题13.若复数z log2( x23x 3) i log 2 ( x 3) 为实数,则x 的值为.14.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2006 年圆中有实心圆的个数为.15.函数f ( x) ax36ax 2b(a0) 在区间 [ 1,2] 上的最大值为,最小值为29 ,则 a , b 的值分3别为.16.由y2 4 x 与直线 y 2 x 4 所围成图形的面积为.三、解答题n n17.设n N且sin x cos x 1 ,求 sin x cos x 的值.(先观察 n 1,2,3,4 时的值,归纳猜测sin n x cos n x 的值.)18.设关于x的方程x2(tan i ) x (2 i)0 ,(1)若方程有实数根,求锐角和实数根;- 2 -(2)证明:对任意πkπ (k Z ) ,方程无纯虚数根.219.设t0 ,点 P(t,0) 是函数 f (x) x 3ax 与 g( x) bx 2 c 的图象的一个公共点,两函数的图象在点 P 处有相同的切线.(1)用t表示a,b,c;( 2)若函数y f (x) g ( x)在( 1,3)上单调递减,求 t 的取值范围.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若 a b c,且 a b c0 ,则 b 2 ac3 .a21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为k(k0) ,且知当利率为0.012 时,存款量为 1.44 亿;又贷款的利率为 4.8% 时,银行吸收的存款能全部放贷出去;若设存款的利率为x , x (0 ,0.048) ,则当 x 为多少时,银行可获得最大收益?22.已知函数 f ( x)x,数列 a n 满足 a1 f ( x) , a n 1f (a n ) .( x 0)1 x2(1)求a2,a3,a4;(2)猜想数列an的通项,并予以证明.参考答案一、选择题: CCDAC,BABBBD二、填空题: 13、4, 14 、61, 15 、 2,3 16、917、解:当n 1 时, sin x cosx 1 ;当 n 2 时,有 sin 2 x cos 2 x 1 ;当 n 3 时,有 sin 3 x cos 3 x (sin x cos x)(sin 2 x cos 2 x sin xcos x) ,而 sin x cos x 1 ,∴1 2sin x cos x 1 , sin xcos x 0 .∴ sin3 x cos 3 x1 .当 n 4 时,有 sin 4 x cos 4 x (sin 2 x cos2 x) 2 2sin 2 xcos 2 x 1 .由以上可以猜测,当n N时,可能有sin n x cos n x( 1) n成立.18、解:( 1)设实数根为a,则a2(tan i )a (2 i ) 0 ,即(a2a tan2) (a1)i 0 .R ,那么a 2 ,a , a 1,由于 a , tan a tan tan 2 0 .又 0 π,得πa 1 1 tan 1 2 .4- 3 -(2)若有纯虚数根i(R ) ,使 ( i) 2 (tan)(i ) i (2 ) i 0 ,即 ( 2 2) ( tan 1) i0 ,22 ,由, tan R ,那么,0 由于2 2 0 无实数解.tan 1 0故对任意πZ ) ,方程无纯虚数根kπ (k219、解:( 1)因为函数 f ( x) , g (x) 的图象都过点 (t,0) ,所以 f (t ) 0 ,即 t 3 at 0 .因为 t 0 ,所以 a t 2.g (t ) 0 ,即 bt 2 c 0 ,所以 c ab .又因为 f ( x) , g (x) 在点 (t,0) 处有相同的切线,所以 f (t )g (t ) ,而 f ( x) 3x 2 a , g (x)2bx ,所以 3t 2 a 2bt .将 a t 2代入上式得 b t .因此c ab t 3.故a t2, b t , c t 3.(2)y f (x)g (x) x3t 2 x tx 2t 3, y3x22tx t 2(3 x t )( x t ) .当 y(3x t )( x t) 0 时,函数 y f ( x) g (x) 单调递减.由 y 0 ,若 t 0 ,则tt ;x3若 t 0 ,则 t x t .3,t( 1,3) t ,( 13),由题意,函数 y f ( x) g (x) 在 ( 1,3) 上单调递减,则 3 t或t 3.所以 t ≤9 或 t ≥ 3 .又当 9 t 3时,函数y f (x) g( x)在( 1,3)上不是单调递减的.所以 t 的取值范围为∞, 9 3,∞.20、解:此命题是真命题.∵ a b c 0 , a b c ,∴ a0 , c 0 .b 2ac 2 2 2 2 2要证a3 成立,只需证bac 3a ,即证 b ac 3a ,也就是证 ( a c) ac 3a ,即证 ( a c)(2 a c) 0 .∵ a c 0 , 2a c ( a c)a b a 0 ,∴ (a c)(2 ac) 0 成立,故原不等式成立.21、解:由题意,存款量 f (x) kx2,又当利率为0.012 时,存款量为 1.44 亿,即x 0.012 时,;由2,得,那么 2 ,银行应支付的利息y 1.44 1 . 4 4 k ·(0.012) k 10000 f ( x)1 0 0 0x 0g (x) x·f (x) 10000x 3 ,- 4 -设银行可获收益为 y ,则 y480x 2 10000x 3,由于 y960x 30000x 2,则 y0 ,即 960x30000x20 ,得 x 0 或 x 0.032 .因为, x(0,0.032) 时, y0 ,此时,函数y480x 2 10000x 3递增;x (0.032 , 0.048) 时, y 0 ,此时,函数y480x 2 10000x 3递减;故当 x 0.032 时, y 有最大值,其值约为0.164亿.axx22、解:( 1)由 a 12, f (x) ,得 a 2f (a 1 )1a21 x1 2 x 2 1211xx21x a 3 f (a 2 )a 2 a 21 2 x21221x2x 21xa 3 1 3x2a 4 f (a 3 )a 21231x3x 21x13x 2 x14x2,.(2)猜想: a nxN ) ,(n1 nx2证明:( 1)当 n 1 时,结论显然成立;(2)假设当 nk 时,结论成立,即 a kx ;kx 21x那么,当 n k 1 时,由 a k 1f (a k )1 kx2x,1x 2 1 (k1)x2kx 21这就是说,当 nk1 时,结论成立;由( 1),( 2)可知, a nx 对于一切自然数 n( nN ) 都成立.1 nx 2- 5 -。

人教版新课标高中数学选修2-2《导数及其应用》单元测试题(含答案)

人教版新课标高中数学选修2-2《导数及其应用》单元测试题(含答案)

11 Oyx导数单元测试题 2014.3.12一、选择题(共10小题,每小题5分,共50分)1. 函数3(21)y x =+在0x =处的导数是 ( ) A.0B.1C.3D.62.函数)0,4(2cos π在点x y =处的切线方程是 ( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x3.设函数()f x 的导函数为()f x ',且2()2'(1)f x x x f =+⋅,则'(0)f 等于 ( )A .0 B. -4 C. -2 D. 2 4. 给出以下命题:① 若()0b af x dx >⎰,则()0f x >; ②20sin 4x dx =⎰π;③()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为 ( )A. 1B. 2C. 3D. 0 5.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3C. 极小值-1,极大值3D. 极小值-2,极大值26. 若函数32()33f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是( )A. 02b <<B. 2b <C. 0b >D. 102b << 7. 方程0109623=-+-x x x 的实根个数是( ) A .3B .2C .1D .08. 已知自由下落物体的速度为V gt =,则物体从0t =到0t 所走过的路程为( )A .2012gt B .20gt C . 2013gt D .2014gt 9.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V 10.已知函数(1)()y x f x '=-的图象如图所示,其中()f x '为函数()f x 的导函数,则()y f x =的大致图象是( )二、填空题(共4小题,每小题5分,共20分)11.dx x ⎰--3329= , dx x x ⎰+20)sin (π= .12. 已知曲线323610y x x x =++-上一点P ,则过曲线上P 点的所有切线方程中,斜率最小的切线方程是 .13.由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积为 . 14.已知R 上可导函数()f x 的图象如图所示,则不等式2(23)()0x x f x '-->的解集 .三、解答题15.(本小题满分12分)已知函数32()f x x ax bx c =+++在2x =-处取得极值,并且它的图象与直线33y x =-+ 在点( 1 , 0 ) 处相切, 求,,a b c 的值.16.(本小题满分12分)平面向量13(3,1),(,)22a b =-=,若存在不同时为0的实数k 和t 使2(3),x a t b y ka tb =+-=-+且x y ⊥,试确定函数()k f t =的单调区间.17.(本小题满分12分)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0), 如图所示.求:(1)0x 的值; (2),,a b c 的值. (3)若曲线=y )(x f )20(≤≤x 与m y =有两个不同的交点,求实数m 的取值范围.18.(本小题满分13分)已知函数()32f x x ax bx c =-+++图像上的点),1(m P 处的切线方程为31y x =-+.(1)若函数()f x 在2x =-时有极值,求()f x 的表达式; (2)函数()f x 在区间[]2,0-上单调递增,求实数b 的取值范围.19.(本小题满分13分)定义在定义域D 内的函数)(x f y =,若对任意的D x x ∈21,都有12|()()|1f x f x -<,则称函数)(x f y =为“妈祖函数”,否则称“非妈祖函数”.试问函数]1,1[()(3-∈+-=x a x x x f ,R a ∈)是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.20.(本小题满分13分) 设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.周三练习题答案1—5 DDBBC 6—10 DCACB11. 92π,218π+ 12.3110x y --=13. 1 14. (,1)(1,1)(3,)-∞-⋃-⋃+∞15.'2'2'2:()32(2)3(2)2(2)01240(1)3231,8()(1,0)1106f x x ax b f a b a b f a b a b f x a b c c =++∴-=-+-+=∴-+==++=-∴==-∴+⨯+⨯+=∴=3解又又过点,116.解:由13(3,1),(,)22a b =-=得0,2,1a b a b === 22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +--+=-+--+-=33311430,(3),()(3)44k t t k t t f t t t -+-==-=- (t ≠0)'233()0,1,144f t t t t =-><->得或;2330,1144t t -<-<<得 且 t ≠0所以增区间为(,1),(1,)-∞-+∞;减区间为(1,0),(0,1)-。

(易错题)高中数学高中数学选修2-2第一章《推理与证明》检测题(包含答案解析)

(易错题)高中数学高中数学选修2-2第一章《推理与证明》检测题(包含答案解析)

一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥3.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .94.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁5.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁6.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()2f x '=,12(),2f x '=,*1()()2n n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.已知n 为正整数用数学归纳法证明2()135(21)f n n n =++++-=时,假设*(n k k N =∈)时命题为真,即2()f k k =成立,则当1n k =+时,需要用到的(1)f k +与()f k 之间的关系式是( )A .(1)()23f k f k k +=+-B .(1)()21f k f k k +=+-C .(1)()21f k f k k +=++D .(1)()23f k f k k +=++9.高二年级有甲、乙、丙三个班参加社会实践活动,高二年级老师要分到各个班级带队,其中男女老师各一半,每次任选两个老师,将其中一个老师分到甲班,如果这个老师是男老师,就将另一个老师分到乙班,否则就分到丙班,重复上述过程,直到所有老师都分到班级,则 A .乙班女老师不多于丙班女老师 B .乙班男老师不多于丙班男老师 C .乙班男老师与丙班女老师一样多D .乙班女老师与丙班男老师一样多10.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲二、填空题13.观察下面的数阵,则第40行最左边的数是__________.14.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.15.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.16.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.17.观察下列不等式: (1)221sin cos 1αα≤≤+ (2)441sin cos 12αα≤≤+(3)661sin cos 14αα≤≤+ …… …… …… …… …… ……由此规律推测,第n 个不等式为:__________.18.已知,,a b c 为三条不同的直线,给出如下两个命题:①若,a b b c ⊥⊥,则//a c ;②若//,a b b c ⊥,则a c ⊥.试类比以上某个命题,写出一个正确的命题:设,,αβγ为三个不同的平面,__________. 19.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.已知数列{}n a 满足关系式()10a a a =>,()1122,1n n n a a n n N a --=≥∈+. (1)用a 表示2a ,3a ,4a ;(2)根据上面的结果猜想用a 和n 表示n a 的表达式,并用数学归纳法证之. 22.(1)已知数列{}n a 通项公式为()12n n n a +=,写出数列前5项. (2)记数列3333331,2,3,4,5,,,n 的前n 项和为n S ,写出n S 的前5项并归纳出nS 的计算公式.(3)选择适当的方法对(2)中归纳出的公式进行证明.23.用数学归纳法证明:()()()2222*24(2)221335212121n n n n N n n n +++⋯+=∈⋅⋅-++. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.26.已知函数()f x 满足()()233log log .f x x x =-(1).求函数()f x 的解析式;(2).当n *∈N 时,试比较()f n 与3n 的大小,并用数学归纳法证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次二项式系数对应杨辉三角形的第n +1行,然后令x =1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可. 【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n 项和为S n 1212n-==-2n ﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,则T n()12n n+ =,可得当n=10,所有项的个数和为55,则杨辉三角形的前12项的和为S12=212﹣1,则此数列前55项的和为S12﹣23=4072,故选A.【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.2.B解析:B【分析】由线面垂直与线面平行的判定,结合反证法,即可得出结果.【详解】当正四面体过点D的高与平面α垂直时,平面ABC平面α,所以BC平面α;若BC⊥平面α,因为正四面体中BC AD⊥,所以AD⊂平面α,或AD平面α,此时AD与平面α所成角为0,与条件矛盾,所以BC不可能垂直平面α;故选B【点睛】本题主要考查直线与平面平行与垂直的判定,在验证BC与平面α是否垂直时,可借助反证的思想来解决,属于中档试题.3.B解析:B【分析】由题意,可列出树形图,逐步列举,即可得到答案.【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.4.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.5.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.6.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx ,∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.C解析:C 【解析】分析:先根据条件确定()1f k +式子,再与()f k 相减得结果. 详解:因为()()13521f n n =++++-,所以()()13521f k k =++++-()()()11352121f k k k +=++++-++,所以()()121f k f k k +-=+,选C.点睛:本题考查数学归纳法,考查数列递推关系.9.C解析:C 【解析】任选两个老师共有4种情况:①男+男,则乙班中男老师数加1个;②女+女,则丙班中女老师数加1个;③男+女(男老师放入甲班中),则乙班中女老师数加1个;④女+男(女老师放入甲班中),则丙班中男老师数加1个,设一共有老师2a 个,则a 个男老师,a 个女老师,甲班中老师的总个数为a ,其中男老师x 个,女老师y 个,x y a +=,则乙班中有x 个老师,其中k 个男老师,j 个女老师,k j x +=;丙班中有y 个老师,其中l 个男老师,i 个女老师,i l y +=;女老师总数a y i j =++,又x y a +=,故x i j =+,由于x k j =+,所以可得i k =,即乙班中的男老师等于丙班中的女老师,故选C .10.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.11.B解析:B 【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T 分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.12.D解析:D 【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案. 【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话, 这与四人中只有一个人说的是真话相矛盾, 故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲 【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.二、填空题13.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数解析:1522 【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-,它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数, 所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题..14.2551【解析】观察由1起每一个转弯时增加的数字可发现为11223344…即第一二个转弯时增加的数字都是1第三四个转弯时增加的数字都是2第五六个转弯时增加的数字都是3第七八个转弯时增加的数字都是4…解析:2551【解析】观察由1起每一个转弯时增加的数字, 可发现为“1,1,2,2,3,3,4,4,…”, 即第一、二个转弯时增加的数字都是1, 第三、四个转弯时增加的数字都是2, 第五、六个转弯时增加的数字都是3, 第七、八个转弯时增加的数字都是4, …故在第100个转弯处的数为:()5015012(12350)1225512+++++⋯+=+⨯=.故答案为2551.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.15.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时16.(或)【解析】由式子可知第n 个式子分母是2n+1共2n 项所以解析:24sinsin 2121n n ππ+++++24sinsin02121k n n n ππ++=++(或212sin021nk k n π==+∑) 【解析】由式子可知,第n 个式子,分母是2n+1,共2n 项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修 2—2 测试题一、选择题(每小题 5 分,共 60 分)1、若函数y f ( x) 在区间 (a, b) 内可导,且 x0 (a, b) 则 lim f ( x0 h) f ( x0 h)h 0 h的值为()A.f'( x0) B.2 f'( x0) C. 2 f'( x0) D. 02、一个物体的运动方程为s 1 t t 2其中 s 的单位是米,t的单位是秒,那么物体在 3 秒末的瞬时速度是()A. 7 米/秒B.6米/秒C. 5米/秒D. 8米/ 秒3、函数y = x3 + x 的递增区间是()A.(0, ) B.( ,1)C.( , ) D.(1, )4、f ( x) ax3 3x2 2 ,若 f ' ( 1) 4 ,则 a 的值等于()A.19B.16C.13D.10 3 3 3 35、若曲线y x4的一条切线l与直线 x 4y 8 0 垂直,则l 的方程为()A.4x y 3 0 B.x 4 y 5 0 C.4x y 3 0 D.x 4 y 3 0 6、如图是导函数y f / ( x) 的图象,那么函数 y f ( x) 在下面哪个区间是减函数A. ( x1, x3)B. ( x2, x4)C.(x4, x6)D. (x5, x6)7、设 S(n)1 1 1 1L1 (n N *) ,当 n2 时, S(2) ( )n n1 n2 n 3n 2A. 1B.11C.1 1 1 D.1 11 12 23 2 3 42 3 4 58、如果 10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧从平衡位置拉到离平衡位置 6cm 处,则克服弹力所做的功为( )(A)0.28J(B)0.12J(C)0.26J(D)0.18J9、 有一段“三段论”推理是这样的:对于可导函数 f ( x) ,如果 f ( x 0 )0 ,那么 x x 0 是函数 f ( x) 的极值点,因为函数 f ( x) x 3 在 x 0 处的导数值 f (0) 0 ,所以, x 0 是函数 f ( x) x 3 的极值点 . 以上推理中()A .大前提错误B . 小前提错误C .推理形式错误D .结论正确10、已知直线 ykx 是 y ln x 的切线,则 k 的值为()(A )1( )1 ( )2( ) 2eBeCeDe11、在复平面内 , 复数 1 + i 与 1 3 i 分别对应向量 OA 和 OB , 其中 O 为坐标原点 , 则AB =()A. 2B.2C.10D. 4、 若点 P 在曲线 = 3-3x 2+(3- 3)x +3上移动,经过点 P 的切线的倾斜角12 y x 4为 α,则角 α的取值范围是 ()ππ 2π2ππ π 2πA .[0,2)B .[0, 2)∪[ 3 ,π)C . [ 3 , π)D .[0, 2)∪(2, 3 ]二、填空题(每小题 5 分,共 30 分)12x)dx13、 ( 1 ( x 1) 214 、函数 f ( x) x 3 ax 2 bx a 2 , 在 x 1 时有极值 10 ,那么 a, b 的值分别为________。

、已知 为一次函数,且 1,则 f ( x) =_______.f (x) f (x) x 2 f (t )dt、函数32-∞,a内单调递减,则 a 的取值范 g(x)=ax 163围是 ________.三、解答题(每小题12 分,共 60 分)17、(本小题 10 分)已知等腰梯形 OABC 的顶点 A,B 在复平面上对应的复数分别为 1 2i 、 2 6i ,且 O 是坐标原点, OA∥ BC .求顶点 C 所对应的复数z.x2 2t 8)dt ( x 0) .18、(本小题 12 分) F ( x)(t(1)求F ( x)的单调区间;(2)求函数F (x)在[1,3]上的最值.19.(本小题12 分)设y f (x) 是二次函数,方程 f ( x) 0 有两个相等的实根,且 f ( x) 2x 2 .( 1)求y f ( x) 的表达式;( 2)若直线x t (0 t 1) 把 y f ( x) 的图象与两坐标轴所围成图形的面积二等分,求 t 的值.20、(本小题 12 分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

房间定价多少时,宾馆利润最大?21、(本小题满分 12 分)证明:a bb aba22、(本小题 12 分)已知数列a n的前n项和S n 1 na n (n N * ) .(1)计算a1,a2,a3,a4;(2)猜想a n的表达式,并用数学归纳法证明你的结论.参考答案题1 2 3 4 5 6 7 8 9 10 11 12 号答B C C D A B C D A A B B 案13、 1 14、4, 11 15、f (x) x 1 16、( , 1]417、解:设z x y i( x, y R ) .由OA∥BC, OC AB ,得k OA k BC,z C z B z A,2 y 6,即 1 x 2x2 y2 32 42,Q OA BC ,x 3,y 4 舍去.z 5 .18、解:依题意得,x (t 2 2t 8)dt 1 3t 2 8t x1 3x 2 8x ,定义域F (x) t 0 x0 3 3 是(0, ).(1)F ( x) x2 2x 8 ,令 F ( x) 0 ,得x 2 或 x 4 ,令 F ( x) 0 ,得 4 x 2 ,由于定义域是 (0,) ,函数的单调增区间是(2,) ,单调递减区间是(0,2) .(2)令F (x) 0 ,得 x 2( x 4舍),20 286 ,由于 F (1) ,F(2) ,F(3)3 328F ( x) 在 [1,3] 上的最大值是 F (3) 6,最小值是 F (2) .3 19、解:( 1)设f ( x) ax2 bx c( a 0) ,则 f (x)2ax b .由已知 f ( x) 2x 2,得 a 1 , b 2 .f ( x) x 22 x c .又方程 x 2 2 x c 0 有两个相等的实数根,4 4c 0 ,即 c 1 .故 f (x)x 2 2x 1 ;(2)依题意,得t( x22x 1)dx0 2 2x 1)dx ,1 (xt1 3x 2xt1x 3x 2xx13t,3整理,得 2t 3 6t 2 6t 1 0 ,即 2(t 1)3 1 0 ,t 11 .3220、 L (x) = (50x 180)( x 20)1 x2 10= 70x 1360,180x 680.10 1 令 L ' (x) x 70 0, 解得 x 350.5当 x (180,350) 时, L '(x)0,当 x (180,680) 时 L ' (x)因此 ,x 350时是函数 L(x) 的极大值点 ,也是最大值点 .所以 ,当每个房间每天的定价为 350 元时 ,宾馆利润最大21、证明:要证a b ab ,ba只需证 a a b b ab ( ab ) 即证 (a b ab )( a b)ab(ab )即证 ababab即证 a b 2 ab ,即 ( ab) 2该式显然成立,所以a ba bb a22、解:( 1)依题设可得a1 1 1 , a2 1 1 ,2 1 2 6 23 a3 1 1 , a4 1 1 ;12 3 4 20 4 51(2)猜想:a n .n(n 1)证明:①当 n 1 时,猜想显然成立.②假设 n k (k N * ) 时,猜想成立,即 a k1.k(k 1)那么,当 n k 1时,S k1 1 (k 1)a k 1,即 S k ak 1 1 (k 1)a k 1.又 S k 1 ka k k ,k k 1所以ak 1 1 ( k 1)a k 1,1k从而a k 1 1 1 .(k 1)(k 2) (k 1)[(k 1) 1] 即 n k 1时,猜想也成立.故由①和②,可知猜想成立.。

相关文档
最新文档