蒙特卡罗也称统计模拟方法
蒲丰投针――MonteCarlo算法
蒲丰投针 ―― Monte Carlo 算法背景:蒙特卡罗方法(Monte Carlo ),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。
蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。
蒙特卡罗方法的名字来源于世界著名的赌城 —— 摩纳哥的蒙特卡罗。
其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法 —— 随机投针法,即著名的蒲丰投针问题。
问题:设在平面上有一组平行线,间距为d ,把一根长L 的针随机投上去,则这根针和平行线相交的概率是多少?(其中 L < d )分析:由于 L < d ,所以这根针至多只能与一条平行线相交。
设针的中点与最近的平行线之间的距离为 y ,针与平行线的夹角为 θ (0 ≤ θ ≤ π)。
相交情形 不相交情形易知针与平行线相交的充要条件是:sin 2Ly x θ≤=由于1[0,], [0, ]2y d θπ∈∈,且它们的取值均满足平均分布。
建立直角坐标系,则针与平行线的相交条件在坐标系下就是曲线所围成的曲边梯形区域(见右图)。
所以有几何概率可知针与平行线相交的概率是sin d 2212LL p d d πθθππ==⎰Monte Carlo 方法:随机产生满足平均分布的 y 和 θ,其中1[0,], [0, ]2y d θπ∈∈,判断 y 是否在曲边梯形内。
重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。
clear;n = 100000; L = 1; d = 2; m = 0;for k = 1 : ntheta = rand(1)*pi; y = rand(1)*d/2;if y < sin(theta)*L/2m = m + 1; end endfprintf('针与平行线相交的概率大约为 %f\n', m/n)计算π的近似值利用该方法可以计算 π 的近似值:sin d 22 22 1n LL m p d m d L d n πθθπππ⇒≈==≈⎰下面是一些通过蒲丰投针实验计算出来的 π 的近似值:蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。
蒙特卡洛模型方法
二、理论和方法
蒙特卡洛模拟早在四十年前就用于求解核物理方面的问题。当管理问题更为复杂时,传统的数学方法就难以进行了。模拟是将一个真实事物模型化,然后对该模型做各种实验,模拟也是一个通过实验和纠正误差来寻求最佳选择的数值性求解的过程。模拟作为一种有效的数值处理方法,计算量大。以前只是停留在理论探讨上,手工是无法完成的。在管理领域由于规律复杂随机因素多,很多问题难以用线性数学公式分析和解决,用模拟则有效得多。在新式的计算机普及后,用模拟技术来求解管理问题已成为可能。
从表中数据可以看到,一直到公元20世纪初期,尽管实验次数数以千计,利用蒙特卡罗方法所得到的圆周率∏值,还是达不到公元5世纪祖冲之的推算精度。这可能是传统蒙特卡罗方法长期得不到推广的主要原因。
计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及。现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。
设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。
蒙特卡罗仿真原理
蒙特卡罗仿真原理
蒙特卡罗(MonteCarlo)方法,又称随机抽样或统计模拟方法,泛指所有基于统计采样进行数值计算的方法。
在第二次世界大战期间,美国参与“曼哈顿计划’’的几位科学家Stanislaw Ulam,John Von Neumann 和N.Metropolis等首先将这种方法用于解决原子弹研制中的一个关键问题。
后来N.Metropolis用驰名世界的赌城---摩纳哥的MonteCarlo一来命名这种方法,为它蒙上了一层神秘色彩。
随着现代计算机技术的飞速发展,蒙特卡罗方法已经在统计物理、经济学、社会学甚至气象学等方面的科学研究中发挥了极其重要的作用,将蒙特卡罗方法用于仿真即为蒙特卡罗仿真。
蒙特卡罗方法适用于两类问题,第一类是本身就具有随机性的问题,第二类是能够转化为概率模型进行求解的确定性问题。
※蒙特卡罗方法求解问题的一般步骤
用蒙特卡罗方法求解问题一般包括构造或描述概率过程、从已知概率分布抽样和建立估计量三个步骤。
构造或描述概率过程实际上就是建立随机试验模型,构造概率过程是对确定性问题而言的,描述概率过程是对随机性问题而言的,不同的问题所需要建立的随机试验模型各不相同。
所谓的从已知概率分布抽样指的是随机试验过程,随机模型中必要包含某些已知概率分布的随机变量或随机过程作为输入,进行随机试验的过程就是对这些随机变量的样本或随机过程的样本函数作为输入产生相应输出的过程,因此通常被称为对已知概率分布的抽样。
如何产生已知分布的随机变量或随机过程是蒙特卡罗方法中的一个关键问题。
最后一个步骤是获得估计量,蒙特卡罗方法所得到的问题的解总是对真实解的一个估计,本身也是一个随机变量,这个随机变量是由随机试验模型输出通过统计处理得到的。
大学《统计学习方法》第2版教学课件-第19章 马尔科夫链蒙特卡洛法
马尔可夫链的性质
马尔可夫链的性质
• 遍历定理的直观解释: • 满足相应条件的马尔可夫链,当时间趋于无穷时,马尔可夫链的
状态分布趋近于平稳分布,随机变量的函数的样本均值以概率1 收敛于该函数的数学期望。
• 样本均值可以认为是时间均值,而数学期望是空间均值。遍历定 理实际表述了遍历性的含义:当时间趋于无穷时,时间均值等于 空间均值。
马尔可夫链的性质
• 直观上,一个非周期性的马尔可夫链,不存在一个状态,从这一 个状态出发,再返回到这个状态时所经历的时间长呈一定的周期 性
例
• 图上所示的马尔可夫链是周期的
例
• 转移概率矩阵
• 其平稳分布是
。此马尔可夫链从每个状态出发,
返回该状态的 时刻都是3的倍数,{3,6,9},具有周期性,最终
在平稳分布
连续状态马尔可夫链
• 连续状态马尔可夫链 定义在连续状态空间S
,随机变量
• 转移概率分布由概率转移核或转移核(transition kernel)表示。
• 设S是连续状态空间,对任意的
定义为
• 其中 是概率密度函数,满足
连续状态马尔可夫链
• 转移核
表示从 x ~ A的转移概率
• 有时也将概率密度函数
积分计算
• 给定一个概率密度函数p(x),只要取 • 就可得
• 就是说, 任何一个函数的积分都可以表示为某一个函数的数学 期望的形式,而函数的数学期望 又可以通过函数的样本均值估 计
• 于是,就可以利用样本均值来近似计算积分
例
• 用蒙特卡罗积分法求
•令 • 也就是说,假设随机变量x在(0,1)区间遵循均匀分布
蒙特卡洛方法
蒙特卡洛方法1、蒙特卡洛方法的由来蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。
由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。
蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。
如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。
2、蒙特卡洛方法的核心—随机数蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。
因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。
在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。
由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。
真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。
真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。
实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。
蒙特卡洛算法
蒙特卡洛算法1. 蒙特卡洛⽅法的基本思想蒙特卡罗⽅法⼜叫统计模拟⽅法,它使⽤随机数(或伪随机数)来解决计算的问题,是⼀类重要的数值计算⽅法。
该⽅法的名字来源于世界著名的赌城蒙特卡罗,⽽蒙特卡罗⽅法正是以概率为基础的⽅法。
⼀个简单的例⼦可以解释蒙特卡罗⽅法,假设我们需要计算⼀个不规则图形的⾯积,那么图形的不规则程度和分析性计算(⽐如积分)的复杂程度是成正⽐的。
⽽采⽤蒙特卡罗⽅法是怎么计算的呢?⾸先你把图形放到⼀个已知⾯积的⽅框内,然后假想你有⼀些⾖⼦,把⾖⼦均匀地朝这个⽅框内撒,散好后数这个图形之中有多少颗⾖⼦,再根据图形内外⾖⼦的⽐例来计算⾯积。
当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。
2.例⼦蒙特卡洛算法显然可⽤于近似计算圆周率:让计算机每次随机⽣成两个0到1之间的数,看这两个实数是否在单位圆内。
⽣成⼀系列随机点,统计单位圆内的点数与圆外的点数,内接圆⾯积和正⽅形⾯积之⽐为PI:4,PI为圆周率。
,当随机点取得越多时,其结果越接近于圆周率。
下⾯给出c++版本的实现:#include<iostream>#include<cstdio>#include<cstdlib>#include<cmath>using namespace std;double in,out,ans;double x,y,dis;double getrand(){double ran=0;int t=rand()%10000;ran=(double)t/10000;return ran;}int main(){int time=0;scanf("%d",&time);for(int i=1;i<=time;i++){x=getrand()*2;y=getrand()*2;dis=sqrt((1-x)*(1-x)+(1-y)*(1-y));if(dis>1) out++;else in++;}ans=4*in/(in+out);printf("%lf",ans);return0;}如图,当time的值取1*10^9时,PI的值表⽰为3.040527,这个值和真实值仍有较⼤区别,主要原因在cstdlib库中的rand_max,即随机数值的最⼤范围仅为32767。
浅析蒙特卡洛方法原理及应用
浅析蒙特卡洛方法原理及应用于希明(英才学院1236103班测控技术与仪器专业6120110304)摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。
关键词:蒙特卡洛方法蒲丰投针生活应用蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。
蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
一、蒙特卡洛方法的产生及原理蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。
数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
在这之前,蒙特卡洛方法就已经存在。
1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。
这被认为是蒙特卡洛方法的起源。
其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。
因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。
蒙特卡洛法正是基于此思路进行分析的。
设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。
蒙特卡罗方法及应用
蒙特卡罗方法及应用一、本文概述《蒙特卡罗方法及应用》是一篇深入研究和探讨蒙特卡罗方法及其在多个领域中应用的重要性的文章。
蒙特卡罗方法,又称随机抽样或统计试验方法,是一种基于概率统计理论的数值计算方法。
它通过模拟随机过程,以大量的样本数据来估计求解问题的解,特别适用于处理复杂系统中的不确定性问题。
本文首先介绍了蒙特卡罗方法的基本原理和核心概念,包括随机变量的生成、概率分布的模拟以及随机过程的模拟等。
然后,文章详细阐述了蒙特卡罗方法在各种领域中的应用,如物理学、工程学、金融学、生物学等。
在这些领域中,蒙特卡罗方法被广泛应用于求解复杂系统的数学模型,预测和评估系统的性能,以及优化决策方案等。
本文还讨论了蒙特卡罗方法的优缺点,包括其计算效率高、适用范围广等优点,以及计算精度受样本数量影响、对随机性要求高等缺点。
文章还探讨了蒙特卡罗方法的未来发展趋势,包括与、大数据等前沿技术的结合,以及在新兴领域如量子计算中的应用等。
《蒙特卡罗方法及应用》这篇文章旨在全面介绍蒙特卡罗方法的基本原理、应用领域以及发展前景,为读者提供一个深入理解和学习蒙特卡罗方法的平台。
通过本文的阅读,读者可以更好地理解蒙特卡罗方法的本质和应用价值,为相关领域的研究和实践提供有益的参考和启示。
二、蒙特卡罗方法的基本原理蒙特卡罗方法,又称统计模拟方法或随机抽样技术,是一种以概率统计理论为指导的数值计算方法。
该方法通过模拟随机过程,求解数学、物理、工程以及金融等领域的问题。
蒙特卡罗方法的基本原理可以概括为以下几点:随机抽样:蒙特卡罗方法的核心思想是通过随机抽样来获取问题的数值解。
它根据问题的概率模型,在概率空间中进行随机抽样,以获得问题的近似解。
这种随机抽样可以是简单的均匀抽样,也可以是复杂的概率分布抽样。
大数定律:蒙特卡罗方法基于大数定律,即当试验次数足够多时,相对频率趋于概率。
通过大量的随机抽样,蒙特卡罗方法可以得到问题的近似解,并且随着抽样次数的增加,这个近似解会逐渐接近真实解。
蒙特卡罗简述
蒙特·卡罗方法(MonteCarlomethod)--也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特·卡罗方法(MonteCarlomethod),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
蒙特卡罗方法- 基本思想当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
当你的豆子越小,撒的越多的时候,结果就越精确。
蒙特卡罗方法- 基本原理由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。
因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。
蒙特卡洛模型方法
蒙特卡洛模型方法蒙特卡罗方法(Monte Carlo method)蒙特卡罗方法概述蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。
为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。
蒙特卡罗方法的提出蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。
数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
在这之前,蒙特卡罗方法就已经存在。
1777年,法国Buffon提出用投针实验的方样调查来确定可能的优胜者。
其基本思想是一样的。
科技计算中的问题比这要复杂得多。
比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。
对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Curse of Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。
Monte Carlo 方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。
以前那些本来是无法计算的问题现在也能够计算量。
为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。
另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi -Monte Carlo方法)—近年来也获得迅速发展。
我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。
这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列。
蒙特卡洛方法
蒙特卡洛方法蒙特卡洛方法求助编辑百科名片蒙特卡罗模拟是一种计算机化的数学方法,允许人们评估定量分析和决策制定过程中的风险。
此方法首先被科学家用于研究原子弹;它以因赌场而闻名遐迩的摩纳哥旅游城市蒙特卡罗命名。
自从在二战中推出以来,蒙特卡罗模拟一直用于为不同的物理和概念系统建立模型。
专业人员将此方法广泛应用于不同领域,如金融、项目管理、能源、制造、工程、研发、保险、运输和环境。
蒙特卡罗模拟向决策者提供了采取任何措施可能产生的一系列可能结果和概率。
它说明了最大可能性,即全力以赴和最保守决策的结果,以及折衷决策的所有可能后果。
目录梗概基本思想工作原理工作过程优势分子领域数学领域1.积分2.圆周率3.应用题电脑领域展开梗概基本思想工作原理工作过程优势分子领域数学领域1.积分2.圆周率3.应用题电脑领域展开编辑本段梗概蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特卡罗模拟是一种计算机化的数学方法,允许人们评估定量分析和决策制定过程中的风险。
[1]20世纪40年代,在John von Neumann,Stanislaw Ulam和Nicholas Metropolis在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡洛方法。
此方法首先被科学家用于研究原子弹;它以因赌场而闻名遐迩的摩纳哥旅游城市蒙特卡罗命名。
自从在二战中推出以来,蒙特卡罗模拟一直用于为不同的物理和概念系统建立模型。
[1]蒙特卡罗模拟向决策者提供了采取任何措施可能产生的一系列可能结果和概率。
它说明了最大可能性,即全力以赴和最保守决策的结果,以及折衷决策的所有可能后果。
[1]与它对应的是确定性算法。
蒙特卡洛方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
蒙特卡罗(Monte Carlo)方法简介
蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。
一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。
Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。
Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。
蒙特·卡罗方法(MonteCarlomethod)
蒙特·卡罗⽅法(MonteCarlomethod)蒙特·卡罗⽅法(Monte Carlo method),也称统计模拟⽅法,是⼆⼗世纪四⼗年代中期由于科学技术的发展和电⼦计算机的发明,⽽被提出的⼀种以概率统计理论为指导的⼀类⾮常重要的数值计算⽅法。
是指使⽤随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。
与它对应的是确定性算法。
这个⽅法的发展始于20世纪40年代,和原⼦弹制造的曼哈顿计划密切相关,当时的⼏个⼤⽜,包括乌拉姆、冯.诺依曼、费⽶、费曼、Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中⼦连锁反应的时候,开始使⽤统计模拟的⽅法,并在最早的计算机上进⾏编程实现。
现代的统计模拟⽅法最早由数学家乌拉姆提出,被Metropolis命名为蒙特卡罗⽅法,蒙特卡罗是著名的赌场,赌博总是和统计密切关联的,所以这个命名风趣⽽贴切,很快被⼤家⼴泛接受。
被不过据说费⽶之前就已经在实验中使⽤了,但是没有发表。
说起蒙特卡罗⽅法的源头,可以追溯到18世纪,布丰当年⽤于计算π的著名的投针实验就是蒙特卡罗模拟实验。
统计采样的⽅法其实数学家们很早就知道,但是在计算机出现以前,随机数⽣成的成本很⾼,所以该⽅法也没有实⽤价值。
随着计算机技术在⼆⼗世纪后半叶的迅猛发展,随机模拟技术很快进⼊实⽤阶段。
(类⽐深度学习,感叹~)对那些⽤确定算法不可⾏或不可能解决的问题,蒙特卡罗⽅法常常为⼈们带来希望。
蒙特卡罗基本思想:利⽤⼤量采样的⽅法来求解⼀些难以直接计算得到的积分。
例如,假想你有⼀袋⾖⼦,把⾖⼦均匀地朝这个图形上撒,然后数这个图形之中有多少颗⾖⼦,这个⾖⼦的数⽬就是图形的⾯积。
当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。
借助计算机程序可以⽣成⼤量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的⽐例和坐标点⽣成范围的⾯积就可以求出图形⾯积。
蒙特卡罗模型
一、概念蒙特卡罗法(MonteC盯10method)是一种应用广泛的系统模拟技术,产生于40年代,也称为统计模拟法(Statistiealsimulationmethod)或随机采样技术(stoehastiesamplingtechnique)。
它是为了求解随机型问题而构造一个与原来问题没有直接关系的概率过程,并利用它产生统计现象的方法。
它的最大优点是收敛速度和问题维数无关,适应性强。
不仅适用于处理随机型问题,如存储系统、排队系统、质量检验问题、市场营销问题、项目进度风险评价、社会救急系统问题、生态竞争问题和传染病蔓延问题等;也可处理确定型问题,如计算多重积分、解积分方程及微分方程、解整数规划(特别是非线形整数规划)等。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。
它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。
可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
蒙特卡罗解题三个主要步骤:1)、构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
2)、实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
蒙特卡罗方法
蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(Monte Carlo method ),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。
蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。
它是以概率统计理论为基础的一种方法。
由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。
蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。
数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。
在这之前,蒙特卡罗方法就已经存在。
1777年,法国Buffon 提出用投针实验的方法求圆周率∏。
这被认为是蒙特卡罗方法的起源。
2. 蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。
但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。
当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。
这就是蒙特卡罗方法的基本思想。
当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。
蒙托卡洛方法
蒙托卡洛方法介绍如下:
蒙特卡罗法也称统计模拟法、统计试验法。
是把概率现象作为研究对象的数值模拟方法。
是按抽样调查法求取统计值来推定未知特性量的计算方法。
蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。
故适用于对离散系统进行计算仿真试验。
在计算仿真中,通过构造一个和系统性能相近似的概率模型,并在数字计算机上进行随机试验,可以模拟系统的随机特性。
蒙特卡罗法的基本思想是:为了求解问题,首先建立一个概率模型或随机过程,使它的参数或数字特征等于问题的解:然后通过对模型或过程的观察或抽样试验来计算这些参数或数字特征,最后给出所求解的近似值。
解的精确度用估计值的标准误差来表示。
蒙特卡罗法的主要理论基础是概率统计理论,主要手段是随机抽样、统计试验。
用蒙特卡罗法求解实际问题的基本步骤为:
(1)根据实际问题的特点.构造简单而又便于实现的概率统计模型.使所求的解恰好是所求问题的概率分布或数学期望;
(2)给出模型中各种不同分布随机变量的抽样方法;
(3)统计处理模拟结果,给出问题解的统计估计值和精度估计值。
monte carlo 统计法
monte carlo 统计法
monte carlo 统计法,也称统计模拟方法,是一种以概率和统计理论方法为基础的计算方法。
它使用随机数(或更常见的伪随机数)来解决很多计算问题,将所求解的问题同一定的概率模型相联系,用电子计算机实现模拟或抽样,以获得问题的近似解。
蒙特卡洛方法通过抓住事物运动的几何数量和几何特征,利用数学方法进行模拟,即进行一种数字模拟实验。
具体来说,它以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果作为问题的近似解。
这种方法可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种评估量。
蒙特卡洛方法的特点是随机采样上计算得到近似结果,随着采样的增加,得到的结果是正确结果的概率逐渐增大。
这种方法多用于求解复杂的多维积分问题。
此外,与蒙特卡洛方法对应的是确定性算法。
蒙特卡罗方法 (Monte Carlo simulation)
例:a=5,c=1,m=16,I0=1 Î周期=m=16 1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15, 12,13,2,..
蒙特卡罗方法 (Monte Carlo simulation)
RANDU随机数产生器:
1961年由IBM提出 I n +1 = (65539 × I n ) mod 2 存在严重的问题:Marsaglia效用,存在于所有乘同余方法的产生器
蒙特卡罗方法 (Monte Carlo simulation)
==〉伪随机数(Pseudo-Random Number) Î优点: – – – 占用计算机的内存少; 产生速度快; 可以重复前次的模拟结果,便于程序的找错;
蒙特卡罗方法 (Monte Carlo simulation)
2.3 线性乘同余方法(Linear Congruential Method)
蒙特卡罗方法 (Monte Carlo simulation)
– 所模拟的物理过程要求随机数应具有下列特性:
• 随机数序列应是独立的、互不相关的(uncorrelated):即序列中的任一 子序列应与其它的子序列无关; • 长的周期(long period):实际应用中,随机数都是用数学方法计算出来 的,这些算法具有周期性,即当序列达到一定长度后会重复; • 均匀分布的随机数应满足均匀性(Uniformity):随机数序列应是均匀的、 无偏的,即:如果两个子区间的“面积”相等,则落于这两个子区间内 的随机数的个数影相等。
蒙特卡罗方法 (Monte Carlo simulation)
2.2 随机数的产生 • [0,1]区间上均匀分布的随机数是Monte Carlo模拟的基础,服从 任意分布的随机数序列可以用[0,1]区间均匀分布的随机数序列 作适当的变换火舍选后求得; • [0,1]均匀分布的随机数的产生方法:
[数学]蒙特卡罗积分方法
蒙特卡罗积分
Monte Carlo Integration
投点法(频率法)
一个具体的例子
投点法(频率法)所需采样量的估计
平均值法(期望法)
我们还是利用上面所说的那个具体例子, b 此时, I f ( x)dx 的平均值估计就是:
a
ˆ ˆ (b a) I
蒙特卡罗方法的提出
蒙特卡罗方法于20世纪40年代美国在第二次世 界大战中研制原子弹的“曼哈顿计划”计划的 成员S.M.乌拉姆和J.冯· 诺伊曼首先提出。数 学家冯· 诺伊曼用驰名世界的赌城—摩纳哥的 Monte Carlo—来命名这种方法,为它蒙上了 一层神秘色彩。在这之前,蒙特卡罗方法就已 经存在。1777年,法国数学家浦丰提出用投针 实验的方法求圆周率∏。这被认为是蒙特卡罗 方法的起源。
蒙特卡罗方法的基本思想
当所求解问题是某种随机事件出现的概率,或 者是某个随机变量的期望值时,通过某种“实 验”的方法,以这种事件出现的频率估计这一 随机事件的概率,或者得到这个随机变量的某 些数字特征,并将其作为问题的解
蒙特卡罗方法的应用
蒙特卡罗方法在,金融工程学,宏观经济学, 生物医学,计算物理学等领域应用广泛 。 通常蒙特· 卡罗方法通过构造符合一定规则的 随机数来解决数学上的各种问题。对于那些由 于计算过于复杂而难以得到解析解或者根本没 有解析解的问题,蒙特· 卡罗方法是一种有效 的求出数值解的方法。一般蒙特· 卡罗方法在 数学中最常见的应用就是蒙特卡罗积分。
Monte Carlo Method
1.蒙特卡罗方法 2.蒙特卡罗方法的提出 3.蒙特卡罗方法的基本思想 4.蒙特卡罗方法的应用 5.蒙特卡罗积分
蒙特卡罗方法
蒙特卡洛算法c++
蒙特卡洛算法c++蒙特卡罗方法也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
20世纪40年代,在冯·诺伊曼,斯塔尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡罗方法。
因为乌拉姆的叔叔经常在摩纳哥的蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
其实蒙特卡罗算法并不是一种算法的名称,而是对一类随机算法的特性的概括。
媒体说“蒙特卡罗算法打败武宫正树”,这个说法就好比说“我被一只脊椎动物咬了”,是比较火星的。
实际上是ZEN的算法具有蒙特卡罗特性,或者说它的算法属于一种蒙特卡罗算法。
那么“蒙特卡罗”是一种什么特性呢?我们知道,既然是随机算法,在采样不全时,通常不能保证找到最优解,只能说是尽量找。
那么根据怎么个“尽量”法儿,我们我们把随机算法分成两类:蒙特卡罗算法:采样越多,越近似最优解;拉斯维加斯算法:采样越多,越有机会找到最优解;一些例子1、挑苹果假如筐里有100个苹果,让我每次闭眼拿1个,挑出最大的。
于是我随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……我每拿一次,留下的苹果都至少不比上次的小。
拿的次数越多,挑出的苹果就越大,但我除非拿100次,否则无法肯定挑出了最大的。
这个挑苹果的算法,就属于蒙特卡罗算法——尽量找好的,但不保证是最好的。
而拉斯维加斯算法,则是另一种情况。
假如有一把锁,给我100把钥匙,只有1把是对的。
于是我每次随机拿1把钥匙去试,打不开就再换1把。
我试的次数越多,打开(最优解)的机会就越大,但在打开之前,那些错的钥匙都是没有用的。
这个试钥匙的算法,就是拉斯维加斯的——尽量找最好的,但不保证能找到。
所以你看,这两个词并不深奥,它只是概括了随机算法的特性,算法本身可能复杂,也可能简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
基本思想
当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
当你的豆子越小,撒的越多的时候,结果就越精确。
在这里我们要假定豆子都在一个平面上,相互之间没有重叠。
工作过程
在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作:
用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。
用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。
计算步骤
使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:
① 使用随机数发生器产生一个随机的分子构型。
②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
③计算新的分子构型的能量。
④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。
若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。
若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。
若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
⑤如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。
在数学中的应用
通常蒙特·卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题。
对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特·卡罗方法是一种有效的求出数值解的方法。
一般蒙特·卡罗方法在数学中最常见的应用就是蒙特·卡罗积分。
积分
非权重蒙特卡罗积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。
此种方法的正确性是基于概率论的中心极限定理。
当抽样点数为m时,使用此种方法所得近似解的统计误差恒为,不随积分维数的改变而改变。
因此当积分维度较高时,蒙特卡罗方法相对于其他数值解法更优。
解题三个主要步骤:
构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
产生随机数的问题,就是从这个分布的抽样问题。
在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。
另一种方法是用数学递推公式产生。
这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。
不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。
由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都
是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。
由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。
建立各种估计量:一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。
建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。
例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量:于是,在N次实验后,正品个数为:显然,正品率p为:不难看出,Ti为无偏估计。
当然,还可以引入其它类型的估计,如最大似然估计,渐进有偏估计等。
但是,在蒙特卡罗计算中,使用最多的是无偏估计。
用比较抽象的概率语言描述蒙特卡罗方法解题的手续如下:构造一个概率空间(W ,A,P),其中,W 是一个事件集合,A是集合W 的子集的s 体,P是在A上建立的某个概率测度;在这个概率空间中,选取一个随机变量q (w ),w Î W ,使得这个随机变量的期望值正好是所要求的解Q ,然后用q (w )的简单子样的算术平均值作为Q 的近似值。
特点:
直接追踪粒子,物理思路清晰,易于理解。
· 采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。
· 不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。
· MC程序结构清晰简单。
· 研究人员采用MC方法编写程序来解决粒子输运问题,比较容易得到自己想得到的任意中间结果,应用灵活性强。
· MC方法主要弱点是收敛速度较慢和误差的概率性质,其概率误差正比于,如果单纯以增大抽样粒子个数N来减小误差,就要增加很大的计算量。
计算程序:
关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT等。
这些程序大多经过了多年的发展,花费了几百人年的工作量。
除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。
就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT
2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。
EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心
算法。
ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。
ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN 的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。
TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。
NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树
林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)
则引进了ETRAN,加入了对电子的模拟。
FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。