药剂学综述靶向制剂的应用及发展方向

合集下载

【药剂学】第二十章 靶向制剂

【药剂学】第二十章 靶向制剂
50~100nm微粒进入肝实质细胞中 < 50nm 透过肝脏内皮细胞/通过淋 巴传递到脾和骨髓中
17
隐形化原理
常规微粒易于被调理素调理而被吞噬细胞识别和吞噬,分 布于单核巨噬细胞吩咐的组织,而达到其他靶组织难。
隐形化目的:避免被吞噬细胞吞噬,延长在循环系统的时 间,利用疾病生理特征,富集于病变组织。
21
例:柔红霉素靶向脂质体
肿瘤细胞转铁蛋白受体高表达 转铁蛋白-PEG-脂质体:肿瘤靶向性
22
Y
受体介导的内吞作用 Receptor-Mediated Endocytosis
靶向性配体
Targeting Ligand Candidates 转铁蛋白(Transferrin) 叶酸(Folic acid) RGD(Arg一Gly一Asp) IgG 免疫球蛋白(IgG Immunoglobulins) 纤维蛋白(Fibrin) 葡萄糖/甘露糖(Glucose / Mannose) 半乳糖(Galactose)
Liposomes
Polymeric Micelles
nanoemulsions
Nanoparticles
被动靶向的影响因素
循环系统生理特征
制剂因素
-- 微粒粒径
-- 表面性质
11
循环系统生理特征
药物体内分布:血液—组织— 细胞 血流量大,血循环好的器官药 物分布多(肝脏)。 毛细血管通透高,微粒容易通 过(肝窦毛细血管壁有很多缺 口) 淋巴循环:血流慢,毛细淋巴 管存在组织间隙,细胞间有缺 口通透性大。
7
第二节 靶向制剂的体内作用机制和分类
靶向制剂的分类
按靶标不同:
一级靶向:以特定器官或组织为靶标
二级靶向:以特定细胞为靶标

中药靶向制剂的研究现状及发展前景

中药靶向制剂的研究现状及发展前景

中药靶向制剂的研究现状及发展前景【摘要】目的对中药靶向制剂研究现状及发展前景进行了综述。

方法查阅大量文献,从常见的靶向制剂(脂质体、乳剂、微球、纳米粒)四个方面进行探讨,对中药靶向制剂的研究进展进行了分别综述。

结果中药靶向制剂将中药的优势与靶向制剂的优势结合了起来,既具有靶向性又能提高其药理作用强度和降低毒副作用,是一种比较理想的给药方式。

结论中药靶向制剂现已成为目前国内外药剂学领域研究的热点,也是中药制剂的一个重要发展方向。

【关键词】中药;靶向制剂中药的疗效经受住了长期医疗实践的检验,尤其是在治疗如癌症等疑难病症方面。

但是由于制剂工艺落后、质量不稳定等因素,使中药的推广受到限制。

1906年Ehrlichp[1]提出了靶向制剂(target ing drug system,TDS)的概念,亦称靶向给药系统(targeted drug de livery system,TDD),系指通过适当的载体使药物选择性的浓集于需要发挥作用的靶组织、靶器官、靶细胞或细胞内某靶点的给药系统,使靶区药物浓度高于其他正常组织,从而达到提高疗效、降低全身不良反应的目的。

1 中药靶向制剂的研究现状中药靶向制剂也就是指借用适当的载体将中药中提取的有效成分、有效部位选择性地浓集于靶组织、靶器官或细胞内某靶点的制剂。

上世纪80 年代开始国内一些大专院校、科研单位内有人研究中药的靶向制剂如脂质体等,开展了部分基础研究,为靶向制剂在现代中药制剂中的应用奠定了基础。

1.1 脂质体靶向给药系统脂质体系指将药物被类脂双分子层包封成的微小泡囊,亦称类脂小球或液晶微囊。

作为药物载体具有靶向性和淋巴定向性、缓释性、细胞亲和性与组织相容性、降低药物毒性、提高药物稳定性等优点。

中药脂质体的制备方法很多,常用的包括注入法、薄膜分散法、超声波分散法、逆向蒸发法、冷冻干燥法。

金岩等[2]采用薄膜分散法制备葫芦素脂质体,通过正交设计对制备工艺中影响脂质体包封率的主要因素进行优化,其优选处方和制备工艺稳定可行,为开发其新剂型提供参考;苏春梅等[3]利用薄膜蒸发法制备盐酸小檗碱脂质体,以包封率为指标,考察脂质体包封率的影响因素,结果显示此法可得到粒径分布均匀的脂质体,故可作为其常规制备方法。

药剂学4 靶向制剂概述

药剂学4 靶向制剂概述

(5)具有运转足够量药物能力,而且有一 定的机械强度和生物降解速度。 释药速度适宜,保证在靶区释放出大量 药物。
免疫磁性微球靶向原理示意图
二、栓塞靶向制剂
栓塞靶向制剂:动脉栓塞是通过插入动脉的导管将栓塞 物输送到靶组织或靶器官的医疗技术。 栓塞的目的是阻断对靶区的血液供应和营养,使靶区 的肿瘤细胞缺血坏死,起到栓塞和靶向化疗的双重作 用。
迄今,研究最多的被动靶向给药制剂是
Liposomes
Micro-
emulsions
Microspheres Nanoparticles
Microparticles drug delievey systems
微粒给药系统为分子组装体,药物分子包裹在载体内, 通常在微粒核心。 微粒给药系统可使药物与周围环境分离,保护药物避 免酶的降解。 由于不需共价连接,因此一种药物载体可装载不同种 类的药物,并且较大分子连接物有更高的载药量。
脂质体
脂质体(liposomes)
是将药物包封于
类脂质双分子层内
形成的微型泡囊。
聚合物纳米粒
聚合物纳米粒(polymeric nanoparticle)
由各种生物相容性聚合物(biocompatible polymers)制成,
粒径在10-1000 nm。
药物被包裹在载体膜内称为纳米囊, 药物分散在载体基质中称为纳米球。
1.相对摄取率(re) re=(AUCi)p/(AUCi)s
不同制剂同一组 织或器官比较
式中:AUCi是由浓度-时间曲线求得的第i个器官或
组织的药时曲线下面积,脚标p和s分别表示药物制
剂及药物溶液。
re大于1表示药物制剂在该器官或组织有靶向性,
re愈大靶向效果愈好,等于或小于1表示无靶向性。

药剂学领域的新兴药物研究进展

药剂学领域的新兴药物研究进展

药剂学领域的新兴药物研究进展近年来,随着科技的发展和药剂学领域的不断探索,新兴药物的研究取得了长足的进展。

这些新型药物的研发和应用为人们的健康带来了福音,同时也为药剂学专业的发展提供了新的机遇和挑战。

本文将从几个方面介绍药剂学领域的新兴药物研究进展。

一、靶向治疗药物靶向治疗药物是近年来药剂学研究的热点之一。

这类药物通过特异性地作用于疾病的靶点,降低对正常细胞的毒副作用,提高治疗效果,深受医学界和患者的关注。

其中,基因药物是一类具有很大潜力的靶向治疗药物。

通过对疾病相关基因的调控,基因药物可以有针对性地治疗一些难治性疾病,如肿瘤、遗传性疾病等。

二、基因编辑药物基因编辑技术的问世,为药剂学领域带来了崭新的希望。

基因编辑药物通过定向修复或修改患者异常基因,纠正遗传变异,达到治疗的目的。

目前,CRISPR-Cas9技术作为一种高效、精准的基因编辑手段,被广泛应用于新药的开发和临床研究中。

基因编辑药物的研究还处于起步阶段,但其潜在的应用前景无疑将在未来的药剂学领域中扮演重要角色。

三、免疫治疗药物免疫治疗药物是近年来药剂学领域的重要研究方向之一。

免疫治疗药物通过调节机体免疫系统的功能,增强其对肿瘤、自身免疫性疾病等疾病的控制能力。

免疫检查点抑制剂是免疫治疗药物中的一类重要药物。

它通过抑制肿瘤细胞对免疫系统的抑制作用,激活机体免疫系统,提高对肿瘤的免疫应答,取得了显著的治疗效果。

免疫治疗药物的研究极大地推动了肿瘤治疗领域的进步。

四、基因测序与个体化用药随着基因测序技术的发展,个体化用药成为药剂学研究的重要方向之一。

个体化用药通过对个体基因组的分析,确定个体对药物的反应差异,进而指导用药方案的个性化定制。

这种个体化用药策略可以最大限度地提高药物治疗的效力,减少不良反应,优化疾病的管理。

个体化用药为临床诊疗提供了重要的指导意义,对药剂学研究具有重要的推动作用。

总结起来,药剂学领域的新兴药物研究进展涉及多个方面,包括靶向治疗药物、基因编辑药物、免疫治疗药物以及基因测序与个体化用药等。

药剂学综述靶向制剂的应用及发展方向

药剂学综述靶向制剂的应用及发展方向

靶向制剂的应用及发展方向摘要靶向制剂可以高效提高血药浓度,减少毒副作用。

此文简要介绍靶向制剂的分类,剂型及其应用。

关键词靶向制剂;微球;纳米粒;脂质体;应用靶向制剂的概念起始于诺贝尔医学奖获得者德国科学家Paul Ehrlich于20世纪初提出[1]。

随着现代分子生物学、细胞生物学、药物化学以及材料科学等的不断进步和发展,人们开始针对特定疾病的相关靶点,设计和构建靶向制剂,靶向制剂的研究已经成为国内外药剂学研究的热门之一。

靶向制剂的主要优势是可以提高靶组织的药理作用,增强药物疗效,同时减小全身的不良反应,为第四代给药系统(DDs)。

由于癌症为世界上较为难治愈的疾病之一,而放射性治疗和化学药物治疗对患者的正常细胞损伤太大,毒副作用强。

所以目前,靶向制剂被认为是抗癌药的最适宜的剂型。

1.概述靶向药物可以通过特异性识别肿瘤组织、肿瘤细胞的特定结构和靶点,将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓集超出传统制剂的数倍乃至数百倍,具有特异性的肿瘤杀伤效果,同时减少药物的用量,降低药物不良反应,而且便于控制给药的速度和方式,达到高效低毒的治疗效果[2]。

靶向制剂的作用特点[3]主要有:①提高药物对靶组织的指向型;②降低药物对于正常细胞的毒性减少剂量;③增加药物的生物利用度;④提高药物的稳定性。

1.1靶向制剂的分类靶向制剂的特点是定位浓度、高效、低毒、控制释药、血浓恒定、顺应性提高。

靶向制剂通过作用机制上分类,可分为:①被动靶向制剂,药物以微粒(乳剂、脂质体、微囊、微球等)为载体通过正常的生理过程运送至肝、脾、肺等器官;②主动靶向制剂,是指表面经修饰后的药物微粒,不被单核吞噬系统识别,或其上连接有特殊的配体,是其能够与靶细胞的受体结合等;③物理化学靶向制剂,是应用温度、pH或磁场等外力将微粒导向特定部位。

靶向制剂目前常用的药物载体有乳剂、脂质体、微囊、微球、纳米囊、纳米球、磁性导向微粒,也有利用生物技术以单克隆抗体分子为载体与药物结合,或将药物与能够识别受体的配体分子相连接等。

中药新剂型_靶向制剂的应用

中药新剂型_靶向制剂的应用

收稿日期:2006210218; 修订日期:2007202218作者简介:潘 洁(19752),女(汉族),湖北武汉人,现任湖北省襄樊市第一人民医院药学部主管药师,学士学位,主要从事医院药学工作.中药新剂型———靶向制剂的应用潘 洁,王远光,韩晓翌,王 蓓(湖北省襄樊市第一人民医院 441000)摘要:目的论述中药制剂的新剂型———靶向制剂的研究与应用。

方法检索近年来有关中药靶向制剂研究的文献,并对其进行综合分析和总结,提出中药靶向制剂研究存在的问题与建议。

结果靶向制剂可以提高靶组织的药理作用强度和降低全身的不良反应,是一种比较理想的给药方式。

结论中药新剂型和新技术的研发是中药国际化的关键,需要有组织地开展多学科合作,中药靶向制剂的研究切实可行,并且具有其独特的临床意义和优势。

关键词:中药; 新剂型; 靶向制剂中图分类号:R283 文献标识码:B 文章编号:100820805(2007)0822023201 目前中药制剂的研究与生产已形成四大释药系统同时发展的格局,这四类释药系统是:普通给药系统、缓释给药系统、控释给药系统、靶向给药系统。

中药靶向制剂是中药制剂的新型给药体系,已成为当前中药新剂型研究的热点之一。

靶向制剂的概念是Ehrlichp 于1906年提出的。

靶向制剂亦称靶向给药系统(targeting drug syste m T DS ),指载体将药物通过局部给药或全身血液循环而有选择地定位于靶区(靶组织、靶器官、靶细胞或细胞内结构),使靶区药物浓度高于其他正常组织,达到提高疗效、降低全身不良反应的给药系统[1]。

靶向制剂最初指狭义的抗癌制剂,随着研究的逐步深入,研究领域不断拓宽,在给药途径、靶向的专一性与持效性、药物类型和临床运用方面都有突破性的进展。

特别是近年来材料学及分子生物技术的进展,推动了中药靶向制剂的发展,突显出中药制剂在治疗癌症等疑难杂症方面的作用,为中医药进入国际市场奠定了一定的基础。

靶向制剂论文总结范文

靶向制剂论文总结范文

摘要:靶向制剂作为药物传递系统的一种重要形式,在提高药物疗效、降低毒副作用、实现精准治疗等方面具有显著优势。

本文对近年来靶向制剂的研究进展进行综述,并对未来发展趋势进行展望。

一、引言靶向制剂是指通过特定的载体将药物靶向递送到靶组织、靶器官、靶细胞或细胞内结构的给药系统。

与传统给药方式相比,靶向制剂具有以下优势:提高药物疗效、降低毒副作用、实现精准治疗等。

近年来,随着生物技术、纳米技术和材料科学的快速发展,靶向制剂在临床应用中取得了显著成果。

二、靶向制剂的研究进展1. 被动靶向制剂被动靶向制剂是指利用药物载体将药物递送到靶组织,主要依靠载体材料的物理化学性质实现靶向。

目前常用的被动靶向制剂有脂质体、微囊、纳米粒等。

(1)脂质体:脂质体是一种由磷脂和胆固醇组成的微型囊泡,具有靶向性、缓释性、降低药物毒性等特点。

近年来,脂质体在抗癌、抗病毒、抗炎等领域得到广泛应用。

(2)微囊:微囊是将药物包裹在微小囊泡中,具有靶向性、缓释性、降低药物毒性等特点。

微囊在药物递送、缓释、靶向等方面具有广泛的应用前景。

(3)纳米粒:纳米粒是一种具有纳米级尺寸的药物载体,具有靶向性、缓释性、降低药物毒性等特点。

纳米粒在药物递送、靶向治疗、生物成像等领域具有广泛应用。

2. 主动靶向制剂主动靶向制剂是指利用修饰药物的载体作为“导弹”,将药物定向运送到靶区浓集发挥药效。

目前常用的主动靶向制剂有抗体偶联药物、小分子药物、肽类药物等。

(1)抗体偶联药物:抗体偶联药物是将抗体与药物结合,通过抗体识别靶点,将药物递送到靶区。

近年来,抗体偶联药物在肿瘤治疗、自身免疫疾病等领域取得显著成果。

(2)小分子药物:小分子药物具有靶向性、高效、低毒等特点。

近年来,小分子药物在心血管疾病、神经系统疾病、肿瘤等领域得到广泛应用。

(3)肽类药物:肽类药物具有靶向性、生物活性、低毒等特点。

近年来,肽类药物在肿瘤治疗、心血管疾病、神经系统疾病等领域得到广泛关注。

靶向制剂名词解释药剂学

靶向制剂名词解释药剂学

在药剂学领域,靶向制剂(Targeted Drug Delivery)是指通过特定的传递系统将药物定向释放到靶标组织或靶标细胞的药物制剂。

其目的是提高药物的治疗效果,减少副作用,并增加患者的生活质量。

以下是一些与靶向制剂相关的名词解释:
药物载体(Drug Carrier):药物载体是指用于携带和传递药物的载体系统,其可以保护药物并提供靶向传递的功能。

药物载体可以是纳米颗粒、脂质体、聚合物微球等。

靶向药物递送系统(Targeted Drug Delivery System):靶向药物递送系统是指将药物载体与靶向分子或标记物结合,以实现针对特定靶标的药物释放。

这样可以提高药物在靶标组织或细胞中的富集度,并减少对健康组织的影响。

靶向分子(Targeting Ligand):靶向分子是药物载体表面上的分子结构,可以与特定的受体、蛋白质或细胞表面分子相互作用。

通过与靶向分子的结合,药物载体可以实现对特定细胞或组织的识别和靶向递送。

控释系统(Controlled Release System):控释系统是指可以控制药物释放速率和时间的技术或装置。

这样可以确保药物在目标组织或细胞中持续或缓慢释放,以延长药物的疗效,并减少药物频繁给药的需要。

靶向制剂的研究和开发是药剂学领域的重要研究方向,它可以提高药物的疗效性和安全性,为个体化治疗和精准医学提供了新的可能性。

靶向制剂的设计和制备需要综合考虑药物特性、药物载体的选择和功能化,以及适当的控释策略,以实现药物在靶标组织中的精确递送和治疗效果。

靶向制剂的发展和前景

靶向制剂的发展和前景

靶向制剂的发展和前景凡能将治疗药物专一性地导向所需发挥作用的部位,而对非靶组织没有或几乎没有相互作用的制剂统称为靶向制剂。

靶向制剂的概念早已提出,但由于认知水平的限制,靶向制剂未能得到很好的发展,直到分子生物学、细胞生物学等方面的飞速进步,靶向制剂的发展开辟了新天地。

靶向制剂从诞生开始就受到了各国的重视。

美国、瑞典、日本等国从中得到的经济利润不菲,我国也于80年代开始了对靶向制剂的研究工作。

新的工艺、设备、优秀的载体物质、辅料的诞生及应用,使靶向制剂得以迅速发展。

经过近年来的研究,靶向制剂已取得了可喜的成绩,对各种微粒载体的机制、制备方法、特性、体内分布和代谢规律有了比较清楚的认识,有的已经上市,如脂质体、微球。

脂质体是最受人们关注的靶向制剂。

多年来,对脂质体在进一步提高药物疗效,降低毒性,提高稳定性等方面做了不少工作,并取得了显著进展。

脂质体的给药途径也不断扩大,除静脉注射外,脂质体制剂也可采用经皮、眼部、肺部等给药,可以增加药物在局部组织的分布。

脂质体用作皮肤局部给药的载体已取得令人嘱目的成就,例如我们熟知的膏药、软膏剂就是最为常见的靶向作用制剂。

脂质体可以作为抗癌、抗寄生虫和原虫药物的载体,同时具有控释、提高疗效和增加药物稳定性等优点。

微球也是靶向制剂中常用的载体。

将抗肿瘤药物包封入微球,经血管注入并栓塞于动脉末梢,对某些中晚期癌症的治疗具有一定的临床意义。

微球沉积于肺部可以延缓的释放,且可保护不受酶水解。

改变制备工艺,可获得大小、形状和孔隙率等均符合要求的微球。

上述性质决定微球为较好的肺部给药制剂。

纳米技术在药物制剂方面得到了广泛的应用。

药物制成纳米囊或纳米球后,具有缓释、靶向、提高药物稳定性、提高疗效和降低毒副作用等特点。

总之,靶向制剂由于生物利用度高、毒副作用小正在成为药剂学及临床研究的热点,但靶向制剂的研究还面临很多问题,影响药物分布和释药的因素很多,影响药物释放的因素涉及到药物本身的理化参数、载体的种类、制备的工艺及体内的pH值等。

中药新剂型-靶向制剂的应用

中药新剂型-靶向制剂的应用
药物包 裹而成 的一种 新 的剂型 。囊 膜有
方式不 同可 以分 为 : ① 被动 靶 向制 剂 , 即 自然靶 向制 剂 。其 中括脂 质体 、 乳剂、 微
球、 还有随着高分子材料 发展起来 的纳 米 囊、 纳米球。② 主动靶向制剂其中包括 经 修饰 的载体 药物 、 配体 一受体 系统 、 连 接
等各种类型的胶 体或混悬系统 , 通过多种
给药方式 , 这些微 粒选择性 的聚积 于肝 、
附给药 系统通过特殊控释技术 , 使药 物转
运 到回盲部后 , 才 开始 崩解 或释出载体微 粒, 并使 载体 在一 定时间范围内黏附于结
靶 向 制 剂
耐药性 、 减少给药剂量 、 降低不 良反应 、 改
变给药途径等优点. 如用超声法或高压乳
中药靶 向制剂是 中药制 剂 的新 型给
化法等制成黄芩 脂质体分散液 , 再用流动 床将它用多种糖 芯材 料作切 线喷雾 制成 黄芩脂 质体 粉末 , 有助于提高脂质体 的稳 定性 。研究 的主要 内容是 脂质体 双层 膜的组成 及制 备 工艺 , 提高 脂 质 体包 封
向性 。
讨 论
性 与持效性 、 药物类型和临床运用方 面
都 有突破性 的进展 。本文 就近年 来 中药 靶 向制 剂的进展 和应用作一综述 。
靶 向 制 剂 的 分 类 与作 用特 点
靶 向制剂 的分类 : ( 1 ) 靶向制剂按作 用
利用天然或合成 高分 子材料或共 聚物 , 将
②微球是指 将药 物分子 溶解 或分散 在辅
料 中形成 的微小球状 实体 , 多用生物降解
材料为载体 , 靶 向微 球可分 为三类 : 普 通
注射微球 、 栓 塞性微 球 、 磁性 微球 。以壳 聚 糖 为 载 体 制 成 的 金 雀 异 黄 素 ( G e n i s t e i n , 4 , 5 , 7一三羟基 异黄酮 ) 微球

靶向制剂的应用与研究进展(全)

靶向制剂的应用与研究进展(全)

靶向制剂的应用于研究进展(全)从剂型的发展来看,人们把药物剂型人为地划分为四代:第一代是指简单加工供口服与外用的汤、酒、炙、条、膏、丹、丸、散剂。

随着临床用药的需要,给药途径的扩大和工业机械化与自动化,产生了以片剂、注射剂、胶囊剂和气雾剂等为主的第二代剂型。

以后又发展到以疗效仅与体内药物浓度有关而与给药时间无关这一概念为基础的第三代缓控释剂型,它们不需要频繁给药,能在较长时间内维持药物的有效浓度。

第四代剂型是以将药物浓集于靶器官、靶组织、靶细胞或细胞器为目的的靶向给药系统。

显然,这种剂型提高了药物在病灶部位的浓度,减少在非病灶部位的分布,所以能够增加药物的治疗指数并降低毒副作用。

对于药剂学的发展, 第一代: 常规制剂, 以工艺学为主, 生产以手工为主, 质量以定性评价为主; 第二, 缓释长效制剂, 以物理化学为基础理论指导, 生产以机械化为主, 质量控制定量、定性结合; 第三代, 控释制剂, 制剂质量控制要求有体内的生物学指标; 第四代, 靶向制剂, 将有效药物通过制剂学方法导向病变部分, 防治与正常的细胞作用, 以降低毒性的最佳的质量效果。

缓释制剂(SRP):是指通过延缓药物从该剂型中的释药速率,降低药物进入机体的吸收速率,从而起到更加的治疗效果的制剂,但药物从制剂中的释放速率受到外界环境如PH 等因素影响。

《中国药典》规定,缓释制剂系指口服药物在规定释放介质中,按要求缓慢的非恒速释放,与其他相应的普通制剂相比,每24h用药次数应从3~4次减少至1~2次的制剂。

控释制剂(CRP):是通过控释衣膜定时、定量、匀速地向外释放药物的一种剂型,使血药浓度恒定,无“峰谷”现象,从而更好地发挥疗效。

缓释和控释制剂的主要区别是在药物释放速度方面缓释制剂是药物在体内先快后慢地缓慢释放,常为一级过程;控释制剂是控制释药速度一般是恒速的.为零缘或接近零级过程.指用药后能在较长时间内持续缓慢释放药物以达到长效作用的一类制剂。

第二十章 靶向制剂——【药剂学】

第二十章 靶向制剂——【药剂学】
27
pH敏感靶向制剂
举例:二 油 酰 磷 脂 酰 乙 醇 胺(DOPE)+胆固醇半琥珀酸 酯(CHEMS):DOPE形成反六 角结构,当加入CHEMS,羧酸 基团增加磷脂分子间斥力,形 成脂质双分子膜。酸性条件下, 羧基枝质子化,分子间斥力消 失,重新形成反六角结构,导 致脂质体不稳定,药物释放。
34
靶向功能优化
靶向基团的选择:特异性 靶向基团修饰的密度 PEG化的作用
35
载药和释药功能优化
处方筛选:高包封率和稳定性 制剂的体内稳定性,理想状态:制剂到达靶 组织或靶细胞之前不泄漏药物。 药物释放:到达靶组织或靶细胞后全部释放 药物,pH敏感、热敏感型 共价结合药物,要求药物效价高
36
举例:T-DM1
system, TDDS),指载体能选择性地将药物定位或富集 在靶组织、靶器官、靶细胞或细胞内特定结构的药物 传递系统。
Disease site
优势:提高药效、降低毒副作用。
4
靶向制剂的发展历程
1906年,Paul Ehrlich 提出靶向制剂的概念 Paul Ehrlich病理和免疫学家(德国),1908年诺贝尔奖 化学疗法之父(founder of chemotherapy) 发现一些染料可以染上细菌而不染上正常组织细胞—化 学物质可以产生选择性的作用
磁性靶向制剂 热敏感靶向制剂
(体外控制型)
pH敏感靶向制剂 氧化还原作用敏感靶向制剂
(体内感应型)
24
磁性靶向制剂
相应外加磁场,避免巨噬细胞 吞噬;靶向外加磁场部位。
Tissue
25
热敏靶向制剂
制剂相应外加热源,使靶组织的温度稍高于正常组织条件 下,制剂将药物在靶组织释放。

靶向制剂

靶向制剂

眼部释药: 二叔戊酰肾上腺素 肾脏释药:7-谷氨酰-L-多巴
药物大分子复合物
将药物与聚合物、抗体、配体以共价键形成分子 复合物,借助EPR效应聚集于肿瘤细胞中,在局 部低pH环境或酶作用下,聚合物降解,药物释放 发挥作用 主要用于肿瘤靶向治疗
由于肿瘤血管生长迅速,外膜细胞缺乏,基底 膜变形,淋巴管道回流系统缺损等 ---导致对大分子物质渗透性增加并滞留蓄积 于肿瘤部位
构修饰,制成具有靶向作用的前体药物是目前TODDS的重要研究 思路。 2、基因治疗(gene therapy)是近年来发展起来的一种补充人体 缺失基因或关闭异常基因的新疗法,对于恶性肿瘤、先天性遗
传病、艾滋病、糖尿病及心血管疾病等的治疗具有重大价值。
研究携带治疗基因片段或杂合体重组DNA质粒,保持其不被核酸 酶降解,顺利地转导入人体靶位的载体将是21世纪初靶向给药
system,简称TODDS ) :即靶向制剂,借助载体、配体 或抗体将药物通过局部给药、胃肠道或血液循环而选择 性地浓集于靶组织、靶器官、靶细胞或细胞内结构的制 剂。
二、靶向给药系统概述
2.靶向制剂特点
靶向制剂特点
降低给药剂量
降低了毒性(LD50) 、提高药物的安全性。
靶向制剂设计复 杂,难于大规模 生长。 机体的复杂性 使设计的难度 较高。 提高患者临床顺应性
制剂研究领域的重要课题。
未来TDDS的发展趋势主要体现在: ①靶向水平将由器官水平向细胞和分子水平发展;
②由微粒给药制剂向靶向前体药物发展;
③由构建研究向功能研究、机制研究和体内发研究发展。
如肝靶向纳米粒、单克隆抗体介导前体药物、脑靶向前体药物、肾靶向前 体药物、肝靶向前体药物和肺靶向前体药物的功能、靶向机理和体内分布 代谢的研究正日益增多。 在不久的将来,靶向药物转运系统一定会在世界 上大部分国家内广泛应用并占主导地位。

靶向制剂

靶向制剂
23
另报道利用胃肠道生理学的“恒定性”, 研制 出胃肠定位释放的微粒给药系统,例如日本研
制成一种在病人口服后2~3h到大肠才溶解的制
剂,具有靶向和定位作用。
24
3、脂质体、微球剂在基因治疗中的应用 90年代初期,科学家们已对人类基因组作为药物 设计中的靶受体进行研究,并预测这将是本世纪 最具魅力的研究领域,据近年报道脂质体有关基 因治疗方面的研究正在深入,通过脂质体介导比 利用病毒转导进行基因转移具有以下优势:
21
新一代脂质体因表面含有棕榈酰葡萄糖苷酸或 聚乙二醇 (PEG) 等类脂衍生物,能有效地阻止
血液中许多不同组分特别是调理素与它的结合,
从而降低了与吞噬细胞的亲合力。
22
靶向微球也具有靶向和缓释双重作用。 有关具有定位、控释作用的靶向制剂。如结肠靶 向粘附释药系统 (CSSBDDS) 的研究,据报道这种 释药系统使药物经口服后,避免在上消化道释放, 而将药剂运送到人体回盲肠后开始崩解和释放出 药物,且在一定时间内粘附于结肠粘膜表面,以 一定速度释放药物,从而达到提高药物局部浓度 和生物效性的目的。
靶向制剂
中国药科大学药剂学教研室 lvhuxia@ By吕慧侠
1
靶向制剂的发展
1906年,Ehrlich P首次提出靶向制剂的概念 。
70年代末80年代初,开始比较全面地研究靶向制剂,包括
它们的制备、性质、体内分布、靶向性评价以及药效与毒 理。 1993年FlorenceAT创办了“Journal of Drug Targeting”,专门刊载靶向制剂的研究论文,促进了医药
中间所制成的超微型球状体,是一种类似微型
胶囊的新剂型。
1971 年英国莱门 (Rymen) 等人开始将脂质体用

药剂学靶向制剂考点归纳

药剂学靶向制剂考点归纳

第十四章靶向制剂一、概述靶向制剂亦称靶向给药系统,是通过适当的载体使药物选择性地浓集于需要发挥作用的靶组织、靶器官、靶细胞或细胞内某靶点的给药系统。

靶向制剂可提高药效,降低不良反应,提高药品的安全性、有效性、可靠性和患者的顺应性。

成功的靶向制剂应具备定位浓集、控制释药以及无毒可生物降解三个要素。

(一)靶向制剂的分类药物的靶向从到达的部位讲可以分为三级,第一级指到达特定的靶组织或靶器官,第二级指到达特定的细胞,第三级指到达细胞内的某些特定靶点的靶向制剂。

按作用方式分类,靶向制剂大体可分为以下三类。

1.被动靶向制剂即自然靶向制剂,这是载药微粒进入体内即被巨噬细胞作为外界异物吞噬的自然倾向而产生的体内分布特征。

这类靶向制剂利用脂质、类脂质、蛋白质、生物降解型高分子物质作为载体,将药物包裹或嵌入其中制成各种类型的微粒给药系统。

注射给药后,载药微粒被单核-巨噬细胞系统的巨噬细胞(尤其是肝的Kupffer细胞)摄取,通过正常生理过程运送至肝、脾、肺及淋巴等巨噬细胞丰富的器官,而很难达到其他的靶部位。

2.主动靶向制剂是用修饰的药物载体作为“导弹”,将药物定向地运送到靶区浓集发挥药效的靶向制剂。

例如疏水性载药微粒的表面经亲水性高分子材料修饰后,不易被巨噬细胞吞噬,或因连接有特定的配体可与靶细胞的受体结合,或因连接单克隆抗体成为免疫微粒等原因,能够避免巨噬细胞的摄取,防止在肝内浓集,从而改变了微粒在体内的自然分布而到达特定的靶部位;另一类主动靶向制剂,系将药物修饰成前体药物,输送到特定靶区后药物被激活发挥作用。

3.物理化学靶向制剂是用某些物理和化学方法使靶向制剂在特定部位发挥药效。

如应用磁性材料与药物制成磁导向制剂,在足够强的体外磁场引导下,在体内定向移动并定位浓集于特定靶区;或应用对温度敏感的载体制成热敏感制剂,在热疗机的作用下,使其在靶区释药;也可应用对pH敏感的载体制备pH敏感制剂,使其在特定pH的靶区释药。

靶向制剂研究进展

靶向制剂研究进展

L hu — i ZHOU u n-i MENG n s e g /C n x a, Y a l, Fa —h n
(ia et l o i l f l t h n og U i r t,ia 5 0 3, hn ) Jn n Cnr s t f i e t S a d n nv sy J n2 0 1 C ia aH p aA a d o i ei n
靶 向制 剂 亦 称 靶 向 给 药 系 统 (a ei rgdl e y— t gt gd evr ss r n u i y
拓宽 , 目前从载体物 质 、 向的动力 源和 给药方 式等 方面 都 靶 取得 了突破性进展 , 因此 , 向制 剂是具 有靶 向性 的药物 制 靶 剂统称 。靶 向制剂 的分类方法也不尽相 同 , 根据 载体透过 靶
部 位 组 织 的 方 式 J可 分 为 生 物 物 理 靶 向 给 药 制 剂 、 物 化 , 生 学 靶 向 给 药 制 剂 、 物 免 疫 靶 向 给 药 制 剂 、 重 和 多 重 靶 向 生 双
t T D ) 是一种 能将 药 物有 目的的输 送 到病灶 部 位 , e D S, m, 从 而减少药物用量 的新 型药物制剂技 术和工 艺 , 而且 便于控 制 给药的速度 和 方 式。10 9 6年 由 E rc hl h提 出靶 向制 剂 的概 i 念。靶向制剂可 以提 高靶 组织 的药理 作用 强度 和降低 全身 的不 良反应 , 一种 比较理 想的 给药方 式 , 是 为第 四代药 物剂 型, 被认 为是抗 癌 药的最 适宜 的剂 型。近 2 0年来 随着 细胞 生物学 、 子生物学 和材料 学等科 学 的飞速 发展 , 向制剂 分 靶 的研究俨然 已经 成为 国 内外 药剂 研究 的热 点之一 。国家 自 然科 学基金委员 会 ( S C) N F 资助 的药剂 学研 究项 目中, 向 靶 制剂的研究项 目多达 2 5项 , 占总资助项 目的 4 .% , 8 1 这充分 反映 了靶 向制剂研究在现代药 剂学 中的重要地位 j 。 采用脂质体作 为药物 载体 是研究 的重 点 , 磁靶 向、 酶靶 向制剂也是研究热点 。此外 , 利用药剂学 手段制成 靶 向给药 系统最引人注 目, 即通 过微 粒将 药物靶 向输 送至病 灶部 位 , 而对其他组织 、 器官 和细胞影 响很 小 , 从而 提高 疗效 和减少 药物的毒副作用 , 因此 , 常适合 于作抗肿瘤 药物 、 非 生物大分 子的载体 , 并显 示了 良好的应用前 景。靶 向制剂是 医药研究 今后发展 的一个重要课题 。 1 靶 向制剂的分类 最初狭义 的靶 向制剂 指抗 癌制剂 , 随着其研究 领域逐 渐

药剂学研究中的热点领域和基本思路

药剂学研究中的热点领域和基本思路

药剂学研究中的热点领域和基本思路药剂学是药学科学的重要分支学科,对我国新形势下药学科学和医药产业的发展具有重要而特殊的作用。

我国药剂学研究的热点领域主要包括靶向制剂、控释制剂、透皮吸收制剂以及药物稳定性等。

随着科学技术的发展,药剂学在新材料、新技术、新方法和基础研究等方面都进入了一个新阶段。

现通过分析和探讨我国药剂学研究中的热点领域和基本思路,对我国药剂学的研究进行回顾和反思。

1.靶向制剂研究靶向给药系统能将药物定向输送到靶器官,减少药物在正常组织中的分布,提高疗效,减少药物用量,减轻毒副作用[4—6]。

靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂三大类。

1.1被动靶向制剂普通的微粒给药系统具有被动靶向的性能。

微粒给药系统包括脂质体(1S)、纳米粒(NP)或纳米囊(NC)、微球(MS)或微囊(MC)、细胞和乳剂等药物载体。

被动靶向的机理在于:网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1—3um)作为异物摄取于肝、脾;较大的微粒(7-30uln)不能滤过毛细血管床,被机械截留于肺部;而小于50nm的微粒可通过毛细血管末梢进入骨髓。

1.1.1用NP或IS实现肝脏靶向给药我国肝癌死亡率较高,化疗是主要手段。

使用普通抗癌药后全身分布,有较大的毒副作用。

有研究者以新型抗癌药为模型,以聚氰基丙烯酸酯NP为载体,利用被动靶向的机理,研究其作为靶向治疗肝癌的可行性。

5—Fu是目前用于治疗消化道肿瘤的主要药物之一。

有研究者用不同性质的天然物质作为载体,并掺人对肝亲和力强的物质,将5—Fu制成口服NP,探讨载体的化学性质和肝靶向的相关性,为寻找肝靶向性强,释药时间长的理想载体提供依据。

·乙肝治疗比较困难,原因是药物在肝内达不到有效浓度。

故设想将抗病毒药载人NP,提高药物在肝脏中的浓度,并使药物不经破坏地进入肝细胞。

除此之外,还可在NP表面交联糖蛋白,由于肝细胞膜存在糖蛋白受体,可进一步提高NP对肝细胞的靶向性。

药学研究的新进展和未来方向

药学研究的新进展和未来方向

药学研究的新进展和未来方向随着科学技术的飞速发展和医药领域的不断突破,药学研究作为医药领域的重要组成部分,也迎来了新的进展和未来方向的探索。

本文将通过分析当前的研究热点和趋势,探讨药学研究的新进展和未来方向。

一、个性化药物研究个性化医疗是当前医药领域的热门话题,而在个性化医疗中,个性化药物则成为了药学研究的重要方向。

个性化药物研究基于个体基因、环境和生活方式等多种因素,通过研究患者基因组信息,实现个体化的药物治疗。

通过个性化药物研究,可以实现更精确、更高效的治疗方案,提高治疗效果,减少患者的副作用和药物不良反应。

二、靶向药物研究靶向药物是指通过作用于特定的靶点,抑制或激活特定的信号通路,从而实现对疾病的治疗。

随着对疾病分子机制的深入研究,靶向药物的研发日益成为药学研究的重要方向。

靶向药物具有高效、低副作用的特点,在癌症等疾病的治疗中取得了显著效果。

未来,靶向药物的研究将进一步深入,涉及更多疾病领域,并且结合个性化医疗的理念,实现更精准的治疗。

三、纳米技术与药物传递纳米技术是一种将物质调制为纳米尺度的技术,近年来在药学研究中得到了广泛的应用。

纳米技术可以用于药物的制备、传递和释放等方面,改善药物的生物利用度、稳定性和靶向性,提高药物疗效。

在药物传递方面,纳米技术可以通过纳米粒子、纳米胶囊等纳米载体,将药物精确地传递到疾病部位,降低药物剂量,减少毒副作用。

未来,纳米技术将进一步发展,为药学研究带来更多的创新突破。

四、计算机辅助药物设计随着计算机科学和人工智能的发展,计算机辅助药物设计越来越受到关注。

计算机辅助药物设计通过模拟和计算分析,帮助研究人员快速筛选、设计和优化药物分子。

这种方法可以大大加快药物研发的速度和效率,减少实验成本。

未来,计算机辅助药物设计有望在药学研究中发挥更大的作用,为新药的发现和研发提供强有力的支持。

五、中药现代化研究中药作为中华文化的重要组成部分,在世界范围内具有广泛的应用和重要的地位。

靶向制剂-研究发展

靶向制剂-研究发展

靶向制剂的研究发展【摘要】本文以靶向制剂的分类、机制、作用特点及医药应用为主,综述了近五年来发表的一些有关靶向制剂的研究论文与研究成果,总结归纳了近年来靶向制剂的研究发展。

【关键词】靶向制剂、靶向给药、载药微粒、脂质体、抗肿瘤药物、发展靶向制剂的概念是1906年由Ehrlich年提出的,至今已经100多年了.但由于人类长期对疾病认识的局限和未能在细胞水平和分子水平上了解药物作用,以及靶向制剂的材料和制备方面的困难;直到分子生物学、细胞生物学和材料科学等方面的飞速进步,才给靶向制剂的发展开辟了新天地。

自上个世纪70年代末 80 年代初人们开始比较全面地研究第二代控制释放产品,即靶向制剂,包括它们的制备、性质、体内分布、靶向性评价以及药效与毒理。

靶向制剂亦称靶向给药系统(Targeting drug delivery system,TDDS),是通过载体使药物选择性的浓集于病变部位的给药系统,病变部位常被形象的称为靶部位,它可以是靶组织、靶器官,也可以是靶细胞或细胞内的某靶点。

靶向给药可以增加药物在靶部位的浓度、降低药物在非靶部位的浓度、延长药物在靶部位的停留时间,从而提高给药后的疗效【1】。

由于靶向制剂可以提高药效、降低毒性,可以提高药品的安全性、有效性、可靠性和病人用药的顺应性,所以日益受到国内外医药界的广泛重视靶向制剂的分类1.被动靶向制剂(passive targeting preparation)被动靶向制剂即自然靶向制剂。

载药微粒被单核-巨噬细胞系统的巨噬细胞(尤其是肝的kupffer细胞)摄取,通过正常生理过程运送至肝、脾等器官,若要求达到其他的靶部位就有困难。

被动靶向的微粒经静脉注射后,在体内的分布首先取决于微粒的粒径大小。

通常粒径在2.5-10μm 时,大部分积集于巨噬细胞。

小于7μm时一般被肝、脾中的巨噬细胞摄取,200-400nm的纳米粒集中于肝后迅速被肝清除,小于10nm的纳米粒则缓慢积集于骨髓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

靶向制剂的应用及发展方向摘要靶向制剂可以高效提高血药浓度,减少毒副作用。

此文简要介绍靶向制剂的分类,剂型及其应用。

关键词靶向制剂;微球;纳米粒;脂质体;应用靶向制剂的概念起始于诺贝尔医学奖获得者德国科学家Paul Ehrlich于20世纪初提出[1]。

随着现代分子生物学、细胞生物学、药物化学以及材料科学等的不断进步和发展,人们开始针对特定疾病的相关靶点,设计和构建靶向制剂,靶向制剂的研究已经成为国内外药剂学研究的热门之一。

靶向制剂的主要优势是可以提高靶组织的药理作用,增强药物疗效,同时减小全身的不良反应,为第四代给药系统(DDs)。

由于癌症为世界上较为难治愈的疾病之一,而放射性治疗和化学药物治疗对患者的正常细胞损伤太大,毒副作用强。

所以目前,靶向制剂被认为是抗癌药的最适宜的剂型。

1.概述靶向药物可以通过特异性识别肿瘤组织、肿瘤细胞的特定结构和靶点,将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓集超出传统制剂的数倍乃至数百倍,具有特异性的肿瘤杀伤效果,同时减少药物的用量,降低药物不良反应,而且便于控制给药的速度和方式,达到高效低毒的治疗效果[2]。

靶向制剂的作用特点[3]主要有:①提高药物对靶组织的指向型;②降低药物对于正常细胞的毒性减少剂量;③增加药物的生物利用度;④提高药物的稳定性。

1.1靶向制剂的分类靶向制剂的特点是定位浓度、高效、低毒、控制释药、血浓恒定、顺应性提高。

靶向制剂通过作用机制上分类,可分为:①被动靶向制剂,药物以微粒(乳剂、脂质体、微囊、微球等)为载体通过正常的生理过程运送至肝、脾、肺等器官;②主动靶向制剂,是指表面经修饰后的药物微粒,不被单核吞噬系统识别,或其上连接有特殊的配体,是其能够与靶细胞的受体结合等;③物理化学靶向制剂,是应用温度、pH或磁场等外力将微粒导向特定部位。

靶向制剂目前常用的药物载体有乳剂、脂质体、微囊、微球、纳米囊、纳米球、磁性导向微粒,也有利用生物技术以单克隆抗体分子为载体与药物结合,或将药物与能够识别受体的配体分子相连接等。

无论是被动靶向、主动靶向,还是物理化学条件响应的机制,都不应该是孤立的绝对的,响应型作用和主动或被动靶向作用可以协同起效,进一步提高药物在靶点部位的释放浓度,提高药效。

2.典型的靶向制剂2.1脂质体(liposome)脂质体是由磷脂双分子在水溶液中定向排列成的封闭式多双分子层小球状新型药物载体,也称类脂小球或人工细胞。

其制备简单,具有控释、无免疫原性及提高疗效等特点。

皮肤靶向和肺部靶向等都是脂质体的多种靶向部位代表性制剂。

在20世纪70年代,Bangham和Ryman首次作为抗癌药物载体。

目前,紫杉醇靶向制剂为癌症化疗研究的热点,具有广阔的临床应用前景。

吕宝军等[4]研究发现紫杉醇脂质体具有抑制直肠癌Colo320细胞增殖的作用。

为提高脂质体的靶向性,近年来随着免疫磁珠等技术的发展,脂质体表面进行修饰已成为另一个研究的热点,例如组织器官受体的配体多为糖残基化合物,将特定细胞具有选择性亲和力的糖残基配体结合在其表面如免疫球蛋白等,从而使药物具有靶向性。

也可利用抗原与抗体间特异性,将某种抗体修饰脂质体表面制备成免疫脂质体,提高其对靶细胞的识别能力,从而使脂质体具有高度专一靶向性。

Suzuki等[5]用抗转铁蛋白受体单抗与脂质体偶联制备成能靶向富含TER细胞的免疫脂质体,发现这种脂质体包裹DOX能促进DOX 进入K562/ADM 细胞内,并使DOX的细胞毒性得到增强。

另外,脂质体用作皮肤局部给药的载体已取得瞩目的成就,用亚硝酸控制解聚法制得低分子肝素脂质体喷雾凝胶,经研究表明可明显的促进透皮吸收,作用大于含有等量药物的普通软膏剂和水凝胶剂[6]。

2.2微球(microphere)微球是指药物分子分散或被吸附于聚合物微球中而形成的微粒分散系统,可以在体内特异性分布,提高药物局部的有效血药浓度,降低全身的局部作用。

主要用于注射给药、动脉栓塞和口服等。

目前微粒的研究用药多为抗癌药,也有抗生素、抗结核药、抗寄生虫药、平喘药、疫苗等[7]。

微球制剂具有提高药物稳定性和生物利用度,减少药物胃肠刺激,延长药物作用时间的作用,尤其具有靶向作用,对提高药物疗效具有重要意义。

微球对药物的适应性要比脂质体强,药物可以分子或微粉状态分散在微球材料中,无论是在制备工艺方面,还是在材料选择方面,微球都比脂质体要简便得多。

特别是蛋白质、多肽等生物大分子以微球为载体时,可制成长效注射剂、鼻腔给药或口服给药的微球制剂,从而解决了这类药物在体内易酶解或水解失活、半衰期短等问题[8]。

杨帆等[9]以生物可降解材料聚乳酸为载体,制备了聚乳酸红霉索微球,其形态圆整,流动性好,各项质量指标良好,且具有明显的缓释作用和满足肺靶向给药的要求。

为了提高微球的靶向性,近些年又研制出了免疫微球和磁微球。

免疫微球是一种具有免疫活性的微球,它的应用很广,不仅用于抗癌药物的靶向给药,还可用来标记和分离细胞[10]。

2.3纳米粒(nanopartiles)纳米粒实际属于固态胶体微粒,药物能溶解或者包裹于纳米粒中,其粒径在1~1000nm,最小的毛细血管内径达4nm,纳米粒很容易通过,于水中形成近似胶体的溶液,经静注可被网状内皮系统吸收,主要分布于肝、脾、肺等器官[11 ],具有靶向性、缓释性、疗效高等特点[12]。

纳米粒具备促进肿瘤细胞吸收和靶向定位的功能,可在增强疗效的同时减少不良反应[13]。

在胶体载体表面通过共价或非共价的形式连接能靶向血脑屏障的配体可以提高其对脑部肿瘤的选择性,开发靶向性转运增强的纳米粒对抗肿瘤药物穿越BBB治疗脑部肿瘤具有重要意义[14]。

固体脂质纳米粒(solid lipid nanoparticle SLN)是近年来正在发展的一种采用卵磷脂等固态的脂质为载体的新型纳米粒给药系统。

它可以用来控制药物的释放,避免药物的降解和泄漏,具有良好的靶向性。

3.靶向制剂的应用3.1靶向制剂在肝癌治疗中的应用肝靶向给药系统(HTDDS) 是将肝脏作为目标脏器,采用多种制剂手段,达到使药物靶向于肝,提高疗效,降低毒副作用的目的。

药物肝靶向一般有三种形式,即被动靶向、主动靶向和物理化学靶向[15]。

1. 被动靶向给药系统被动靶向(passive targeting) 可通过正常生理过程运送至肝、脾等器官,在体内的分布首先取决于微粒的粒径大小,其次,微粒表面性质对分布也起着重要作用。

⑴pH 敏感脂质体pH 敏感脂质体是基于肿瘤间质处的pH 值比正常组织低的特点而设计的一种具有细胞内靶向和控制药物释放作用的脂质体。

Salvage 等[16]将磷脂酰胆碱的衍生物与对pH 敏感的共聚单体连接起来得到可以形成纳米级胶束的药物载体,该载体载药量高,基本上无细胞毒性,在生理pH 值下是稳定的胶束,而当该载药胶束分布到pH 值比正常组织低的肿瘤部位时,胶束解离,内部药物释放出来发挥治疗效果,具有良好的肝靶向性。

⑵毫微粒毫微粒是一种固态胶体药物释放体系,是将药物溶解、包裹或吸附于聚合材料载体上制成的胶体固态颗粒。

由于被动靶向终究缺乏特异性,靶向精度差,只能处于一级靶向水平上,主动靶向成为近年来靶向给药的研究热点。

2.主动靶向给药系统主动靶向是指用修饰的药物载体作为“导弹”,将药物定向地运送到肝细胞中浓集而发挥药效。

主动靶向的机制为:载药微粒经表面修饰后,不被巨噬细胞识别;连接有特定的配体町与靶细胞的受体结合;连接单克隆抗体成为免疫微粒;将药物修饰成前体药物,使其变为能在活性部位被激活的药理惰性物,在特定靶Ⅸ被激活发挥作用,从而避免巨噬细胞的摄取,防止在肝内浓集,改变微粒在体内的自然分布而到达特定的靶部位发挥作用。

⑴半乳糖糖蛋白受体介导肝细胞膜上存有半乳糖糖蛋白受体。

姜华等[17]采用半乳糖衍生物修饰去甲斑蝥酸钠脂质体(GNL),比较其与去甲斑蝥酸钠脂质体(CNL) 的肝靶向作用差异,结果发现GNL 肝脏靶向效率是CNL 的118 倍,是去甲斑蝥酸钠注射液的219 倍。

证明了以半乳糖残基修饰的药物具有显著的肝靶向性。

⑵胆酸( 盐) 由于胆酸可被肝脏特异性吸收,因此以此为靶向修饰是靶向制剂研究的一条通路。

文献[18-21] 报道,在细胞及动物实验中,众多抗病毒、抗肿瘤、降脂药物与胆酸偶联后,不同程度增加了药物的肝吸收,降低了药物的毒副作用。

3. 物理化学靶向给药系统物理化学靶向(physical and chemical targeting) 是指应用某些物理化学方法使靶向制剂在特定部位发挥药效。

⑴磁性靶向给药利用体外局部磁场,引导进入体内的磁性载药微粒到达靶部位。

当外加磁场聚焦于肝脏时便有肝靶向的作用。

Sun 等[22]用磁气圈BMs作为载体包裹阿霉素(DBMs),研究了DBMs 的体内外抗肿瘤活性,结果发现DBMs 在体内外具有与阿霉素相同的抗肝癌细胞活性,却具有比阿霉素明显低的心脏毒性。

⑵温度敏感脂质体温度敏感脂质体是指当温度达到脂质材料的相变温度时,脂质体双分子膜在由“凝胶”态转变到“液晶”态结构时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性增大,所包封药物的释放速率增大。

3.2靶向制剂对治疗脑癌的应用-由于中枢神经在结构和功能上的复杂性,中枢神经疾病的治疗一直是临床上的一大难题。

主要是由于脑屏障可以选择性的允许某些物质通过,阻止某些物质通过,所以脑屏障的存在,使一些治疗药物难以到达患病脑组织。

1.脑靶向载体一些具有表面修饰和特殊性质的脂质体,可作为药物载体,穿透血脑屏障,将药物运输到脑内,使其发挥治疗作用,和载药纳米粒一同被称为脑靶向载体。

⑴脂质体脂质体是磷脂分散在水中形成的类球状、包封一部分水相的的封闭囊泡。

脂质体通常含有一层或多层磷脂膜,其粒径大小可由20纳米到几十微米,可作为疏水、亲水以及两亲性药物载体。

脂质体具有很高的亲脂性,可通过如被动转运、与脑血管内皮细胞膜发生膜融合或通过内吞途径转运至脑实质[23]。

肽类修饰脂质体:TAT肽是一种穿膜肽,来源于人免疫缺陷病毒的转录活化因子,可以携带包括亲水性蛋白、多肽、DNA甚至颗粒物质等进行细胞间或细胞内传输,也可穿透血脑屏障。

0in等[24]用聚乙二醇化磷脂衍生物共价结合TAT 肽制备了TAT脂质体,并通过体外和体内试验证明其是一个具有很大潜力的脑部药物传递系统。

随后Qin[25]等将阿霉素(doxombicin,Dox)包裹在脂质体内水相中,通过体内分布试验证实它明显提高了阿霉素在脑部的分布量,降低了阿霉素在心脏的分布量,从而有望降低阿霉素带来的心脏毒性;通过体内药效学试验发现其大大提高了脑部肿瘤模型大鼠的生存期。

多项试验证明了DOX—TAT—LIP高透血脑屏障率与脂质体表面修饰了TAT有关。

相关文档
最新文档