数学归纳法经典练习及解答过程

合集下载

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法〔2021.4.21〕一、用数学归纳法证明与正整数有关命题步骤是:〔1〕证明当n 取第一个值0n 〔如01n =或2等〕时结论正确; 〔2〕假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合〔1〕、〔2〕,……留意:数学归纳法运用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对随意自然数n 都成立.说明:这里要留意,当n =k +1时,要证目的是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .相识了这个目的,于是就可朝这个目的证下去,并进展有关变形,到达这个目的.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

(完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)之马矢奏春创作一、用数学归纳法证实与正整数有关命题的步调是:(1)证实当n 取第一个值0n (如01n =或2等)时结论精确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论精确,证及时1n k =+结论也精确.分化(1)、(2),……留心:数学归纳法运用要点:两步调,一结论. 二、题型归纳:题型1.证实代数恒等式例1.用数学归纳法证实:证实:①n=1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立.②假设n=k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n=k+1时.这就说明,当n=k+1时,等式亦成立,由①、②可知,对一切自然数n 等式成立. 题型2.证实不等式例2.证实不等式n n 2131211<++++ (n∈N).证实:①当n=1时,左边=1,右边=2.左边<右边,不等式成立.②假设n=k 时,不等式成立,即k k 2131211<++++.那么当n=k+1时,这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对随便率性自然数n 都成立. 说明:这里要留心,当n=k+1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证实:12112+<++k k k .熟习了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证实数列问题例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n≥2,n∈N*).(1)当n =5时,求a0+a1+a2+a3+a4+a5的值.(2)设bn =a22n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法证实:当n≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时,原等式变成(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+a4(x -1)4+a5(x -1)5令x =2得a0+a1+a2+a3+a4+a5=35=243.(2)因为(x +1)n =[2+(x -1)]n,所以a2=Cn2·2n-2bn =a22n -3=2Cn2=n(n -1)(n≥2) ①当n =2时.左边=T2=b2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k(k≥2,k∈N*)时,等式成立,即Tk =k(k +1)(k -1)3成立 那么,当n =k +1时,左边=Tk +bk +1=k(k +1)(k -1)3+(k +1)[(k +1)-1]=k(k +1)(k -1)3+k(k +1) =k(k +1)⎝ ⎛⎭⎪⎫k -13+1=k(k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n≥2时,Tn =n(n +1)(n -1)3.。

数学归纳法经典例题详解

数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)之杨若古兰创作一、用数学归纳法证实与正整数有关命题的步调是:(1)证实当n 取第一个值0n (如01n =或2等)时结论准确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论准确,证实1n k =+时结论也准确.综合(1)、(2),……留意:数学归纳法使用要点:两步调,一结论.二、题型归纳:例1.用数学归纳法证实:证实:①n=1时,右边31311=⨯=,右侧31121=+=,右边=右侧,等式成立.②假设n=k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n=k+1时.这就说明,当n=k+1时,等式亦成立,由①、②可知,对一切天然数n 等式成立. 例2.证实不等式n n 2131211<++++ (n∈N).证实:①当n=1时,右边=1,右侧=2.右边<右侧,不等式成立.②假设n=k 时,不等式成立,即k k 2131211<++++ .那么当n=k+1时,这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意天然数n 都成立. 说明:这里要留意,当n=k+1时,要证的目标是 1211131211+<++++++k k k ,当代入归纳假设后,就是要证实:12112+<++k k k .认识了这个目标,因而就可朝这个目标证下去,并进行有关的变形,达到这个目标.例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n≥2,n∈N*).(1)当n =5时,求a0+a1+a2+a3+a4+a5的值.(2)设bn =a22n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法证实:当n≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时,原等式变成(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+a4(x -1)4+a5(x -1)5令x =2得a0+a1+a2+a3+a4+a5=35=243.(2)由于(x +1)n =[2+(x -1)]n ,所以a2=Cn2·2n-2bn =a22n -3=2Cn2=n(n -1)(n≥2) ①当n =2时.右边=T2=b2=2,右侧=2(2+1)(2-1)3=2,右边=右侧,等式成立. ②假设当n =k(k≥2,k∈N*)时,等式成立,即Tk =k(k +1)(k -1)3成立 那么,当n =k +1时,右边=Tk +bk +1=k(k +1)(k -1)3+(k +1)[(k +1)-1]=k(k +1)(k -1)3+k(k +1) =k(k +1)⎝ ⎛⎭⎪⎪⎫k -13+1=k(k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右侧. 故当n =k +1时,等式成立.综上①②,当n≥2时,Tn =n(n +1)(n -1)3.。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

数学归纳法经典例题详解

数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

数学归纳法经典例题及参考答案

数学归纳法经典例题及参考答案

由①、②可知,对一切自然数 n 等式成立. 题型 2.证明不等式
例 2.证明不等式1 1 1 1 2 n (n∈N).
23
n
证明:①当 n=1 时,左边=1,右边=2. 左边<右边,不等式成立.
②假设 n=k 时,不等式成立,即1 1 1 1 2 k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型 3.证明数列问题 例 3(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,
n∈N*). (1)当 n=5 时,求 a0+a1+a2+a3+a4+a5 的值. (2)设 bn=,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当 n≥2 时,Tn
=. 解: (1)当 n=5 时, 原等式变为(x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-
1)5 令 x=2 得 a0+a1+a2+a3+a4+a5=35=243. (2)因为(x+1)n=[2+(x-1)]n,所以 a2=Cn2·2n-2 bn==2Cn2=n(n-1)(n≥2) ①当 n=2 时.左边=T2=b2=2, 右边==2,左边=右边,等式成立. ②假设当 n=k(k≥2,k∈N*)时,等式成立, 即 Tk=成立 那么,当 n=k+1 时, 左边=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1) =k(k+1)= ==右边. 故当 n=k+1 时,等式成立. 综上①②,当 n≥2 时,Tn=.
例 1.用数学归纳法证明:
证明:①n=1 时,左边 1 1 ,右边 1 1 ,左边=右边,等式成立.

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

数学归纳法经典练习详解

数学归纳法经典练习详解

数学归纳法经典练习详解简介数学归纳法是一种数学证明方法,通常用于证明一系列自然数的性质。

它基于两个核心思想:基础步骤和归纳步骤。

通过证明基础步骤和归纳步骤的正确性,可以得出结论。

经典练示例问题描述证明:对于任意正整数n,都有1+2+3+...+n = n(n+1)/2。

解答基础步骤:当n=1时,左边的和式为1,右边的表达式为1(1+1)/2=1。

两边相等,基础步骤成立。

当n=1时,左边的和式为1,右边的表达式为1(1+1)/2=1。

两边相等,基础步骤成立。

归纳步骤:假设当n=k时,1+2+3+...+k = k(k+1)/2 成立。

我们要证明当n=k+1时,1+2+3+...+k+(k+1) = (k+1)(k+2)/2。

假设当n=k时,1+2+3+...+k = k(k+1)/2 成立。

我们要证明当n=k+1时,1+2+3+...+k+(k+1) = (k+1)(k+2)/2。

将左边的和式展开,得到(1+2+3+...+k) + (k+1)。

根据归纳假设,前半部分可以替换成k(k+1)/2,所以左边变成了k(k+1)/2+(k+1)。

将右边的式子(k+1)(k+2)/2进行展开,得到(k^2 + 3k +2)/2+(k+1)。

将左边的式子进行化简,得到(k^2 + 3k + 2 + 2k + 2)/2=(k^2 +5k + 4)/2。

将右边的式子化简,得到(k^2 + 3k + 2 + 2k + 2)/2=(k^2 + 5k + 4)/2。

所以,当n=k+1时,1+2+3+...+k+(k+1) = (k+1)(k+2)/2,归纳步骤成立。

综上所述,基础步骤和归纳步骤都成立,根据数学归纳法的原理,对于任意正整数n,都有1+2+3+...+n = n(n+1)/2。

证毕。

结论数学归纳法是一种强大的数学证明方法,可以用于证明一系列自然数的性质。

通过正确应用基础步骤和归纳步骤,可以得出精确的结论。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

(完整版)高中数学高考总复习数学归纳法习题及详解

(完整版)高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解一、选择题 1.已知a n =1n +1+n,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1,S 3=1,由此可猜想S n =( )A.n -1B.n +1-1C.n +1-2D.n +2-2 [答案] B2.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1等于( )A .S k +12(k +1)B .S k +12k +1-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2.3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立.2°假设n =k (k ∈N *)时不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+k +2=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析]没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……则在表中数字2010出现在()A.第44行第75列B.第45行第75列C.第44行第74列D.第45行第74列[答案] D[解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行.又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D.5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立[答案] D[解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误.对于C,没有奠基部分,即没有f(8)≥82,故C错误.对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()A .(8n -1)个B .(8n +1)个 C.17(8n -1)个 D.17(8n +1)个 [答案] C[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82+…+8n -1=8n -17个. 7.观察下式:1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.8.(2010·天津滨海新区五校)若f (x )=f 1(x )=x1+x ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.n n +1 D .1 [答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .9.(2010·曲阜一中)设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1]D .[12,1)[答案] D[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=f 2(1)=⎝⎛⎭⎫122,a 3=f (3)=f (2)·f (1)=f 3(1)=⎝⎛⎭⎫123,…,a n =f (n )=f n (1)=⎝⎛⎭⎫12n ,∴S n=12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n =12[1-(12)2]1-12=1-(12)n, ∵n ∈N *,∴12≤S n <1.10.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )πB .(3n 2-n +1)π C.(3n 2+n )π2D.(3n 2-n +1)π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n (1+3n )2=(3n 2+n )π.二、填空题11.(2010·浙江金华十校模考)已知2+23=223,3+38=338,4+415=4415,…,若6+at=6at,(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________.[答案]41[解析]注意分数的分子、分母与整数的变化规律,2→分子2,分母3=22-1,3→分子3,分母8=32-1,4→分子4,分母15=42-1,故猜想a=6,t=62-1=35,再验证6+635=6635成立,∴a+t=41.[点评]一般地,n+nn2-1=n3n2-1=nnn2-1,(n∈N*)成立.例如,若15+at=15at成立,则t+a=239.12.考察下列一组不等式:23+53>22·5+2·5224+54>23·5+2·53252+552>22·512+212·52将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为________________________.[答案]a m+n+b m+n>a m b n+a n b m(a,b>0,a≠b,m,n>0)13.(2010·浙江杭州质检)观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;可以推测(x2+x+1)4的展开式中,系数最大的项是________.[答案]19x4[解析]观察其系数变化规律:(x2+x+1)1为1,1,1(x2+x+1)2为1,2,3,2,1(x2+x+1)3为1,3,6,7,6,3,1故由此可推测(x2+x+1)4系数中最大的为6+7+6=19,故系数最大项是19x4.14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为________.[答案] 4[解析] 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2010个被报出的数为4.[点评] 数字2010比较大,不可能一个一个列出数到第2010个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -22. (2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=14a ,由此推测a n =(-12)n -1a (n ∈N *).证法1:因为a 1=a >0,且a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-12a n -1(n ≥2),所以a n =(-12)n -1a .证法2:用数学归纳法证明:(1)当n =1时,a 1=x 2-x 1=a =(-12)0a ,公式成立.(2)假设当n =k 时,公式成立,即a k =(-12)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-1a ,公式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12)n -1a 成立.16.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 的坐标代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n=k+1时,等式成立.综上①②,当n≥2时,T n=n(n+1)(n-1)3.。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一.用数学归纳法证实与正整数有关命题的步调是:(1)证实当n 取第一个值0n (如01n =或2等)时结论准确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论准确,证实1n k =+时结论也准确.分解(1).(2),……留意:数学归纳法应用要点:两步调,一结论.二.题型归纳:题型1.证实代数恒等式例1.用数学归纳法证实:证实:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立.②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.这就解释,当n =k +1时,等式亦成立,由①.②可知,对一切天然数n 等式成立.题型2.证实不等式例2.证实不等式n n 2131211<++++ (n ∈N).证实:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,这就是说,当n =k +1时,不等式成立.由①.②可知,原不等式对随意率性天然数n 都成立. 解释:这里要留意,当n =k +1时,要证的目的是1211131211+<++++++k k k ,当代入归纳假设后,就是要证实:12112+<++k k k .熟悉了这个目的,于是就可朝这个目的证下去,并进行有关的变形,达到这个目的.题型3.证实数列问题例 3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证实:当n ≥2时,T n =n (n +1)(n -1)3.解:(1)当n =5时,原等式变成(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点:两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=2·2n -2b n =a 22n -3=22=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法经典练习及解答过程文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-第七节数学归纳法知识点数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意:(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.(2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.[自测练习]1.已知f(n)=1n+1n+1+1n+2+…+1n2,则( )A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=12+13+14,故选D.答案:D2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2⎝⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .k +1B .k +2C .2k +2D .2(k +2)解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B.答案:B考点一 用数学归纳法证明等式|求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1).当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1?2.证明:(1)当n =1时,左边=12=1, 右边=(-1)0·1×?1+1?2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立,即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1k?k+1?2.那么,当n=k+1时,则有12-22+32-42+…+(-1)k-1·k2+(-1)k·(k+1)2=(-1)k-1k?k+1?2+(-1)k·(k+1)2=(-1)k·k+12[-k+2(k+1)]=(-1)k ?k+1??k+2?2.∴n=k+1时,等式也成立,由(1)(2)知对任意n∈N*,有12-22+32-42+…+(-1)n-1·n2=(-1)n-1n?n+1?2.考点二用数学归纳法证明不等式|设数列{a n}各项均为正数,且满足a n+1=a n-a2n.求证:对一切n≥2,都有a n≤1n+2.[证明] ∵数列{a n}各项均为正数,且满足a n+1=a n-a2n,∴a2=a1-a21>0,解得0<a1<1.当n=2时,a3=a2-a22=14-⎝⎛⎭⎪⎫a2-122≤14,不等式成立,假设当n=k(k≥2)时,不等式成立,即a k≤1k+2,则当n=k+1时,a k+1=a k-a2k=14-⎝⎛⎭⎪⎫a k-122≤14-⎝⎛⎭⎪⎫1k+2-122=k+1?k+2?2<k+1?k+1??k+3?=1?k+1?+2,∴当n=k+1时,不等式也成立,由数学归纳法知,对一切n≥2,都有a n≤1n+2.2.数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.解:(1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n,化简得1a n +1=2+1a n,即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n=2n -1,∴S n =n ?1+2n -1?2=n 2.证明:法一:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n ?n +1?=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.法二:(数学归纳法)当n =1时,1S 1=1,nn +1=12,不等式成立.假设当n =k 时,不等式成立,即1S 1+1S 2+…+1S k >kk +1.则当n =k +1时,1S 1+1S 2+…+1S k +1S k +1>k k +1+1?k +1?2,又k ?k +1?+1?k +1?2-k +1k +2=1-1k +1+1?k +1?2-1+1k +2=1k +2-k ?k +1?2=1?k +2??k +1?2>0, ∴1S 1+1S 2+…+1S k +1S k +1>k +1k +2, ∴原不等式成立.考点三 归纳—猜想—证明问题|将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S 1+S 3+S 5+…+S 2n -1的结果,并用数学归纳法证明.S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…[解] 由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44.猜想:S1+S3+S5+…+S2n-1=n4.下面用数学归纳法证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N*)时等式成立,即S1+S3+S5+…+S2k-1=k4,那么,当n=k+1时,S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)]=k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,这就是说,当n=k+1时,等式也成立.根据(1)和(2),可知对于任意的n∈N*,S1+S3+S5+…+S2n-1=n4都成立.3.设a>0,f(x)=axa+x,令a1=1,a n+1=f(a n),n∈N*.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.解:(1)∵a1=1,∴a2=f(a1)=f(1)=a1+a;a3=f(a2)=a2+a;a4=f(a3)=a3+a.猜想a n=a?n-1?+a(n∈N*).(2)证明:①易知n=1时,猜想正确.②假设n=k时猜想正确,即a k=a?k-1?+a,则a k+1=f(a k)=a·a ka+a k=a·a?k-1?+aa+a?k-1?+a=a?k-1?+a+1=a[?k+1?-1]+a.这说明,n=k+1时猜想正确.由①②知,对于任意的n∈N*,都有a n=a?n-1?+a成立.14.数学归纳法在证明不等式中的易误点【典例】设函数f(x)=x-sin x,数列{a n}满足a n+1=f(a n).(1)若a1=2,试比较a2与a3的大小;(2)若0<a1<1,求证:对任意n∈N*,0<a n<1恒成立.[解] (1)当a1=2时,a2=f(2)=2-sin 2∈(0,2),所以sin a2>0,又a3=f(a2)=a2-sin a2,所以a3-a2=-sin a2<0,所以a2>a3.(2)证明:用数学归纳法证明当0<a1<1时,对任意n∈N*,0<a n<1恒成立.①当n=1时,0<a1<1,结论成立;②假设当n=k(k≥1,k∈N*)时,0<a k<1,所以sin a k>0,则当n=k+1时,a k+1-a k =-sin a k<0,所以a k+1<a k<1.因为f(x)=x-sin x,当x∈(0,1)时,f′(x)=1-cos x>0,所以f(x)是(0,1)上的单调递增函数,所以a k+1=f(a k)>f(0)=0,即0<a k+1<1,故当n=k+1时,结论成立.综上可得,当0<a1<1时,对任意n∈N*,0<a n<1恒成立.[易误点评] (1)不会作差比较a2与a3大小,同时忽视了sin 2的值大小.(2)证明n=k+1成立时用不归纳做证n=k成立条件导致失误.[防范措施] (1)用数学归纳证明不等式的关键是由n=k时命题成立,证明n=k+1时命题成立.(2)在归纳假设使用后,注意最后结论证明方法的选择.[跟踪练习] 若函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过点P(4,5),Q n(x n,f(x n))的直线PQ n与x轴的交点的横坐标,试运用数学归纳法证明:2≤x n<x n+1<3.证明:(1)当n=1时,x1=2,f(x1)=-3,Q1(2,-3).∴直线PQ1的方程为y=4x-11,令y=0,得x2=114,因此,2≤x1<x2<3,即n=1时结论成立.(2)假设当n=k时,结论成立,即2≤x k<x k+1<3.∴直线PQ k+1的方程为y-5=f?x k+1?-5x k+1-4(x-4).又f(x k+1)=x2k+1-2x k+1-3,代入上式,令y=0,得x k+2=3+4x k+12+x k+1=4-52+x k+1,由归纳假设,2<x k+1<3,x k+2=4-52+x k+1<4-52+3=3;x k+2-x k+1=?3-x k+1??1+x k+1?2+x k+1>0,即x k+1<x k+2.所以2≤x k+1<x k+2<3,即当n=k+1时,结论成立.由(1),(2)知对任;意的正整数n,2≤x n<x n+1<3.A组考点能力演练1.用数学归纳法证明:1+122+132+…+1n2<2-1n(n∈N+,n≥2).证明:(1)当n=2时,1+122=54<2-12=32,命题成立.(2)假设n=k时命题成立,即1+122+132+…+1k2<2-1k.当n=k+1时,1+122+132+…+1k2+1?k+1?2<2-1k+1?k+1?2<2-1k+1k?k+1?=2-1k+1k-1k+1=2-1k+1命题成立.由(1),(2)知原不等式在n ∈N +,n ≥2时均成立.2.已知数列{a n }的前n 项和为S n ,通项公式为a n =1n f (n )=⎩⎨⎧S 2n ,n =1,S 2n -S n -1,n ≥2,(1)计算f (1),f (2),f (3)的值;(2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 证明:(1)由已知f (1)=S 2=1+12=32,f (2)=S 4-S 1=12+13+14=1312,f (3)=S 6-S 2=13+14+15+16=1920;(2)由(1)知f (1)>1,f (2)>1;下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1;②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +1k +1+…+12k<1,那么f (k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=⎝ ⎛⎭⎪⎫1k +1k +1+1k +2+…+12k +12k +1+12k +2-1k <1+⎝⎛⎭⎪⎫12k +1-12k +⎝ ⎛⎭⎪⎫12k +2-12k =1+2k -?2k +1?2k ?2k +1?+2k -?2k +2?2k ?2k +2?=1-12k ?2k +1?-1k ?2k +2?<1,所以当n =k +1时,f (n )<1也成立.由①和②知,当n ≥3时,f (n )<1.所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1.3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *). (1)求证:对任意n ∈N *,a n >2;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43.解:(1)证明:用数学归纳法证明a n >2(n ∈N *);①当n =1时,a 1=a >2,结论成立;②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.故由①②及数学归纳法原理,知对一切的n ∈N *,都有a n >2成立. (2){a n }是单调递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2, 所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是单调递减的数列. (3)证明:由a n +1=a n +2,得a 2n +1=a n +2,所以a 2n +1-4=a n -2.根据(1)知a n >2(n ∈N *),所以a n +1-2a n -2=1a n +1+2<14,所以a n +1-2<14(a n -2)<⎝ ⎛⎭⎪⎫142·(a n -1-2)<…<⎝ ⎛⎭⎪⎫14n(a 1-2).所以,当a =3时,a n +1-2<⎝ ⎛⎭⎪⎫14n ,即a n +1<⎝ ⎛⎭⎪⎫14n+2.当n =1时,S 1=3<2+43.当n ≥2时,S n =3+a 2+a 3+…+a n <3+⎝ ⎛⎭⎪⎫14+2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+2+…+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14n -1+2 =3+2(n -1)+141-14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1 =2n +1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1<2n +43.综上,当a =3时,S n <2n +43(n ∈N *).。

相关文档
最新文档