边跨30m箱梁预制正弯矩、负弯矩张拉
箱梁负弯矩张拉计算书详解
箱梁负弯矩张拉施工方案计算书1施工工艺中横梁内设置波纹管接头→穿设钢绞线→安装扁锚及夹片→预应力张拉→封锚→管道压浆。
1.1设置波纹管接头在中横梁钢筋安装同时设置波纹管接头,波纹管接头安装应牢固,连接处应用胶布缠封严实,防止漏浆。
因接头波纹管附近焊接作业较多,中横梁浇筑前应检查接头波纹管是否有烫伤,接头安装是否被扰动。
若出现问题及时整改,以免漏浆给后续压浆作业带来不便。
1.2穿设钢绞线1.2.1根据通用图可知锚下控制应力为:0.75f pk=1395Mpa,公称直径d=15.2mm 的低松弛高强度钢绞线。
1.2.2钢绞线下料要求①20m梁:φ内=70*25mm扁管孔道(T2)内钢绞线长度6米,工作长度每端30cm,T2每根钢绞线下料6.6米,每个孔道内4根钢绞线。
φ内=90*25mm扁管孔道(T1、T3)内钢绞线长度6米、13米,工作长度每端30Cm,T1、T3每根钢绞线下料分别为6.6米、13.6米,每个孔道内5根钢绞线。
②30m梁:φ内=60*25mm扁管孔道(T2)内钢绞线长度10米,工作长度每端30cm,T2每根钢绞线下料10.6米,每个孔道内3根钢绞线。
φ内=70*25mm扁管孔道(T1、T3)内钢绞线长度7米、15米,工作长度每端30Cm,T1、T3每根钢绞线下料分别为7.6米、15.6米,每个孔道内4根钢绞线。
钢绞线下料禁止采用气割焊、电弧焊,必须采用砂轮切割机割断。
1.2.3钢绞线穿设若无法全部穿过,应找到管道堵塞处,疏通管道后再进行穿设。
1.3安装扁锚及夹片1.3.1扁锚及夹片应在张拉当天安装,避免因过早安装致使扁锚及夹片锈蚀,影响张拉质量。
1.3.2 20m箱梁T1、T3管道应安装BM15-5扁锚,T2管道应安装BM15-4扁锚;30m箱梁T1、T3管道应安装BM15-4扁锚,T2管道应安装BM15-3扁锚。
扁锚安装前应清理出锚垫板张拉面,凿除锚垫板张拉面混凝土,使扁锚能够紧密结合在锚垫板的凹槽内。
现浇连续箱梁负弯矩张拉工艺
先简支后连续箱梁体系转换施工工艺初探盛焕东(中铁二十五局第五工程有限公司隧道一公司)摘要:随着技术的发展,桥梁越来越多地采用了先简支后连续结构体系。
简支梁具有构造简单,施工方便可广泛采用工业化施工,制安装方便的优点,而连续梁桥无断点,行车舒适,且由于支点负弯矩的存在,使跨中正弯矩值明显减少,从而减少材料用量及结构自重,这些特点是简支梁桥所无法比拟的。
先简支后连续梁桥刚好发挥了上述两种梁桥的优点,克服它们的缺点。
其施工特点是先按简支梁规模化施工,后用湿接缝把相临跨的梁块连接成连续梁,从而得到连续梁优越的使用效果。
简支变连续转换过程便成了施工关键,本文通过实例对体系转换施工技术进行探讨研究。
关键词:连续箱梁先简支后连续体系转换施工工艺一、工程概况K28+767.2忻河铁路分离立交是忻州环城高速公路为跨越忻河铁路、旧台忻线、(庄力互通连接线)、忻定干渠而设。
桥梁采用4-30+4-30+5-30+4-35+4-30+4-30m装配式预应力砼连续箱梁梁,共6联,箱梁采用单独预制、简支安装、现浇连续接头的先简支后连续结构体系;下部结构桥台采用肋板台,桥墩采用柱式墩,基础采用钻孔灌注桩。
桥梁全长777m。
由简支转换为连续体系,是通过在箱梁端部顶部负弯矩区内增设负弯矩预应力束来实现的,而为配合梁体结构体系转换,在转换过程中需在箱梁端部布设相应临时支座并适时拆除来实现其体系的转换。
负弯矩区预应力束的张拉及临时支座的安装拆除,是能否实现体系顺利转换的重要环节,也是先简支后连续箱梁桥施工的难点工序之一。
二、体系转换施工工艺下面以4×30米一联为例,介绍体系转换施工工艺简支后连续梁体系转换大致可以划分为4个阶段,施工阶段示意图如下图所示。
第1阶段:架设预制主梁,形成由临时支座支承的简支状态,梁跨中存在正弯距。
此时,主梁主要承受一期恒载的自重作用及相应的施工荷载。
两箱梁处于简支状态。
第2阶段:浇筑第①、②跨及第③、④跨间的接头混凝土,待其达到设计强度,张拉负弯矩区钢束,压注水泥浆。
负弯矩张拉方案
一、工程概况李麻沙沟中桥、跨T502分离式立交桥、跨石油管线大桥、南坡坪大桥上部结构采用装配式部分预应力混凝土连续箱梁,30m 预制梁高1.6m ,37m 、40m 预制梁高2.0m ;桥面现浇8cm 厚C50混凝土现浇层及10cm 沥青混凝土铺装。
箱梁架设完成,现浇部分包括湿接缝、端横梁、中横梁、中横隔板浇筑完成达到设计强度后,开始进行箱梁顶板负弯矩张拉施工。
二、编制依据(1)《公路桥涵施工技术规范》(JTG/T F50-2011);(2)《预应力锚具、夹片、连接器应用技术规程》(JGJ85-2010);(3)《城市桥梁工程施工与质量验收规范》(CJJ2-2008);(4) 兰州北滨河西延段一标项目施工图;二、张拉、压浆技术参数(1)本项目采用低松弛高强度预应力钢绞线;预应力钢绞线均应符合标准《预应力混凝土用钢绞线》(GB/T 5224-2003),单根钢绞线公称直径为15.2mm ,公称面积140mm²,标准强度pk f =1860MPa ,锚下张拉控制应力con σ=0.75pk f =1395MPa(未扣锚圈口损失),弹性模量p E =1.95×105MPa ,松驰率ρ=0.035,松驰系数ζ=0.3;(2)锚具变形、钢筋回缩取6mm (一端);(3)管道摩擦系数:u =0.25,管道偏差系数:k =0.0015;(4)箱梁混凝土达到设计强度的85%后,且混凝土龄期不小于7d 时,方可张拉预应力钢束。
(5)墩顶连续段处的负弯矩钢束均采用两端同时张拉,张拉时采用张拉力与引伸量双控;当预应力钢束张拉达到设计张拉力时,实际引伸量值与理论引伸量值的误差应控制在6%以内;(6)实际引伸量值应扣除钢束的非弹性变形影响;各钢束两端引伸量之和详见下表:30m 箱梁钢束引伸量一览表(单位:mm )40m箱梁钢束引伸量一览表(单位:mm)三、施工计划3.1 原材、张拉设备检验钢绞线、锚具等材料进场时,必须具有出厂合格证,施工现场进行质量验收,并经检验合格后方可使用。
大桥工程箱梁负弯矩张拉施工方案
施工方案一、张拉施工方案箱梁及现浇横梁砼标号达到设计强度的100%时方可进行张拉, 张拉前需做砼强度试验。
(1)、预应力张拉程序与顺序①.张拉程序为: 0→初应力(0.1δk)→1.03δk持荷5min回油至δk锚固(其中δk―控制应力)。
②.张拉顺序根据设计要求, 确定其张拉顺序, 先张拉中间束然后张拉两边束;先张拉长束, 然后张拉短束。
(2)、预应力钢绞线的张拉施工①、张拉与锚固预制箱梁钢束均采用两端张拉, 且应在横桥向对称均匀张拉, 顶板负弯矩钢束也应采用两端张拉, 并采取逐根对称均匀张拉。
位置应仔细核对。
预应力工艺完成后用C50水泥浆进行预应力孔道压浆。
为防止预应力钢束锈蚀及松弛, 压浆工作应在张拉工作结束后尽早进行, 最长不超过24小时。
②、初张拉: 主梁两端同时先对千斤顶主缸充油, 使钢丝束略为拉紧, 同时调整锚圈及千斤顶位置, 使孔道、锚具和千斤顶三者之轴线互相吻合, 注意使每根钢丝受力均匀,当钢丝达初应力0.1σcon时作伸长量标记, 并借以观察有无滑丝情况发生。
③、张拉: 采用两端同时逐级加压的方法进行, 两端千斤顶的升压速度应接近相等, 当两端达到1.03σcon时, 维持张拉力不变, 持荷5分钟, 然后两端回油至σcon (不包括千斤顶的内摩阻及钢束与锚具的摩阻力, 这两项摩阻力都应根椐实验确定, 总张拉力应为控制张拉力与千斤顶内摩阻力, 钢束与锚具的摩阻力之和), 同时测量实际伸长量是否与计算值相符。
④、锚固: 打开高压油泵截止阀, 张拉缸油压缓慢降至零, 活塞回程, 锚具夹片即自动跟进锚固。
锚具外多余之钢绞线可采用砂轮切割机切除, 不准用电焊焊割。
⑤、压浆:压浆应在钢束张拉后24小时内进行, 水泥浆的水灰比宜为0.4~0.45, 为减少收缩, 可掺入0.0001水泥用量的铝粉, 管道压浆的顺序宜先下层后上层, 压浆时注意防止相邻孔的串浆而阻塞未压浆孔道。
压浆后要继续进行养生。
30米T梁负弯矩张拉施工方案 (2)
龙江村大桥30米T梁负弯矩张拉技术方案一、工程概况龙江村大桥,具体如下:30米T梁负弯矩张拉采用圆锚15-4、15-5型锚具,在桥面的湿接缝施工时,预留负弯矩张拉位置不浇筑混凝土,当墩顶现浇混凝土达到85%的设计强度等级,方能张拉钢束。
施工负弯矩张拉采用在湿接缝预留的位置放下吊篮,人工操作时须系好安全带才能操作。
二、预应力筋张拉(1)预应力锚具、夹具试验预应力锚具应符合设计要求,同一批原材料、同工艺、不超过1000套为一批进行检验,外观检查抽取10%且不少于10套,硬度检验抽取5%且不少于5套,并做3套锚具组装件静力性能试验。
(2)张拉机具:预应力筋张拉采用YDC-1100型穿心式千斤顶(2台)及配套ZB50型液压电动油泵(2台)。
(3)张拉次数及顺序:根据设计要求,预应力钢绞线采用两端对称、均匀张拉,一次张拉工艺,张拉采取以应力控制为主,伸长值作校验的双控制,实际伸长值与理论伸长值相比应保持在±6%以内。
在进行初张拉前,对管道摩阻损失及锚圈口摩阻损失进行实测,根据实测结果对张拉控制应力作适当调整,确保有效应力值。
(4)张拉计算(30米T梁负弯矩张拉理论计算伸长量见附表)按技术规范及设计要求对钢铰线进行预应力张拉。
采用张拉力和伸长值双控张拉流程为:0→初应力(10%σk)→20%σk→50%σk→100%σk(持荷2min锚固)。
张拉施工要点:①张拉前,应对张拉机具详细进行检查,其次应对已确定的锚固应力进行试验,以免张拉时出现断丝现象。
②张拉时,应编好每根钢铰线张拉顺序。
③张拉采用张拉力和伸长值双控。
按设计要求,控制应力σk=0.75Rby=1395Mpa。
张拉计算如下:a、单根钢铰线张拉端张拉力p=σk×Ag×n×b/1000=1395×140×1×1.00/1000=196.70KN;单根钢铰线平均张拉力Pp=P(1-e-(kx+μθ))/(kx+μθ) b、钢铰线张拉有效长L见列表;c、钢铰线理论伸长值ΔL=(Pp×L)/(Ag×Eg)d、各字母代表含义:p─单根钢铰线张拉端张拉力(KN);P p─预应力筋平均张拉力(KN);σk─钢铰线张拉控制应力(Mpa);Ag─钢铰线断面积取140(mm2);n─钢铰线根数;b─超张拉系数;L─钢铰线张拉有效长(m);ΔL─钢铰线理论伸长值(mm);Eg─钢铰线弹性模量取1.95(Gpa);μ─预应力筋与孔道的摩擦系数金属波纹管取0.25;θ─从张拉端至计算截面曲线孔道部分切线的夹角(rad)x─钢铰线张拉有效长即L(m);k─孔道每米局部偏差对磨擦的影响系数,取0.0015;(5)张拉工作操作步骤和方法:1)张拉前,需对千斤顶进行检验,找出油压表读数与千斤顶荷载的相关公式。
--河大桥30m预制箱梁顶板负弯矩张拉,施工方案_箱梁负弯矩张拉
**河大桥30m预制箱梁顶板负弯矩张拉,施工方案_箱梁负弯矩张拉冷泉河大桥30m预制箱梁顶板负弯矩张拉施工方案一、工程概况**河大桥是吉县至**高速公路一座大桥,位于**县**镇后冷泉村东侧约0.6km处,斜跨冷泉河和县级公路,分左右线。
本桥左线中心里程为ZK18+145,孔跨17*30m;右线中心里程为YK18+120,孔跨为16*30m,桥梁全长517m。
下部结构桥台采用柱式台、肋板台,基础采用桩基础。
桥墩采用柱式墩、实心墩,基础采用灌注桩基础。
二、工期安排计划开工时间: 2014 年04月10日计划完工时间: 2014 年07月10日三、施工组织机构技术负责人:*** 施工负责人:** 质检负责人:** 试验负责人:*** 安全负责人:** 质检员:*** 施工员:** 测量员:** 安全员:*** 四、施工准备1、预应力筋施工钢绞线及锚具的技术要求钢绞线进场时应进行表面质量的检查,其表面不得有降低钢绞线与砼粘拉力的润滑剂、油渍等物质,允许有轻微的浮锈,但不得锈蚀成肉眼可见的麻坑。
钢绞线拉力试验检验、抗拉强度及伸长率、弹性模量试验已检测完毕,并上报试验监理工程师审批。
锚具采用BM15-4、BM15-3型号规格,锚具进场后的硬度和静载锚固性能试验已检测合格。
张拉设备已检验标定完成。
2、下料钢绞线下料前应调直,计算好钢绞线的下料长度,在切割口的两侧各5cm处先用铅丝绑扎,然后用切割机切割。
切割后应立即将切割口用胶带缠紧,以防松散,并在胶带上写上编号,以备编束用。
3、编束钢绞线编束应在地坪上进行,使钢绞线平直。
每束内各根钢绞线应编号并按照顺序摆放。
本项目30m箱梁顶板钢绞线编束有两种:一种3根,一种4根,均编为实心束。
4、波纹管安装波纹管采用规格型号Φ70*25、90*25的金属波纹管,性能检测合格,外观清洁,咬口无开裂及脱扣。
5、穿束:将编好的钢绞线束的一端用φ4铁丝捆扎栓牢作索引线,拉线索引线直至孔两端均露出所需工作长度。
部颁图30米小箱梁计算手册
目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)3.1.5 荷载横向分布系数汇总 (17)3.2 剪力横向分布系数 (18)3.3 汽车荷载冲击系数μ值计算 (18)3.3.1汽车荷载纵向整体冲击系数μ (18)3.3.2 汽车荷载的局部加载的冲击系数 (18)4 主梁纵桥向结构计算 (18)4.1箱梁施工流程 (18)4.2 有关计算参数的选取 (19)4.3 计算程序 (20)4.4 持久状况承载能力极限状态计算 (20)4.4.1 正截面抗弯承载能力计算 (20)5.1 荷载标准值计算(弯矩) (30)5.1.1 预制箱内桥面板弯矩计算 (31)5.1.2 现浇段桥面板弯矩计算 (33)5.1.3 悬臂段桥面板弯矩计算 (35)5.2 荷载标准值计算(支点剪力) (37)5.2.1 预制箱内桥面板支点剪力计算 (37)5.2.2 现浇段桥面板支点剪力计算 (37)5.3 持久状况承载能力极限状态计算 (38)5.3.1 预制箱内桥面板承载能力极限状态计算 (38)5.3.2 现浇段桥面板承载能力极限状态计算 (40)5.3.3 悬臂段桥面板承载能力极限状态计算 (41)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m 装配式预应力混凝土连续箱梁)1 计算依据与基础资料1.1.3 参考资料∙《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40;2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =⨯3)普通钢筋:采用HRB335,335sk f MPa =,52.010S E Mpa =⨯1.3 设计要点1)本计算示例按后张法部分预应力混凝土A 类构件设计,桥面铺装层80mmC40混凝土不参与截面组合作用;2)根据组合箱梁横断面,采用荷载横向分布系数的方法将组合箱梁3.1.1 刚性横梁法1)抗扭惯矩计算宽跨比B/L=13.5/30=0.45≤0.5,可以采用刚性横梁法。
30米预制箱梁施工及方案
30米预制箱梁施工方案一、工程概况:此桥于林溪县紫,是跨紫溪河而拟建的一座大桥。
本桥分左、右线,其中左线桥梁起点桩号为ZK319+648 .5,终点桩号为ZK320+433;右线桥梁起点桩号为YK319+660,终点桩号为YK320+448。
桥面净宽为12.25m。
上部结构采用30米预应力砼连续小箱梁,单幅每孔由4片箱梁组成,小箱梁梁高1.7米,中梁梁顶宽2.40米,边梁梁顶宽2.85米,梁高、梁宽一致,跨中腹板厚18厘米,支点附近腹板厚25厘米,桥梁横向通过梁跨中横梁及翼缘板的湿接缝连接成整体。
二、30米箱梁预制场平面布置及建设方案结合以往施工经验,我部把全桥30米箱梁的预制及安装作为我部在此工程中的重点和难点工程。
桥共有30米预制箱梁208片,为方便管理,集中在一个预制场进行预制施工。
预制场平面布置及建设方案如下:1、预制场地布设预制场设置在桩号K320+700---K321+000的路基上,根据总体施工进度计划预制箱梁生产架设施工工期(6个月),预制场设置20个箱梁底模,4套箱梁侧模,4套内模。
预制场内箱梁底模按顺桥向布置。
预制场内设置100t龙门吊2台,张拉、压浆设备各2套。
运梁平车1辆。
在预制场适当位置设置接线电箱,同时安装触电保护装置并由专门电工负责管理,布线时充分考虑预制梁施工时机械的影响,做到安全合理布线,并做到文明施工、文明用电。
预制场外专门设置钢筋加工场和搅拌站。
根据安全文明施工要求,在预制场内设置有关的标志牌、消防设施,在预制场两端设置小型机具及小型材料存放区,做到机具设备和材料堆放整齐、有序。
于K320+600-K320+700的路基上计划设两个存梁区,计划存梁20片。
建设好的预制场日生产能力为1.5片。
2、箱梁预制场硬化:预制场场地范围内,用粘性土填至预设的标高,然后用推土机平整后,用20吨振动压路机进行碾压,压实整平后,铺设10cm厚级配砂砾垫层,然后用15cm厚25号素混凝土进行硬化处理。
30米箱梁张拉计算书
30米箱梁张拉计算书30米箱梁张拉计算书30米预制箱梁张拉计算方案本标段30米预制箱梁正弯矩预应力钢束共有N1、N2、N3 、N4各2束,设计锚下张拉控制应力:σcon=1860×0.75=1395MPa。
按设计要求箱梁砼强度达到设计强度的90%后方可张拉,并采用两端对称张拉,张拉程序为:初应力σ拉顺序为N1、N3、N2、N4。
二、预应力钢束张拉力计算1、经咨询设计单位,因设计图中张拉控制应力已经考虑了预应力损失,故张拉力按公式:Fn=σcon×A×n2min)锚固,张进行计算,如下:中跨箱梁N1 钢束锚下张拉力:F1=σcon×A×n=1395 MPa×140㎜2×4 =781.2KN其中:A为每根预应力钢绞线的截面积;n为同时张拉的预应力钢绞线的根数; F为钢绞线锚下张拉力。
其余钢束张拉力计算同N1,各钢束张拉力如下表:中跨30米箱梁预应力钢束张拉力计算明细表(表一)边跨30米箱梁预应力钢束张拉力计算明细表(表二)三、压力表读数计算本桥采用150吨千斤顶进行张拉,经校验:编号为1#千斤顶对应的压力表编号为2766,2786,校准方程分别为P=0.031F-0.10862, P=0.0307F-0.20642。
故中跨箱梁N1钢束采用1#千斤顶张拉时的压力表度数分别为: 1)压力表编号为2766:P1=0.031P-0.10862=0.031×781.2-0.10862=24.1 MPa 2)压力表编号为2786:P2=0.0307F-0.20642=0.0307×781.2-0.20642=23.8MPa编号为2#千斤顶对应的压力表编号为1962,2784,校准方程分别为P=0.0309F-0.10358, P=0.0314F-0.14642。
其余钢束压力表读书计算同N1,压力表度数详见下表:(中跨30米箱梁)(表三)预应力钢束10%б张拉力所对应的压力表度数明细表(中跨30米箱梁)(表四)预应力钢束20%б张拉力所对应的压力表度数明细表(中跨30米箱梁)(表五)(边跨30米箱梁)(表六)预应力钢束10%б张拉力所对应的压力表度数明细表(边跨30米箱梁)(表七)预应力钢束20%б张拉力所对应的压力表度数明细表(边跨30米箱梁)(表八)三、理论伸长量的复核计算 1、预应力钢束的平均张拉力计算因本标段内的箱梁梁长变化较大,故采用设计图纸中的标准梁长进行钢绞线平均张拉力的计算,首先要计算出钢束的锚下张拉力,然后采用如下公式计算钢束的平均的张拉力:预应力平均张拉力计算公式及参数:式中:Pp=P[1- e-(kx+uθ)]/( kx+uθ) Pp-----预应力筋平均张拉力(N); P-----预应力筋张拉端张拉力(N); X-----从张拉端至计算截面的孔道长度(m);θ-----从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad); K------孔道每米局部偏差对摩擦的影响系数,取0.0015;μ------预应力筋与孔道壁的摩擦系数,取0.23 故30米中跨箱梁的平均张拉力计算如下:由设计图纸可知:K=0.0015,μ=0.23,X取14.7m;N1、 N2、 N3钢束θ为7.5°,弧度为0.1308 ,N4钢束θ为1.4°,弧度为0.0244。
30m预应力小箱梁施工技术在公路工程中应用论文
浅析30m预应力小箱梁施工技术在公路工程中的应用摘要:某公路工程段采用30 m先简支后连续预应力混凝土小箱梁施工工艺,本文是作者结合该工程实例,从设计与施工等方面对该技术进行了阐述和分析,论证了该技术的实用性,值得推广。
关键词:小箱梁预制设计施工工艺质量控制前言高等级公路或城市主干道对行车舒适性要求很高。
通过在某公路工程中,30 m小箱梁采用30 m先简支后连续预应力小箱梁结构,论证了先简支后连续预应力小箱梁结构既有施工便捷的优点、又有行车舒适性的优点。
1、30m小箱梁小箱梁截面挖空率比空心板截面大,而抗扭刚度又比t梁大十几倍至几十倍,因此,本次设计采用了小箱梁结构形式。
小箱梁梁高1.6 m,现浇桥面板0.1 m,梁间距3.25 m,边跨采用36根φ15.2钢绞线,中跨采用28根φ15.2钢绞线。
横断面布置见图1。
小箱梁断面形式见图2。
图1 半幅横断面布置图(cm)图2 小箱梁断面形式 (cm)为防止现浇桥面板的干缩影响其与预制梁体的结合,预制梁悬臂端设一个小斜面。
另外,箱梁均设置端横隔梁,在二期浇筑后连续结构时一起浇筑。
2、后连续的实现一般而言,由简支梁状态转化为连续梁状态常规做法有以下几种:1)将主梁内的普通钢筋在墩顶连续。
2)将主梁内纵向预应力钢束在墩顶采用特殊的连接器进行连接。
3)在墩顶两侧一定范围内的主梁上布设局部预应力短束实现连接。
第一种方法虽然简单易行,但在使用中常在墩顶负弯距区发生横向裂缝,影响桥梁的正常使用,增加维护费用。
第二种方法效果最好,但施工很困难,故一般也不采用。
第三种方法不仅施工可行,而且具有第二种方法的优点,同时还克服了仅采用普通钢筋连续容易开裂的问题。
因此我们采用预应力束来实现先简支后连续的结构方案。
具体的先简支后连续预应力混凝土小箱梁施工工艺流程为:1)先预制小箱梁,待混凝土达到设计强度的90%且满足养护时间后,张拉正弯矩区预应力钢束,压注水泥浆并及时清理箱梁底板通气孔。
30m预制箱梁张拉计算书
福鼎市潮音大桥(人行桥)及岗尾大桥工程岗尾大桥30m预制箱梁张拉计算书福建龙辉建设工程有限公司二〇一四年九月二十二日岗尾大桥30m预制箱梁张拉计算书一、工程概况岗尾大桥30m预制箱梁的预应力钢绞线采用高强度低松弛钢铰线,标准强度为f pk=1860Mpa,公称直径d=15.2mm,公称面积A=140mm2,弹性模量E p=1.997×105Mpa(试验平均值)。
预制箱梁内正弯矩钢束均采用两端同时张拉,锚下控制应力为0.75f pk=1395Mpa,φs15.2-4钢束控制张拉力为781.2KN, φs15.2-5钢束控制张拉力为976.5KN,锚具采用M15-4、M15-5圆形成套锚。
预应力管道成孔采用圆形钢波纹管。
预应力钢束张拉前应先试压同条件养护砼试件,达到设计强度85%以上,且混凝土龄期不少于7天,方可进行组织张拉。
二、预应力钢束张拉顺序根据施工图设计文件,预应力钢束张拉顺序为:左N1→右N1→右N3→左N3→左N2→右N2→右N4→左N4三、预应力钢束张拉程序1、低松弛预应力钢束张拉程序:0→初始应力(15%σk)→30%σk→100%σk(持荷5分钟锚固)2、张拉时实行双控,理论伸长量与实际伸长量相差应控制在-6%~+6%之间,否则应分析原因或重新张拉。
张拉严格控制滑丝和断丝,每束断丝不超过1丝,单个孔道内断面断丝总合不超过断面钢丝总数的1%,张拉时应做好施工记录。
四、预应力计算的有关公式及参数1、预应力筋的理论伸长量计算公式及参数PP AE LP L =∆ 式中:P P —预应力筋平均张拉力(N ); L —预应力筋的长度(mm );A —预应力筋的截面积(mm 2),取单股A=140mm 2;p E —预应力筋的弹性模量(N/mm 2),试验平均值p E =1.997×105N/mm 2。
2、预应力筋锚下张拉力计算公式及参数P=σk ×A式中:σk —设计张拉控制应力(MPa );A —预应力筋的截面积(mm 2),取单股A=140mm 2;3、预应力筋的平均张拉力计算公式及参数μθμθ+-=+-kx e P P kx P )1()(式中:P —预应力筋锚下张拉力(N );X—从张拉端至计算截面积的孔道长度(m);θ—从张拉端至计算截面积曲线孔道部分切线的夹角之和(rad);K—孔道每米局部偏差对摩擦的影响系数,根据设计图纸说明,金属波纹管孔道偏差系数取K=0.0015。
30m预应力箱梁张拉应力计算伸长量
30m预应力箱梁X拉应力、伸长量计算一、预应力钢绞线X拉力计算:根据图纸设计预应力钢绞线锚下控制应力:δK=0.75R y b=0.75×1860=1395Mpa根据公式P=δK×AP×n AP=139mm2(1)正弯矩四股、五股钢绞线X拉力:P4=1395×139×4=775.6KNP5=1395×139×5=969.5KN(2)负弯矩单根X拉力P1=1395×139=193.9KN二、预应力钢绞线的理论伸长值计算:伸长量ΔL= PpL Pp= P(1-e-(kL+μθ))ApEp kL+μθ根据图纸设计与钢绞线的技术指标,取值如下:Ap=139mm2Ep=1.95×105Mpa δK=1395Mpa 查《桥规》附表C1得k、μ值,k=0.0015 μ=0.17X拉端X拉力P1=δK×Ap=1395×139=193905N1、中跨箱梁:(1)N1(2×4):ΔL1: Pp1=193905×(1-0.96495385)/0.035675=190487NΔL1=190487×13.895/(139×1.95×105)=0.09765m ΔL2: P2=2 Pp1-P1=2×190487-193905=187069NPp2=187069×(1-0.99882319)/0.0011775=186959N ΔL2=186959×0.785/(139×1.95×105)=0.005414mN1的伸长值(ΔL1+ΔL2)×2=20.6cm(2)N2(2×4):ΔL1: Pp1=193905×(1-0.96728123)/0.033266=190715N ΔL1=190715×12.289/(139×1.95×105)=0.086467m ΔL2: P2=2 Pp1-P1=2×190715-193905=187525NPp2=187525×(1-0.99639601)/0.0036105=187187N ΔL2=187187×2.407/(139×1.95×105)=0.016623mN2的伸长值(ΔL1+ΔL2)×2=20.6cm(3)N3(2×4):ΔL1: Pp1=193905×(1-0.9696142)/0.030857=190944N ΔL1=190944×10.683/(139×1.95×105)=0.0752575m ΔL2: P2=2 Pp1-P1=2×190944-193905=187983NPp2=187983×(1-0.99397473)/0.0060435=187416N ΔL2=187416×4.029/(139×1.95×105)=0.027858mN3的伸长值(ΔL1+ΔL2)×2=20.6cm(4)N4(2×4):ΔL1: Pp1=193905×(1-0.99317182)/0.0068516=193242N ΔL1=193242×1.799/(139×1.95×105)=0.012825m ΔL2: P2=2 Pp1-P1=2×193242-193905=192579NPp2=192579×(1-0.98100816)/0.0191745=190744N ΔL2=190744×12.783/(139×1.95×105)=0.089956mN4的伸长值(ΔL1+ΔL2)×2=20.5cm2、边跨箱梁:P1=δK×Ap=1395×139=193905N(1)N1(2×5):ΔL1: Pp1=193905×(1-0.96754025)/0.03299825=190741N ΔL1=190741×12.1105/(139×1.95×105)=0.085222m ΔL2: P2=2 Pp1-P1=2×190741-193905=187577NPp2=187577×(1-0.99605978)/0.003948=187207N ΔL2=187207×2.632/(139×1.95×105)=0.0181785mN1的伸长值(ΔL1+ΔL2)×2=20.7cm(2)N2(2×5):ΔL1: Pp1=193905×(1-0.96985714)/0.0306065=190967N ΔL1=190967×10.516/(139×1.95×105)=0.07408998m ΔL2: P2=2 Pp1-P1=2×190967-193905=188029NPp2=188029×(1-0.99367211)/0.006348=187433N ΔL2=187433×4.232/(139×1.95×105)=0.02926458mN2的伸长值(ΔL1+ΔL2)×2=20.67cm(3)N3(2×5):分段ΔL1: Pp1=193905×(1-0.97218103)/0.02821325=191195N ΔL1=191195×8.9205/(139×1.95×105)=0.062924m ΔL2: P2=2 Pp1-P1=2×191195-193905=188485NPp2=188485×(1-0.99129015)/0.008748=187663N ΔL2=187663×5.832/(139×1.95×105)=0.04037819mN3的伸长值(ΔL1+ΔL2)×2=20.66cm(4)N4(2×4):ΔL1: Pp1=193905×(1-0.99331038)/0.0067121=193256N ΔL1=193256×1.706/(139×1.95×105)=0.0121636m ΔL2: P2=2 Pp1-P1=2×193256-193905=192607NPp2=192607×(1-0.98073303)/0.019455=190745N ΔL2=190745×12.97/(139×1.95×105)=0.09127329mN4伸长值(ΔL1+ΔL2)×2=20.68cm3、负弯矩伸长值(1)T1(2×5)ΔL1: Pp1=193905×(1-0.98955493)/0.0105=192891N ΔL1=192891×7/(139×1.95×105)=0.05mT1伸长值(ΔL1)=0.5cm(2)T2(2×5)ΔL1: Pp1=193905×(1-0.985112)/0.015=192457NΔL1=192457×10/(139×1.95×105)=0.071mT2伸长值(ΔL1)=7.1cm(3)T3(3×5)ΔL1: Pp1=193905×(1-0.97775124)/0.0225=191740NΔL1=191740×15/(139×1.95×105)=0.106mT1伸长值(ΔL1)=10.6cm预应力钢绞线X拉力对应油表读数一、根据图纸设计预应力钢绞线锚下控制应力:δK=0.75R y b=0.75×1860=1395Mpa根据公式P=δK×AP×n AP=139mm2(1)正弯矩四股、五股钢绞线X拉力:P4=1395×139×4=775.6KNP5=1395×139×5=969.5KN(2)负弯矩单根X拉力P1=1395×139=193.9KN二、根据千斤顶与压力表检定报告与1#、2#千斤顶回归线型方程:1#千斤顶(20204#压力表):Y=0.0329X+0.652#千斤顶(20208#压力表):Y=0.0329X+0.23#千斤顶(20212#压力表):Y=0.2251X+0.794#千斤顶(90411#压力表):Y=0.2257X+0.69计算得到X拉力为10%δK、20%δK、100%δK时油压表读数如下表:1#千斤顶(20204#压力表)2#千斤顶(20208#压力表)3#千斤顶(20212#压力表)4#千斤顶(90411#压力表)中跨梁钢绞线理论伸长值一览表边跨梁钢绞线理论伸长值一览表负弯矩理论伸长值一览表。
论箱梁负弯矩预埋构件及张拉预留槽口施工质量控制
方法 : ①要严格按 照设计和规范要求的配合 比进行混凝土 的 拌合。混凝土拌合场宜设在预制梁场旁 ,防止运送过程中水分流 失过大 ,和易性变差 ,容易导致浇筑时出现振捣不密实 , 蜂窝现 象 。②在顶板槽 1 3纵横 向钢筋穿过模板时 , 模板预 留的孔 隙要用 泡沫剂等材料进行封堵 , 防止浇筑混凝土时漏浆 。 ③浇筑时应按 照设计及规范要求 的次数进行振捣作业 。由于预埋锚具上下方 的 钢筋较密 ,浇筑槽 口处锚具周 围的混凝土要细心振捣到位 , 保证 锚上锚下混凝土不 出现蜂窝现象。④最后 ,严格控制箱梁拆模 的 时间 , 拆模后要及时做好养生工作 。养生部位要到位 ,顶板要覆 盖7 d养生。这样才能将保证箱梁顶板乃至整片梁的强度 。 4 . 5 防止预埋波 纹管堵塞 、变 形 为防止顶板浇筑混凝土 时漏 浆堵 塞波纹管 ,造成后期施工 的困难 ,应在箱梁浇筑前穿设衬管 ( P V C材料管等 )或衬筋 , 在浇筑顶板时来 回活动 ,确保波纹管通畅 。顶板振捣作 业时应 注意不要下压预埋波纹管 ,防止波纹管被破坏或产生变形 。
严格按 照设 计及规范要求控制波纹管 以及 波纹管上主筋 的 位 置 ,使用定位筋 固定波纹管 ,同时保证 波纹管上主筋 的保护 层厚度 。施 工时常会 因为波纹 管上 面的主筋 安装不到位和端头 模板 主筋预 留孔位置偏低 ,造成波纹管 位置偏低 ,这种情况 出 现时应及 时校正预制 箱梁端头模板 。 4 。 2 保证预埋锚具处加 强筋数量和质量 由于交底工作不够到位 ,工地 现场时有发生模板钢筋安装 施 工时少放预负弯矩埋锚具处 的加 强筋的情况 。为保证顶板槽 3预埋锚具处 的混凝 土的拉弯性能 ,要认真做好对施工工人 的 1 技术交底工作 ,按设计及 规范要求的使用加强筋样式 、确保 数 量足够 、间距合格 。
30米预制箱梁施工方案
30米预制箱梁施工方案一、工程概况:铅山县紫溪河大桥于铅山县紫溪乡,是跨紫溪河而拟建的一座大桥。
本桥分左、右线,其中左线桥梁起点桩号为ZK319+648 .5,终点桩号为ZK320+433;右线桥梁起点桩号为YK319+660,终点桩号为YK320+448。
桥面净宽为12.25m。
上部结构采用30米预应力砼连续小箱梁,单幅每孔由4片箱梁组成,小箱梁梁高1.7米,中梁梁顶宽2.40米,边梁梁顶宽2.85米,梁高、梁宽一致,跨中腹板厚18厘米,支点附近腹板厚25厘米,桥梁横向通过梁跨中横梁及翼缘板的湿接缝连接成整体。
二、30米箱梁预制场平面布置及建设方案结合以往施工经验,我部把全桥30米箱梁的预制及安装作为我部在此工程中的重点和难点工程。
铅山县紫溪河大桥共有30米预制箱梁208片,为方便管理,集中在一个预制场进行预制施工。
预制场平面布置及建设方案如下:1、预制场地布设预制场设置在桩号K320+700---K321+000的路基上,根据总体施工进度计划预制箱梁生产架设施工工期(6个月),预制场设置20个箱梁底模,4套箱梁侧模,4套内模。
预制场内箱梁底模按顺桥向布置。
预制场内设置100t龙门吊2台,张拉、压浆设备各2套。
运梁平车1辆。
在预制场适当位置设置接线电箱,同时安装触电保护装置并由专门电工负责管理,布线时充分考虑预制梁施工时机械的影响,做到安全合理布线,并做到文明施工、文明用电。
预制场外专门设置钢筋加工场和搅拌站。
根据安全文明施工要求,在预制场内设置有关的标志牌、消防设施,在预制场两端设置小型机具及小型材料存放区,做到机具设备和材料堆放整齐、有序。
于K320+600-K320+700的路基上计划设两个存梁区,计划存梁20片。
建设好的预制场日生产能力为1.5片。
2、箱梁预制场硬化:预制场场地范围内,用粘性土填至预设的标高,然后用推土机平整后,用20吨振动压路机进行碾压,压实整平后,铺设10cm厚级配砂砾垫层,然后用15cm厚25号素混凝土进行硬化处理。
箱梁施工中负弯矩施工质量的控制
箱梁施工中负弯矩施工质量的控制摘要:在预制小箱梁施工过程中,负弯矩波纹管的定位、穿束、钢束的张拉、管道的压浆等工序的质量隐患,在不同程度上影响着后期转序后的桥梁整体质量以及桥梁设计受力状态的改变。
本文针对以上问题提出预防和处治措施,供有关施工单位参考。
关键词:负弯矩施工、质量控制、措施。
先简支后连续箱形梁桥,是近期随着桥梁发展应运而生的一种桥梁形式,这种桥梁的结构特点是:由预制梁段和现浇梁段组成,跨中段为预制部分,桥墩段为现浇部分;在桥墩支承处由双排临时支座转为单排永久支座,实现桥梁结构的体系转换,由简支梁桥变为连续梁桥。
这种桥梁结构减少了桥墩上的伸缩缝,增强了结构的整体性和行车的舒适性,既施工方便又经济合理,因而在大中型桥梁中广泛采用。
但这种桥梁结构在箱梁负弯矩区不同程度存在穿束困难、压浆不饱满、张拉槽口后期封堵不严、槽口区梁顶存在质量隐患等现象,影响了桥梁的安全和使用寿命。
根据多年施工经验,应该从以下几个方面进行解决;1、波纹管定位问题设计图纸中一般给定的波纹管纵向定位为间隔1米设置支撑,实际施工中因砼自重容易使波纹管出现波浪状起伏的不平顺现象,另外在浇筑箱梁顶板砼混凝土时,因混凝土倾泻的影响容易使扁波纹管出现轻微侧倾现象,造成同束中的钢绞线互相挤压影响钢绞线的受力和压浆后水泥浆的密实性。
解决的办法是在浇筑砼前在波纹管内穿入与设计钢绞线同等数量的废旧钢绞线或同直径的钢筋或硬质塑料管,另外把纵向定位支撑钢筋间距设置为0.5米,支撑钢筋还要起到防止波纹管扭曲的作用,所以建议把支撑钢筋设置为“井”字形对波纹管进行定位,保证和解决了波纹管的平顺问题及后期的穿束问题。
2、漏浆严重、压浆不饱满问题孔道压浆的主要作用是防止预应力筋锈蚀,并通过凝结后的水泥浆将预应力更均匀地传递至混凝土结构中。
如果压浆不密实容易使负弯矩钢束在运营后因疲劳出现固结的水泥浆脱离钢绞线,致使钢束的应力集中于锚垫板附近,失去其原有的作用。
30m小箱梁计算书
目录目录 0一、项目概况 (1)1.1 设计计算采用的标准、规范、规程 (1)1.2 技术标准 (1)1.3 设计要点 (1)二、结构计算 (2)2.1 结构模型 (2)2.2 计算参数 (2)2.3 施工步骤 (3)2.4 荷载组合 (3)2.5 计算结果 (3)一、项目概况1.1 设计计算采用的标准、规范、规程1、《公路工程技术标准》(JTG B01-2003);2、《公路桥涵设计通用规范》(JTG D60-2004);3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);4、《公路桥涵地基与基础设计规范》(JTG D63-2007);5、《公路圬工桥涵设计规范》(JTG D61-2005);6、《公路工程抗震设计细则》(JTG/T B02-01-2008);1.2 技术标准1、采用荷载等级:公路-I级。
2、桥面宽度:0.5(护栏)+11.75(行车道)+0.5(护栏)=12.75m3、道路等级:高速公路4、设计环境类别:I类5、地震基本烈度:Ⅵ度1.3 设计要点1、5孔30米一联预应力砼连续小箱梁,斜交角0度,先简支后连续结构;横向4片箱梁。
2、采用桥梁博士进行受力分析,预制部分为全预应力构件,现浇连接段为A类现浇构件验算,按持久状况承载能力极限状态进行强度计算,并根据荷载短期效应及长期效应组合进行应力计算。
二、结构计算2.1 结构模型采用桥梁博士3.0进行结构计算,将桥梁按照空间实用理论简化为平面杆系,永久杆件共分为123个单元,124个节点。
成桥状态计算模型见下图:计算图示2.2 计算参数1、结构安全等级一级。
2、混凝土材料:采用C50混凝土,设计强度f cd=22.4MPa,f td=1.83MPa;混凝土容重γ=26KN/m3;弹性模量E c=3.45×104MPa。
3、预应力钢束采用ΦS15.2规格,面积A y=139mm2,钢绞线标准强度f pk=1860MPa,设计强度f pd=1260MPa,弹性模量E y=1.95×105MPa,张拉控制应力σcon=1395MPa,松弛率2.5%,波纹管孔道摩擦系数μ=0.17,管道偏差影响系数k=0.0015,一端锚具变形及回缩值均为6mm。
箱梁正弯矩张拉计算书
龙虎河1#特大桥30m预应力箱梁正弯距钢束张拉计算书一、设计资料青兰高速公路20合同龙虎河1#特大桥上部结构为预应力连续箱梁,跨径30m,箱梁总计400片。
箱梁所采用的低松弛高强度钢绞线应符合GB/T5224-2003规定。
单根钢绞线直径Фs15.2mm,钢绞线面积A=139mm2,钢绞线标准强度fpk=1860MPa,弹性模量Ep=1.95×105MPa。
预制主梁混凝土强度达到设计强度的100%及混凝土龄期达到7天后组织张拉预应力钢束。
钢绞线每端工作长度为70cm,锚下控制应力为бcon =0.75 fpk=1395 MPa。
预制箱梁中钢束均采用两端张拉,且应在横桥向对称均匀张拉,张拉顺序为N1、N3、N2、N4。
预制箱梁锚具采用OXM15型及其配套设备,管道成孔采用钢波纹管;且要求钢波纹圆管钢板带厚度不小于0.30mm,扁管钢板带厚度不小于0.35mm。
30m预应力箱梁主要技术数据:中跨中、边梁正弯矩钢绞线数量表边跨中、边梁正弯矩钢绞线数量表二、箱梁正弯矩预应力计算的有关数据1、正弯矩预应力计算(1)、根据出具的千斤顶标定检验报告:(2)、预制箱梁为C50级,所以在张拉钢绞线时不考虑混凝土的弹性变形。
(3)、根据《桥梁施工技术规范》预应力钢绞线张拉理论伸长量计算公式:△L=PpL/ApEp和预应力平均张拉力计算公式:Pp=P(1-e-(KX+μθ))/(KX+μθ),其中:Pp——预应力钢绞线平均张拉力(N),L——预应力钢绞线的长度(mm),Ap——预应力钢绞线的截面面积(mm2),Ep——预应力钢绞线的弹性模量(N/ mm2),P——预应力钢绞线张拉端的张拉力(N),X——从张拉端至计算截面的孔道长度(m),θ——从张拉端至计算截面曲线孔道部分切线的夹角之和(rad),K——孔道每米局部偏差对摩擦的影响系数,本次计算取0.0015,μ——预应力钢绞线与孔道壁的摩擦系数,本次计算取0.25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢绞线 编号 分级张拉 顺 序 平均张拉力 控制张拉 张拉控制应 (KN) 力(KN) 力(MPa) 84.586 169.172 338.345 451.127 563.908 85.541 171.083 342.166 456.221 570.276 209.25 418.5 837 1116 1395 油表读数(MPa) L/2伸长量(m) 顶5254 3.6358 8.2815 17.5730 23.7674 29.9617 顶4396 4.6171 9.1542 18.2285 24.2780 30.3274 顶4444 4.3504 9.1108 18.6315 24.9787 31.3259 顶5226 3.6795 8.4390 17.9581 24.3041 30.6502 顶4392 4.9057 9.4513 18.5427 24.6036 30.6645 顶5239 4.1182 8.6964 17.8527 23.9569 30.0612 顶4445 4.4428 9.0056 18.1311 24.2148 30.2985 顶5306 4.6885 9.2470 18.3640 24.4420 30.5200 0.015916423 0.031832845 0.063665691 0.084887587 0.106109484 L/2伸长量(m) 顶1202 2.0872 5.1843 11.3787 15.5082 19.6378 顶1203 3.1047 6.1295 12.1790 16.2120 20.2450 顶1204 2.7636 5.9372 12.2843 16.5158 20.7472 顶1205 2.0930 5.2660 11.6121 15.8428 20.0734 顶1206 3.3904 6.4209 12.4818 16.5224 20.5630 顶1207 2.5921 5.6442 11.7485 15.8180 19.8874 顶1208 2.9219 5.9637 12.0474 16.1032 20.1590 顶1209 3.1690 6.2080 12.2860 16.3380 20.3900 0.010650688 0.021301377 0.042602753 0.056803671 0.071004589 L/2伸长量(m) 顶1202 2.0872 5.1843 11.3787 15.5082 19.6378 顶1203 3.1047 6.1295 12.1790 16.2120 20.2450 顶1204 2.7636 5.9372 12.2843 16.5158 20.7472 顶1205 2.0930 5.2660 11.6121 15.8428 20.0734 顶1206 3.3904 6.4209 12.4818 16.5224 20.5630 顶1207 2.5921 5.6442 11.7485 15.8180 19.8874 顶1208 2.9219 5.9637 12.0474 16.1032 20.1590 顶1209 3.1690 6.2080 12.2860 16.3380 20.3900 0.007472241 0.014944481 0.029888962 0.03985195 0.049814937
油表读数(MPa)
15%张拉力 30%张拉力 N1 60%张拉力 80%张拉力 100%张拉力
15%张拉力 30%张拉力 N3 60%张拉力 80%张拉力 100%张拉力 钢绞线 编号 分级张拉 顺 序
平均张拉力 控制张拉 张拉控制应 (KN) 力(KN) 力(MPa) 56.602 113.204 226.408 301.877 377.347 57.028 114.055 228.110 304.147 380.184 209.25 418.5力 30%张拉力 N2 60%张拉力 80%张拉力 100%张拉力 钢绞线 编号 分级张拉 顺 序
平均张拉力 控制张拉 张拉控制应 (KN) 力(KN) 力(MPa) 56.729 113.459 226.917 302.556 378.195 计算:陈强 57.028 114.055 228.110 304.147 380.184 209.25 418.5 837 1116 1395