高考物理二轮复习:带电粒子在有界磁场中运动的临界问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题的解题技巧

带电粒子(质量m、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速

所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是

A.使粒子的速度v <\f(BqL,4m )ﻩ B.使粒子的速度v >\f(5BqL,4m )

C .使粒子的速度v >\f(BqL ,m )ﻩ D.使粒子的速度BqL

4m

v <\f(5BqL,4m )

【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙

图甲

入射点 入射方向

入射速度大

出射点

出射方向 ① ② ③ ④ ⑧ ⑨ ⑤

【解答】 AB

粒子擦着板从右边穿出时,圆心在O点,有 r12=L 2+(r1-错误!)2

, 得 r 1=错误! 由 r1=\f(m v1,Bq ) ,得 v 1=\f(5BqL,4m ) ,所以v >错误!时粒子能从右边穿出. 粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=错误!

由 r 2=错误! ,得 v 2=错误! ,所以v <错误!时粒子能从左边穿出.

【易错提醒】容易漏选A ,错在没有将r先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。

【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y 轴,交点O 为原点,如图所示。在y >0,0<x<a 的区域有垂直于纸面向里的匀强磁场,在y>0,x >a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。在O 点处有一小孔,一束质量为m 、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a 的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。

【分析】粒子在0<x <a 的区域中的运动属于初速度方向已知、大小不确定的情况,在垂直初速度的直线(即y 轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆①与直线x=a 相切,为能打到y轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆①,粒子将进入x>a 的区域,由对称性可知,粒子在x >a 的区域内的轨迹圆圆心均在在x =2a 直线上,在x =2a 直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如图乙),其中轨迹圆①'为半径最小的情况,轨迹圆②为题目所要求的速度最大的粒子的轨迹。

【答案】竖直屏上发亮的范围从0到a ,水平屏上发亮的范围从2a 到23

23

x a a =+ 【解答】 粒子在磁感应强度为B 的匀强磁场中运动半径为:mv

r qB

=

① 速度小的粒子将在x

轨道半径大于a 的粒子开始进入右侧磁场,考虑r=a 的极限情况,这种粒子在右侧的圆轨迹与x 轴在D 点相切(虚线),OD =2a ,这是水平屏上发亮范围的左边界。

速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和'C ,C 在y 轴上,有对称性可知'C 在x =2a直线上。

设t1为粒子在0

② ①'

图乙 图甲 a 2a 2a a

a的区域中运动的时间,由题意可知

122

5

t t =,12712T t t += 由此解得:16T t =

② 1512

T

t = ③ 由②③式和对称性可得 60OCM ∠= '60MC N ∠= ⑤

5

'36015012

MC P ∠=⨯

= ⑥ 所以'1506090NC P ∠=︒-︒=︒ ⑦ 即弧长NP 为1/4圆周。因此,圆心'C 在x 轴上。

设速度为最大值粒子的轨道半径为R ,有直角'COC 可得

2sin602R a ︒= 23

3

R a = ⑧

由图可知OP =2a +R ,因此水平荧光屏发亮范围的右边界的坐标 23

23

x a a =+ ⑨

【易错提醒】本题容易把握不住隐含条件——所有在x>a 的区域内的轨迹圆圆心均在在x =2a 直线上,从而造成在x>a的区域内的作图困难;另一方面,在x >a的区域内作轨迹圆时,半径未从轨迹圆①半径开始取值,致使轨迹圆①'未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x =a 。

类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定

这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mv

r qB

=

为半径的圆。 【例2】如图所示,在0≤x≤a 、0≤y≤

2

a

范围内有垂直手xy 平面向外的匀强磁场,磁感应强度大小为B 。坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在x Oy 平面内,与y 轴正方向的

夹角分布在0~090范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;

(2)速度方向与y 轴正方向夹角的正弦。

【分析】本题给定的情形是粒子轨道半径r 大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O,入射点O 到任一圆心的距离均为r,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O 为圆心、r 为半径的圆周上(如图甲)。考虑到粒子是向右偏转,我们从最左边的轨迹圆画起——取“圆心圆”上不同点为圆心、r 为半径作出一系列圆,如图乙所示;其中,轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长——故轨迹①对应圆心角为90°。

图乙

图甲 ① ②

相关文档
最新文档