量子力学-第四版-卷一-(曾谨言-著)习题答案第4章-2

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.29——6.1

4.29证明在z

L ˆ的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L =-,求平均。) 证:设ψ是z L 的本征态,本征值为 m ,即ψψ m L z

=

[]

x L i =-=y z z y z y L L L L L ,L ,[]y L i =-=z x x z x z L L L L L ,L ,

(

)(

)

(

)

011

1 =-=-=-=

∴ψψψψψψψψψψψψy y y z z y y z z y x L m L m i L L L L i L L L L i L

同理有:0=y L 。

附带指出,虽然x l ˆ,y l ˆ在x l ˆ本征态中平均值是零,但乘积x l ˆy

l ˆ的平均值不为零,能够证明:,2

1

2y x y x l l i m l l -==

说明y x l l ˆˆ不是厄密的。2ˆx l ,2ˆy l 的平均值见下题。

4.30 设粒子处于()ϕθ,lm Y 状态下,求()2

x L ∆和()

2

y

L ∆

解:记本征态lm Y 为lm ,满足本征方程

()lm l l lm L 221 +=,lm m lm L z =,lm m L lm z =,

利用基本对易式 L i L L =⨯,

可得算符关系 ()

()x y z x z y x y z z y x x x L L L L L L L L L L L L L i L i -=-== 2

()

x y z z x y y x y z y z x y L L L L L L L i L L L L i L L L -+=-+=2

将上式在lm 态下求平均,

使得后两项对平均值的贡献互相抵消,因此 2

2

y

x

L

L =

又()[]

222

2

2

1 m l l L L L z

y x -+=-=+

()[]

222

2

12

1

m l l L L y

x

-+=

=

∴ 上题已证 0==y x L L 。

()()

()[]

222

2

2

2

2

12

1

m l l L L L L L L x x x x

x x -+=

=-=-=∆∴

同理 ()

()[]

222

12

1

m l l L y

-+=

∆。 (补白)若需要严格论证2

x l 与2

y l 的相等关系,可设

y

x l i l l ˆˆˆ+≡+ y x l i l l ˆˆˆ-≡- 于是有)ˆˆ(21ˆ-++=l l l x

)ˆˆ(2

ˆ+--=l l i

l y 求其符2ˆx l 的平方,用-+l l ˆˆ来表示:

)ˆˆˆˆˆˆˆˆ(4

1ˆ2-

-+--++++++=l l l l l l l l l x )ˆˆˆˆˆˆˆˆ(4

1ˆ2--+++--+--+=l l l l l l l l l y

再求它们在态im Y 中的平均值,在表示式中用标乘积符号时是

))ˆˆˆˆˆˆˆˆ(4

1,(ˆ2im

im x Y l l l l l l l l Y l --+--++++++= (1) ))ˆˆˆˆˆˆˆˆ(4

1,(ˆ2im

im y Y l l l l l l l l Y l --+++--+--+= (2) 或都改写成积分形式如下,积分是对空间立体角取范围的: Ω+++=

⎰⎰Ω

--+--+++*d Y l l l l l l l l Y l im im x )ˆˆˆˆˆˆˆˆ((41

2

(3) Ω--+=

⎰⎰Ω

--+++--+*d Y l l l l l l l l Y l im im y )ˆˆˆˆˆˆˆˆ((412

(4) 按角动量理论:1,)1)((ˆ++++-=m i im

Y m l m l Y l

1,)1)((ˆ--+-+=m i im Y m l m l Y l (5)

和正交归一化条件:

m m i i im m i d Y Y ,,,'''''*

=Ω⎰⎰δ (6)

将运算公式(5)使用于(3)式的各项,得结果如下:

0ˆˆ2,=Ω⨯=Ω⎰⎰⎰⎰+*

++*d Y Y d Y l l Y m i im im im 常数 0ˆˆ2,=Ω⨯=Ω⎰⎰⎰⎰-*--*d Y Y d Y l l Y m i im im im 常数

2)1)((ˆˆ +-+=Ω⎰⎰-+*

m l m l d Y l l Y im

im 2)1)((ˆˆ ++-=Ω⎰⎰+-*

m l m l d Y l l Y

im

im

注意上述每一个积分的被积函数都要使用(5)的两个式子作重复运算,

再代进积分式中,如:

相关文档
最新文档