北师大版数学九年级下册《第三章 圆 ※3 垂径定理 第2课时 垂径定理(2)》教学课件

合集下载

9年级 数学北师大版下 册教案第 3章《垂径定理》

9年级 数学北师大版下 册教案第 3章《垂径定理》

教学设计垂径定理难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.教学策略:类比引入,猜想探索,知识应用,归纳小结。

本节课的另一个难点是如何添加辅助线,这在最后的归纳反思中应该要有足够的时间让学生交流讨论,但是限于本节课的时间,这是一个客观限制,不应该勉强在课堂上完成,效果并不理想,应该留作课后作业,让学生能通过更充分的讨论才得出结论,这样才能起到更好地交流和反思的作用。

教学过程教学环节教师活动学生活动设计意图一、类比引入二、猜想探索活动内容:1.等腰三角形是轴对称图形吗?2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论?3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?1.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M。

(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能找出图中有哪些等量关系?说一说你的理由.条件:①CD是直径;②CD⊥AB结论(等量关系):③AM=BM;④⌒AC=⌒BC;⑤⌒AD=⌒BD。

学生思考并回答通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力。

证明:连接OA ,OB ,则OA =OB在Rt △OAM 和Rt △OBM 中,∵OA =OB ,OM =OM ,∴Rt △OAM ≌Rt △OBM . ∴AM =BM .∴点A 和点B 关于CD 对称. ∵⊙O 关于直径CD 对称,∴当圆沿着直径CD 对折时, 点A 与点B 重合,⌒AC 和⌒BC 重合, ⌒AD 和⌒BD 重合. ∴ ⌒AC =⌒BC ,⌒AD =⌒BD .2.辨析:判断下列图形,能否使用垂径定理?注意:定理中的两个条件缺一不可——直径(半径),垂直于弦。

通过以上辨析,让学生对垂径定理的两证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容——垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

【精品】2018数学九年级下北师大版3.3垂径定理同步课件(20张)

【精品】2018数学九年级下北师大版3.3垂径定理同步课件(20张)
的直径CD,交AB于点M.
D
(1)上图是轴对称图形吗?如 果是,其对称轴是什么?
上图是轴对称图形,对称轴是CD.
(2)你能发现图中有哪些等量 关系?说一说你的理由.
AM=BM AC=BC AD=BD
证明:连接OA,OB,
A
则OA=OB,
∵ AM=BM ,
∴ CD⊥AB ,∠AOC=∠BOC,
∴ ¼AC =B»C ,
A
点拨:
O B
本例为垂径定理的应用。利用圆中 常规辅助线“过圆心作弦的垂线”,与 圆半径、弦,构成直角三角形,再利用 解直角三角形的知识求解.
1.如图,⊙O的半径为
5cm,弦 AB为 6cm。求圆心
O 到弦 AB 的距离.
O
解:连接OA,过圆心O作 OE⊥AB于E,则:
A
E
B
AE=EB = 1 AB= 1 ×6 = 3(cm)
C
A
B
M
O
(1) 右图是轴对称图形吗?若是, D 其对称轴是什么?
右图是轴对称图形,对称轴是CD.
(2)你能发现图中有哪些等量关系吗?说 一说你的理由.
AM=BM AC=BC AD=BD
证明:连接OA,OB, 则OA = OB,
∵CD⊥AB,
C
A
B
M
O
∴AM = BM,∠AOC = ∠BOC, D
2.垂径定理的逆定理: 平分弦(不是直径)的直径垂
直于弦,并且平分弦所对的弧.
布置作业
课本第76~77页: 作业:习题3.3
垂径定理
知识回顾,引入新课
问题:
同学们想一想:圆是轴对称图形吗? 如果是,它的对称轴是什么? 圆是中心对 称图形吗?它的对圆既是轴对称图形也是中心对称图 形,它有无数多条对称轴,其对称轴是 任意一条过圆心的直线,它的对称中心 是圆的圆心.

北师大版九年级下册数学3.3垂径定理(教案)

北师大版九年级下册数学3.3垂径定理(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了垂径定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对垂径定理的理解。我希望大家能够掌握这些知识点,并在解决与圆相关的几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们对于垂径定理在实际生活中的应用提出了很多有趣的见解。这让我感到很高兴,因为他们能够将所学知识应用到实际问题中。但同时,我也发现部分学生在讨论中较为拘谨,不敢大胆地表达自己的观点。为了鼓励学生们更加积极地参与讨论,我将在今后的教学中多给予他们肯定和鼓励,营造一个轻松、自由的学习氛围。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂径定理的基本概念。垂径定理指的是直径垂直于弦且平分弦的定理。它在解决与圆相关的几何问题中起着关键作用。
2.案例分析:接下来,我们来看一个体的案例。这个案例展示了如何运用垂径定理来求解一个圆的半径,以及它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调垂径定理的证明和运用这两个重点。对于难点部分,如证明过程中辅助线的构造,我会通过举例和步骤分解来帮助大家理解。
-理解垂径定理与圆的其他性质(如圆心角、弧、弦的关系)之间的联系。
举例解释:
-证明过程:解释为何需要通过构造辅助线,如何利用全等三角形或相似三角形的性质来完成证明。
-灵活运用:通过设置不同难度的练习题,引导学生掌握垂径定理在不同情境下的应用,如非直径垂直弦、圆内接四边形等。
-性质联系:强调垂径定理与圆的其他基本性质(如圆心角定理、弧弦定理等)之间的关系,通过对比和联系加深理解。

九年级数学北师大版初三下册--第三单元3.3《垂径定理》课件

九年级数学北师大版初三下册--第三单元3.3《垂径定理》课件

⑸弦的垂直平分线一定平分这条弦所对的弧. (√ )
挑战自我找一找
2.已知:如图,⊙O 中,弦AB∥CD,AB<CD, 直径MN⊥AB,垂足为E,交弦CD于点F. 图中相等的线段有 :
. 图中相等的劣弧有:
.
挑战自我算一算
3、已知:如图,⊙O 中, AB为 弦,C 为
⌒ AB
的中点,OC交AB
于D
例题解析
例1:如图,已知在圆O中,弦AB的长为8
㎝,圆心O到AB的距离为3 ㎝,求圆O的
半径。
A
E
B
O
练习1:在半径为50㎜的圆O中,有长50㎜的弦AB, 计算:⑴点O与AB的距离;
⑵∠AOB的度数。
E
例2:如图,圆O的弦AB=8 ㎝ ,
DC=2㎝,直径CE⊥AB于D,
求半径OC的长。
O
D
A
B
练习2:在圆O中,直径CE⊥AB于 D,OD=4 ㎝,弦AC= 10 ㎝ , 求圆O的半径。
挑战自我画一画
如图,M为⊙O内的一点,利用尺规作一条弦AB, 使AB过点M.并且AM=BM.
●M ●O
挑战自我填一填
1、判断:
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条
弧.
( )
⑵平分弦所对的一条弧的直径一定平分这条弦所对的另
一条弧.
(√ )
⑶经过弦的中点的直径一定垂直于弦.( )
⑷圆的两条弦所夹的弧相等,则这两条弦平行. ( )
C
A M└ B 你可以写出相应的命题吗?
●O
相信自己是最棒的!
D
C
A M└
B
垂径定理及逆定理
●O
条件 ①② ①③ ①④ ①⑤

北师大版九年级下册3.3垂径定理优秀教学案例

北师大版九年级下册3.3垂径定理优秀教学案例
在教学过程中,我注重引导学生从实际问题出发,通过观察和操作,发现垂径定理的内在规律。我设计了一系列的教学活动,包括直观演示、小组讨论、几何画板软件操作等,旨在激发学生的学习兴趣,提高学生的参与度。
同时,我还注重培养学生的逻辑思维能力,引导学生从特殊到一般,从具体到抽象的思考问题,让学生在理解垂径定理的同时,能够灵活运用该定理解决实际问题。
(三)学生小组讨论
1.设计具有挑战性和综合性的小组合作任务,让学生在合作中思考、交流、探究,提高学生的学习效果。
2.组织学生进行小组讨论,鼓励学生提出问题、分享思路、互相启发、互相学习,培养学生的批判性思维和问题解决能力。
3.教师在小组讨论过程中给予及时的反馈和指导,帮助学生更好地理解和掌握垂径定理。
(四)反思与评价
1.引导学生对学习过程进行反思,培养学生自我评价和自我调整的能力。
2.设计具有针对性和全面性的评价指标体系,对学生的知识与技能、过程与方法、情感态度与价值观进行全面评价。
3.利用自评、互评、师评等多种评价方式,给予学生客观、公正的评价,提高学生的自信心和积极性。
4.根据评价结果,调整教学策略和教学方法,为下一阶段的教学提供有益的参考。
北师大版九年级下册3.3垂径定理优秀教学案例
一、案例背景
北师大版九年级下册3.3垂径定理是圆的知识点中的一个重要定理,它揭示了圆中关于垂直于弦的直径的一系列性质。在本节课中,学生需要理解和掌握垂径定理的内容,并能够运用该定理解决相关问题。
在进行本节课的教学设计时,我充分考虑了学生的年龄特点和学习需求,以提高学生的几何思维能力和解决问题的能力为目标,力求通过丰富的教学活动和合理的教学设计,帮助学生理解和掌握垂径定理。
2.要求学生对自己的作业进行自我评价,培养学生的自我反思和自我调整能力。

北师大版九年级下册3.3垂径定理教学设计

北师大版九年级下册3.3垂径定理教学设计
1.概念讲解:明确垂径定理的定义,即圆的直径垂直于弦,并且平分弦。
2.证明过程:引导学生通过几何画板或实际操作,观察并思考如何证明垂径定理。在此基础上,给出严格的证明过程,强调证明方法与逻辑推理。
3.推论介绍:介绍垂径定理的两个重要推论,即弦的一半、弦心距和圆半径构成直角三角形,以及圆的弦垂直平分线相交于圆心。
4.通过对垂径定理及其推论的学习,使学生体会几何知识之间的联系,培养他们运用几何知识解决实际问题的能力。
(三)情感态度与价值观
1.激发学生对几何学的兴趣,培养他们主动探究、积极思考的学习态度。
2.通过对垂径定理的学习,使学生体会数学的简洁美和逻辑美,提高他们对数学的审美能力。
3.培养学生的团队合作精神,使他们学会在合作中交流、分享和互助,共同解决问题。
3.情感态度培养:鼓励学生勇于提出问题、发表见解,培养他们的自信心和批判性思维。
4.课后作业布置:布置适量的课后作业,让学生巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及培养学生的独立思考能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第63页的练习题1、2、3,这些题目主要考察对垂径定理基本概念的理解和简单应用。
5.请同学们按时提交作业,教师将及时批改、反馈,帮助大家查漏补缺,提高学习效果。
2.教学难点:垂径定理的证明过程,以及在实际问题中的应用。
-证明过程涉及严密的逻辑推理,对于部分学生来说可能存在理解上的困难。
-在实际应用中,学生需要能够灵活运用定理,结合其他几何知识,解决更为复杂的问题。
(二)教学设想
1.采定理及其推论。
-教师应以鼓励和表扬为主,营造积极向上的课堂氛围,让学生在轻松的环境中学习。

3-3 垂径定理 -2022-2023学年九年级数学下册同步精品课件(北师大版)

3-3 垂径定理 -2022-2023学年九年级数学下册同步精品课件(北师大版)
∴AC=AE﹣CE=8﹣2 7.
随堂测试
7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则
AC的长为(
A.2 5cm

B.4 5 cm
C.2 5cm或4 5cm
D.2 3cm或4 3cm
【解析】
连接AC,AO,
1
1
∵O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=2AB=2×8=4cm,OD=OC=5cm,
O


BC =BD.
E
B
D
垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧。
符号语言:
C
∵ CD是直径, CD⊥AB
·
⌒ ⌒ ⌒ ⌒
∴ AE=BE,AC=BC,AD=BD.
O
E
B
A
D
概念理解
平分弦的直径垂直于这条弦吗?
情况一:弦是直径
不一定
情况二:弦不是直径
C
A
C
·
O
D
O
B
E
A
B
课堂基础练

AC= AD


, BC= BD
A
已知:线段CD是⊙O的一条弦,直径AB⊥CD,
垂足为E。
⌒ ⌒ ⌒ ⌒
求证:CE=DE, AC = AD, BC =BD.
C
证明:连接OC、OD,在△OCD中,
∵OC=OD,且OE⊥CD,
∴CE=DE,∠COB=∠BOD,
⌒ =AD,

∴ ∠AOC=∠AOD, ∴AC
则OE=
3
,AB=
8
?
.

3.3+垂径定理++课件++2023—2024学年北师大版数学九年级下册

3.3+垂径定理++课件++2023—2024学年北师大版数学九年级下册
弦,观察一下,还有与刚才类似的结论吗?
C
AE=BE, AC=BC,AD=BD
A
O E
B
D
探索新知——垂径定理及其逆定理
活动:
在圆纸片上画出图形,并沿CD折叠,实验后提出
猜想.
C
猜想:垂直于弦的直径
平分这条弦,并且平分弦所
O
对的弧.
E
A
B
D
你能写出已知求 证,并证明吗?
探索新知——垂径定理及其逆定理
别相等.
A M
B
O
B′ M′ A′
探索新知——垂径定理及其逆定理
(1)在探索圆的轴对称性的过程中,若沿两条直径 折叠可以是哪些位置关系呢? 斜交,垂直
垂直是特殊情况,你能得出哪些等量关系?
C
A
B
O
D
AO=BO,CO=DO,AC=BC,AD=BD
探索新知——垂径定理及其逆定理
(2)若把AB向下平移到任意位置,变成非直径的
直径,并且CD⊥AB ,垂足为M.
C
求证:AE=BE, AC=BC, AD=BD.
若只证明AE=BE,还有什么方
A
法?
O E
B D
探索新知——垂径定理及其逆定理
猜想得以证明,命题是真命题,我们把真命题叫 做____定___理____.
垂径定理:垂直于弦的直径平分这条弦,并且平 分弦所对的弧.
垂径定理的推理格式
弓形CED.
弓形的高:从圆心向弦作垂 线,垂线被弦和弧所截的线段的长,
称为弓形的高.如EF .
C E
FD
O
应用实际
例2.已知:如图,在以O为圆心的两个同心圆中, 大圆的弦AB交小圆于C,D两点.

3.3 垂径定理 课件 2023-2024学年 北师大版数学九年级下册

3.3 垂径定理  课件   2023-2024学年 北师大版数学九年级下册

*3.3 垂径定理
续表
(1)定理中的“垂径”可以是直径、半径或过圆心的直线(线段),其 本质是“过圆心”; 特别提醒 (2)“平分弦所对的两条弧”是指既平分弦所对的优弧(如图中的
),又平分弦所对的劣弧(如图中的 )
-2-
*3.3 垂径定理
2. 垂径定理的推论
文字描述 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 如图,直径 CD 与非直径的弦 AB
的是 ( )
A. CM=DM B.
C. ∠ACD=∠ADC D. OM=MB
(第 1 题图)
(第 2 题图)
2. 如图所示,⊙O 的半径为 13,弦 AB 的长度是 24,ON⊥AB,垂足为 N,
则 ON= ( )
A. 5
B. 7
C. 9
D. 11
-1-
*3.3 垂径定理
3.(教材 P76,习题 T2 变式)如图,AE 是⊙O 的直径,半径 OD 垂直于 弦 AB,垂足为 C,AB=8 cm,CD=2 cm,求 BE 的长.
∴AN= AB=12, 在 Rt△AON 中, ∵AO=13,∴ON=
=5.
3. 解:∵ 半径 OD 垂直于弦 AB,垂足为 C, AB=8 cm,∴AC= AB=4 cm,
设 CO=x cm,则 AO=DO=(x+2)cm,在 Rt△AOC 中,AO2=CO2+AC2, ∴(x+2)2=x2+42,解得 x=3,即 CO=3 cm. ∵AO=EO,AC=CB,OC 为△ABE 的中位线,∴BE=2CO=6 cm. 4. D 提示:一条直线经过圆心,平分弦所对的劣弧,根据垂径定理及其推论可 知,它垂直平分这条弦,并且平分弦所对的优弧. 5. 120 提示:∵ 弦 AC 与半径 OB 互相平分,∴OA=AB,∵OA=OB,∴△OAB 是 等边三角形,∴∠AOB=60°,∴∠AOC=2∠AOB=120°.

9下-§3.3 垂径定理(2)

9下-§3.3 垂径定理(2)

3. 垂径定理逆定理的三种语言:
文字语言
图形语言
几何语言
2
深度学习离不开归纳,没有归纳的学习一定是低效的,甚者是无效的。
1.回顾(补充)学习: 轴对称图形:一个图形沿一条直线对折,两部分能够完全重合.
2. 垂径定理逆定理证明方法:构造等腰三角形,由平分弦得出垂 直于弦;由圆心角相等得出弧相等.
3.有关圆的常用辅助线: 连接圆心与弦一端点(半径),过圆心作 弦的垂线段(弦心距),再由半径、弦心距、半弦构造直角三角形, 利用勾股定理解答.
长,与条件有关的半径为 OP,OQ ,所以
若 MP NQ 14 , AC BC 18 ,
连接 OP,OQ ,由垂径定理及有关知识说
则直径 AB 的长.
明 OPM,OQN 三点共线,再由条件中的
HK
两个与线段有关的等式求出 OP,OQ 长.
6
学习抓关键,思维抓核心,学必须学的。
答案:连接OP 交 AC 于 H ,连接OQ 交 BC 于 K
在正方形 ACDE 中, AC// DE,AC DE
,BC ,的中点分别是 M,N,P,Q .若
在正方形 BCFG中, BC// FG,BC FG OP DE,OP 平分 DE ,OQ FG,OQ平分 FG
MP NQ 14 AC BC 18,则直径 AB 的长.
M,N 是 DE , FG 的中点, OPM,OQN 三点共线.
二 平分弦(非直径) 联 的直径垂直于弦.
重要方法:
三 渗垂透用径代定数理方逆法定理 解 (应列方用程,法构)造解直决角
三角形.进而用勾
几股何问解题决的问思题想..
四 悟
4
学习抓关键,思维抓核心,学必须学的。

北师大版九年级数学下册第三章3垂径定理

北师大版九年级数学下册第三章3垂径定理

知识点二 垂径定理的推论 3.下列说法: ①平分弧的直径垂直平分弧所对的弦; ②平分弦的直径平分弦所对的弧; ③垂直于弦的直线必过圆心; ④垂直于弦的直径平分弦所对的弧. 其中正确的是 ( ) A.②③ B.①③ C.②④ D.①④
答案 D 平分弦(不是直径)的直径平分弦所对的弧,故②错误;垂直于弦 且平分弦的直线必过圆心,故③错误.①④正 m,过点E作ME⊥AB,交 AB 于点M,过点F作NF⊥AB,交 AB 于点N.设

AB 所在圆的圆心为点O,连接OA,ON,OD,MN,设MN交CD于点H,可知O,D,C
三点在同一条直线上,MN∥AB,AD= 1 AB=3.6 m.
2
图3-3-7 设OA=r m,则OD=OC-CD=(r-2.4)m. 在Rt△OAD中,由勾股定理,得OA2=AD2+OD2, 即r2=3.62+(r-2.4)2,∴r=3.9,
知识点二 垂径定理的推论
内容 详解
应用 格式 推论
垂径定理的推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧
①推论的条件:直径平分弦,弦不
能是直径;
推论的结论:直径垂直于弦,且平 分弦所对的弧. ②一定不能忽略“被平分的弦 不是直径”这个条件,因为圆中 任意两条直径都是互相平分的, 但它们未必垂直
∵CD平分AB,且CD是直径, ∴CD⊥AB, A︵C= B︵C, A︵D= B︵D
平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一 条弧
例2 如图3-3-2,在☉O中,点C是 A︵B 的中点,弦AB与半径OC相交于点D,AB= 12,CD=2.求☉O的半径长.
图3-3-2 分析 连接OA,根据垂径定理的推论得出AD=6,∠ADO=90°,根据勾股定 理列出方程,求出方程的解即可.

北师大版九年级数学下册:3.3《垂径定理》教学设计

北师大版九年级数学下册:3.3《垂径定理》教学设计

北师大版九年级数学下册:3.3《垂径定理》教学设计一. 教材分析《垂径定理》是北师大版九年级数学下册第3章第3节的内容。

本节主要介绍圆中的垂径定理及其应用。

垂径定理是圆的基本性质之一,对于解决与圆相关的问题具有重要意义。

通过学习垂径定理,学生能够更深入地理解圆的性质,提高解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了圆的基本概念和性质,具备了一定的观察、分析和推理能力。

但在学习垂径定理时,学生可能对定理的理解和应用还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解并掌握垂径定理。

三. 教学目标1.理解垂径定理的内容及证明过程。

2.能够运用垂径定理解决与圆相关的问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.重点:垂径定理的理解和应用。

2.难点:垂径定理的证明过程。

五. 教学方法1.引导发现法:教师引导学生观察、分析、推理,发现垂径定理。

2.实例讲解法:教师通过具体例子,讲解垂径定理的应用。

3.合作交流法:学生分组讨论,分享学习心得和解决问题的方法。

六. 教学准备1.教学PPT:包含垂径定理的定义、证明和应用。

2.实例图片:用于讲解垂径定理的应用。

3.练习题:巩固所学内容。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示PPT,介绍垂径定理的定义、证明和应用。

引导学生观察、分析,理解垂径定理的意义。

3.操练(10分钟)教师提出几个与垂径定理相关的问题,让学生分组讨论,共同解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成几道练习题,巩固所学内容。

教师选取部分题目进行讲解,分析解题思路。

5.拓展(10分钟)教师提出一些拓展问题,引导学生运用垂径定理解决实际问题。

学生分组讨论,分享解题方法。

6.小结(5分钟)教师引导学生总结本节课所学内容,回顾学习过程,分享学习心得。

北师大版数学九年级下册3.3《垂径定理》说课稿

北师大版数学九年级下册3.3《垂径定理》说课稿

北师大版数学九年级下册3.3《垂径定理》说课稿一. 教材分析北师大版数学九年级下册3.3《垂径定理》是本节课的主要内容。

这一节内容是在学生已经学习了直线、圆的基本概念和性质的基础上进行教学的。

教材通过引入垂径定理的概念,让学生了解并掌握圆中的一些重要性质,为学生后续学习圆的其它性质和解决与圆相关的问题打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对直线、圆的基本概念和性质有一定的了解。

但是,对于垂径定理的理解和运用还需要通过本节课的学习来提高。

此外,学生的空间想象能力和逻辑思维能力还需要进一步培养。

三. 说教学目标1.知识与技能:让学生理解和掌握垂径定理,并能够运用垂径定理解决一些与圆相关的问题。

2.过程与方法:通过观察、分析、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:理解和掌握垂径定理。

2.教学难点:如何引导学生运用垂径定理解决实际问题。

五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法、合作交流法和直观演示法等教学方法。

问题驱动法能够激发学生的思考,培养学生的逻辑思维能力;合作交流法能够培养学生的团队合作意识;直观演示法能够帮助学生更好地理解垂径定理。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考圆中的一些性质,激发学生的学习兴趣。

2.新课导入:介绍垂径定理的定义和性质,让学生通过观察和分析来理解垂径定理。

3.案例分析:通过一些具体的例子,让学生学会如何运用垂径定理解决实际问题。

4.巩固练习:设计一些练习题,让学生进一步巩固对垂径定理的理解和运用。

5.课堂小结:引导学生总结本节课的学习内容,加深对垂径定理的理解。

6.课后作业:布置一些相关的作业,让学生在课后继续巩固和提高。

七. 说板书设计板书设计主要包括垂径定理的定义、性质和运用。

通过板书,让学生一目了然地了解垂径定理的主要内容。

北师大版垂径定理 (2)

北师大版垂径定理 (2)
精练108页 例2
如图,在圆O中,已知直径CD平分弦AB, AB=8,DE=2,求圆O的半径。
精练109页 当堂检测 1题 2题
1、如图,已知圆O的半径为4cm,则垂直平分半径的 弦长AB为( )。
2、在直径为10cm的圆柱形油槽中装入一些油后,如 图所示,若油面宽AB=8cm,则油的最大深度为( )
如果圆的两条弦平行,那么这两条弦所夹的 弧相等吗?为什么?
E
A
N ●O
B

M
C└
D
F
C
A
B
●O
C
D
D
精练 108页 拓展提升
圆O的半径为5,弦AB平行CD,AB=6,CD=8,求 AB和CD之间的距离。
检测题
精练109页 当堂检测 3题 4题 5题
1、如图,AB为半圆直径,O为圆心,C为半圆上一 点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm, DE=2cm,则OD的长为( ).
2、已知:如图,⊙O的半径为3,弦AB的长为4.求 sinA的值为( ).
3、如图,已知在以点O为圆心的两个同心圆中,大 圆的弦AB交小圆于点C,D.求证:AC=BD
3 垂径定理
通过探索、推理,理解垂径定理;并运用 垂径定称图形吗?

2.它的对称轴是什么?
圆的对称轴是任意一条经过圆心的直线
3.你能找到多少条对称轴?
它有无数条对称轴.

O
自学
阅读书中74页,回答: 垂径定理的内容
试一试
1、在圆O中,有一条直径和一条弦,怎样操作才 能使直径平分弦?
O

A
C
B
C
O
A
E

3.3垂径定理(课件)九年级数学下册(北师大版)

3.3垂径定理(课件)九年级数学下册(北师大版)
C
➢特别说明:圆的两条直径是互相平分的.
A
·O
B
D
二、自主合作,探究新知
典型例题
C
例2:如图,一条公路的转弯处是一段圆弧(即图中弧CD,
点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,
且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.
E

解:连接OC. 设这段弯路的半径为Rm,则OF=(R-90)m.
股定理计算或建立方程.
五、当堂达标检测
1.已知☉O的半径为13cm,弦AB的长为10cm,则圆心到
弦AB的距离为( D )
A.8cm
B.5cm
·O
C.9cm
D.12cm
2.坐标网格中一段圆弧经过点A,B,C,其中点B
的坐标为(4,3),点C坐标为(6,1),则该圆
弧所在圆的圆心坐标为( B )A.(0,0) B.

六、布置作业
教材习题3.3;
圆心的 直线 .对称中心为 圆心 。
2.在 同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦也相等.
3.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
等,那么它们所对应的其余各组量都分别
相等 .
一、创设情境,引入新知
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)
O
F
D
三、即学即练,应用知识
1.如图,CD是☉O的直径,弦AB⊥CD于点E,连接OA,
OB,下列结论中不一定正确的是( C )
⌒ ⌒
A.AE=BE
B.AD=BD
C.OE=DE
D.∠AOD=∠BOD
2.如图,在☉O中,弦AB的长为8cm,圆心O到AB

(版)北师版九年级下册第三章圆知识点及习题

(版)北师版九年级下册第三章圆知识点及习题

九年级下册第三章圆【知识梳理】一、圆的认识1. 圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点的圆形叫做圆;固定的端点O叫做圆心;线段...O旋转一周,另一个端点A随之旋转所形成OA叫做半径;以点O为圆心的圆,记作⊙..O,读作“圆O〞集合性定义:圆是平面内到定点距离等于定长的点的集合。

其中定点叫做圆心,定长叫做圆的半径,圆......心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心〔即定点〕,二是半径〔即定长〕。

2、与圆相关的概念①弦和直径:弦:连接圆上任意两点的线段叫做弦.。

直径:经过圆心的弦叫做直径。

..②弧、半圆、优弧、劣弧:弧:圆上任意两点间的局部叫做圆弧..,简称弧.,用符号“⌒〞表示,以CD为端点的弧记为“〞,读作“圆弧CD〞或“弧CD〞。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

优弧:大于半圆的弧叫做优弧。

..劣弧:小于半圆的弧叫做劣弧。

(为了区别优弧和劣弧,优弧用三个字母表示。

)..③弓形:弦及所对的弧组成的图形叫做弓形..。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....3、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为 d,那么①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r.其中点在圆上的数量特征是重点,它可用来证明假设干个点共圆,方法就是证明这几个点与一个定点、的距离相等。

二. 圆的对称性:1、圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

北师大版数学九年级下册第三章 3.3 垂径定理

北师大版数学九年级下册第三章 3.3 垂径定理

#北师大版数学九年级下册第三章 3.3 垂径定理1. 引言垂径定理是数学中的一个重要定理,它涉及到直角三角形的性质和垂线的特点。

通过研究垂径定理,我们可以更好地理解直角三角形的性质,并且在解题过程中可以运用这个定理来简化问题。

本文将详细介绍北师大版数学九年级下册第三章中的3.3节垂径定理。

2. 垂径定理的表述垂径定理是指:在直角三角形中,如果一条垂线分别与两个直角边相交,那么这条垂线与两个直角边的交点分别构成的两条线段的乘积相等。

具体地说,设直角三角形ABC中,∠B是直角,BD是BC边上的高,垂足为D,AD称为锐角边上的垂线,CD称为直角边上的垂线。

根据垂径定理可知:AD * CD = BD^2(即锐角边上的垂线与直角边上的垂线之积等于高的平方)。

3. 垂径定理的证明为了证明垂径定理,我们可以利用几何图形中的相似三角形性质来进行推导。

首先,我们假设直角三角形ABC中∠B是直角,BD是BC边上的高,垂足为D,AD为锐角边上的垂线,CD为直角边上的垂线。

由于∠B是直角,所以四边形ABCD是一个矩形,即∠A = ∠C = 90°。

根据几何图形中的相似三角形性质,我们可以得到三个相似三角形:△ADB与△CDB相似,△ABC与△ADC相似,△ABD与△CBD相似。

由于△ADB与△CDB相似,所以有:AD/BD = BD/CD,即AD * CD = BD^2。

由于△ABC与△ADC相似,所以有:AB/AD = AD/CD,即AB * CD = AD^2。

由于△ABD与△CBD相似,所以有:AB/BD = BD/CD,即AB * CD = BD^2。

通过以上三个等式,我们可以发现:AD * CD = BD^2 = AB * CD = AD^2。

综上所述,根据垂径定理的证明,我们得出结论:在直角三角形中,一条垂线分别与两个直角边相交,那么这条垂线与两个直角边的交点分别构成的两条线段的乘积相等。

4. 垂径定理的应用垂径定理在解题过程中有着广泛的应用。

北师大版九年级下册数学:3 垂径定理

北师大版九年级下册数学:3 垂径定理

径为R.经过圆心O 作弦AB 的B垂线OC,D为垂足,
OC与AB 相交于点D,根据前面的结论,D是AB的中
点,A⌒CB是 的中点,CD就是拱高.
C
在图中 AB=37.4,CD=7.2,
AD
1 2
AB
1 2
37
.
4
1
8பைடு நூலகம்
.7
A
R
D
B
OD = OC-CD = R-
O
7.2 OA2 = AD2 +
垂径定理方法:连半径,向 弦作垂线,用勾股定理求解。
AE
1 2
AB
1 2
8
4
在 Rt△ AO 中
A
E
B

OA2 EOE2 AE2
OA OE2 AE2 32 42 5 cm
答:⊙O的半径为5 cm。
练习
3、在直径是20cm的⊙O中,⌒AB 的度数是60°,
那么弦AB的弦心距是 5 3 cm 。
O
D
A
B
思考题
54、将一个两边都带有刻度的直尺放在半圆形纸 片上,使其一边经过圆心O,另一边所在直线 与半圆交于点D、E, 量出半径 OC = 5cm,弦 DE=8cm。求直尺的宽度。
可以发现: 圆是轴对称图形,任何一条直径所在直线
都是它的对称轴.
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足 为E.
(1)圆是轴对称图形,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?
(1)是轴对称图形.直径CD所在
C
的直线是它的对称轴
(2)线段:AE=BE
弧: A⌒C=⌒BC ⌒ ⌒
·O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 垂径定理(2)
北师版 九年级下册
复习导入
回顾垂径定理:
③AM = BM A
由 ①CD为直径 ②CD⊥AB
可推出
④AC BC
⑤AD BD
C B
M
O
垂直于弦的直径平分这条弦, D 并且平分弦所对的弧.
思考探究
如图,AB 是⊙O 的弦(不是 直径),作一条平分 AB 的直径 A CD,交 AB 于点 M .
(1)这个图形是轴对称图形 吗?如果是,它的对称轴是什么?
(2)你能发现图中有哪些等 量关系?说一说你的理由.
C B
M O
D
条件
①CD为直径 ②③CADM⊥= ABBM
结论 ②CD⊥AB ④AC BC ⑤AD BD
CD⊥AB吗?
C
A
B
M
O
D
理由是:连接OA,OB,则OA=OB.
在△OAM和△OBM中,
2.如图所示,OC 交 AB 于点 D,AD = DB,
AB = 6cm,CD = 1cm,求⊙O 的半径长. 解:设圆的半径为 R,则 OB = OC = R, ∵ AD = DB, ∴ OC⊥AB, 根据勾股定理,得
32+(R – 1)2 = R2, 解得 R = 5 cm. 即⊙O 的半径长为 5 cm.
上述五个条件中的任何两个条件都可以推出其 他三个结论.
垂径定理的逆定理: (1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的弧. (2)弦的垂直平分线经过圆心,并且平分弦 所对的两条弧. (3)平分弦所对的一条弧的直径,垂直平分 弦,并且平分弦所对的另一条弧.
……
1.判断:
随堂演练
( ×)
——过圆心作垂直于弦的线段; ——连接半径。
谢谢 大家
郑重申明
作品整理不易, 仅供下载者本人使用,禁止其他 网站、 公司或个人未经本人同意转载、出售!
诚信赢天下,精品得人心!
D
垂径定理的推论:
平分弦(不是直径)的直径垂直于弦,
并且平分弦所对的弧.
还有如下正确结论:
①CD为直径

④AC BC
可推出
②CD⊥AB于M ③AM = BM ⑤AD BD
根据垂径定理与推论可知对于一个圆和一条直 线来说,如果具备
(1)过圆心;(2)垂直于弦;(3)平分弦;
(4)平分弦所对的平分弦的直径,平分这条弦所对的弧.
(2)平分弦的直线,必定过圆心. ( ×)
(3)一条直线平分弦(这条弦不是直径),
那么这条直线垂直这条弦.
(×)
(4)弦的垂直平分线一定是圆的直径. ( ×) (5)平分弧的直线,平分这条弧所对的弦. ( ×) (6)弦垂直于直径,这条直径就被弦平分. ( ×)
A
∵ OA=OB,OM=OM,AM=BM.
∴ △OAM≌△OBM.
∴ ∠AMO=∠BMO.
∴ CD⊥AB
∵ ⊙O关于直径CD对称,
C MB O
D
∴ 当圆沿着直径CD对折时, A 点A与点B重合,
C MB
A C 和 B C 重 合 , A D 和 B D 重 合 . O
A CB C , A D B D .
方法归纳
1.垂径定理经常和勾股定理结合使用。 2.解决有关弦的问题时,经常 (1)连接半径; (2)过圆心作一条与弦垂直的线段等辅助线,
为应用垂径定理创造条件。
课堂小结
请围绕以下两个方面小结本节课: 1、从知识上学习了什么?
圆的轴对称性;垂径定理及其推论 2、从方法上学习了什么?
(1)垂径定理和勾股定理结合。 (2)在圆中解决与弦有关的问题时常作的辅助线
相关文档
最新文档