第五章 稳恒磁场典型例题

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

恒稳磁场习题

恒稳磁场习题
(3)
F qvBsin 0 0 F qvBsin 180 0
10、已知地面上空某处,地磁场的磁感强度为B = 0.4×10-4 T ,方向向北。若宇宙射线中有一速率为v = 5.0×107 m · s-1的质子垂直地通过该处。求: (1)洛伦兹力的方向。 (2)洛伦兹力的大小,并与该质子受到的万有引力相
d r3

0 lI1 d r3 ln 2.2 106 Wb r1
7、如计算7题图所示,一根长直导线载有电 流 I1 30 A ,矩形回路载有电流 I 2 20 A 已知:d = 1.0 cm , b = 8.0 cm , l = 0.12 m 。试计 算作用在矩形回路上的合力。
解:由长直电流的磁场公式有,电子所在处的磁场为: 0 I B 2d 0 I F qvBsin 90 qv 3.2 1016 N (1) 2d 方向垂直于导线并背离导线 0 I F qvBsin 90 qv 3.2 1016 N (2) 2d 方向与电流的方向相同。
,方向如图所示,大小为:
B1 B2 2
0 I 2r
2 0 I a
所以O点处的磁感强度B的大小为: 2 0 I 2 2 B B1 B2 a 方向向上。
2 4 107 20 B 8.0 105 T (2) 20 102
2、如图所示,载流正方形线圈边长为2 a ,电流强度为I 求:此线圈轴线上距中心为x 点处的磁感强度。
该磁场在X轴上的分量为:
B1x B1 cos B1 a x a
2 2

0 Ia 2
2 ( x 2 a 2 ) x 2 2a 2
对称性可知,P点总的磁场方向一定沿X轴的方向,磁 感强度的大小为:

大学物理习题稳恒磁场

大学物理习题稳恒磁场

稳恒磁场一、选择题1. 一圆电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。

2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中321O ,O ,O 处的磁感应强度为B B B 123,,,则 【 】(A)B B B 123==; (B) 0B 0B B 321≠== ;(C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠=3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】(A) 若⎰=⋅L0l d B ,则必定L 上B 处处为零(B) 若⎰=⋅L0l d B, 则必定L 不包围电流(C) 若⎰=⋅L0l d B, 则L 所包围电流的代数和为零(D) 回路L 上各点的B 仅与所包围的电流有关。

4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2(C) 4(D) 1/45. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】(2)选择题(A) 2/IB Na 32,(B)4/IB Na 32, (C) 60sin IB Na 32,(D) 06. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】 B 22)D (B 21)C (B 2)B (B 2)A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两条轨迹可以判断【 】(A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。

稳恒磁场

稳恒磁场

A I1 D I2 C
答案与选解:
一、选择题 1. (D)2. (D)3. (D)4. (B)5. (D)6. (E)7. (B)8. (C)9. (B) 二、填空题: 1.-
1 Bπ R2 2
2.0
3.
0 ih 2R
4.T1
5.9.33×10
-19
Am2
相反
6. 2 BIR
沿 Y 轴正方向 7.mg/(2NLB) 8.
e2 B r 9.1:1 30º 4 0 me
10.铁磁质 顺磁质 抗磁质 三、计算题: 1. 解:电流在 O 点产生的磁场相当于 CDA 一段上电流产生的磁场, ∴B
0 I 2 0 I [sin 45 sin(45)] a a
2.P 点的总磁感应强度为 B
0I (1 sin cos ) 4a cos
8.一质量为m、电量为q的粒子,以与均匀磁场 B 垂直的速度v射入磁场内,则粒子运动轨 道所包围范围内的磁通量ф m 与磁场磁感应强度 B 大小的关系曲线是(A)~(E)中的哪一条? Φm Φm Φm Φm Φm
B O (A) O (B)
B O (C)
B O (D)
B O (E) [
B

9.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而 成,每厘米绕 10 匝.当导线中的电流I为 2.0 A时,测得铁环内的磁 感应强度的大小B为 1.0 T,则可求得铁环的相对磁导率μ r 为(真空 磁导率μ r=4π ×10-7T·m·A-1) (A)7.96×102 (Β ) 3.98×102 (C)1.99×102 (D)63.3 [ ] 二、填空题: 1.在匀强磁场 B 中,取一半径为 R 的圓,圆面 的法线 n 与 B 成 60º角,如图所示,则通过以该圆周 为边线的如图所示的任意曲面 S 的磁通量

稳恒磁场习题

稳恒磁场习题

稳恒磁场
1.已知一均匀磁场,其磁感应强度2m wb 0.2-⋅=B ,方向沿x 轴方向,如图所示,试求:(1)通过图中a b o c 面的磁通量;(2)通过图中b e d o 面的磁通量;(3)通过图中a c d e 面的磁通量;
2.电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,
试用毕奥一萨伐尔定律求板外的任意一点的磁感应强度。

3二条长直载流导线与一长方形线圈共面,如图所示.已知a = b = c = 10cm ,l = 10m ,I 1 = I 2 = 100A ,求通过线圈的磁通量.
4载有电流I 1 的无限长直导线旁有一正三角形线圈,边长为a ,载有电流I 2,一边与直导线平等且与直导线相距为b ,直导线与线圈共面,如图所示,求I 1 作用在这三角形线圈上的力.
5 无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,求磁感应强度的分布.
j cm
30x z B O a b e d c y cm 30cm 50cm 40。

稳恒磁场(习题课)-84页文档资料

稳恒磁场(习题课)-84页文档资料

磁感应强度。


1
1
I O



Bo440Ia(co4sco34s)22a0I
2
例、如图所示,有一无限长通电流的偏平铜 片,宽度为a,厚度不计,电流I在铜片上均 匀地自下而上流过,在铜片外与铜片共面、 离铜片右边缘为b的P点的磁感应强度的大小 为多少?
I
P
b
a
x dx
O
P
x
b
a
BPa 02 0((aI /a b) dx)x2 0a Ilnab b
任意载流导线在点 P 处的磁感强度
磁感强度 叠加原理
B dB
0I
dl
r
4π r3
dB
Idl
dB
r
I
P*r
Idl
dB0 Idlr 毕奥—萨伐尔定律
4π r3
例 判断下列各点磁感强度的方向和大小.
1
8
2
X+
7
Idl X+ 3
R
6
X+ 4
5
1、5 点 :dB0
3、7点
:dB
0Idl
4π R2
*p x
B
0IR2 ( 2 x2 R2)32

x 0
B 0I

2R
R
r
o
B
x
*p x
I
(1)
R
B0
x
Io

(2)
I
广
R o×

(3) I

R
×o
(4) I
R
o
B0
0I
2R
B0

稳恒磁场练习题(选择填空)

稳恒磁场练习题(选择填空)

A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
,M
BPm
11.在磁感应强度为B 均匀磁场中作一半径为r
半与球B夹面角S,为S边,则线通所过在半平球面面法S线的方磁向通单量位为矢量 n
A. r 2B
B. 2 r 2B
S
C. r 2B sin D. r 2B cos
n
B
12、已知:磁感应强度
B
Bi
求: 通过各面的磁通量。
Y
上 下 后 0
b
vv
a
1 B S1 B ac S1
c
B
vv
0 X
2 B S2 B ac
S2
Z
13、 S 是以圆周 L 为周界的任意曲面, 求通过 S 的磁通量。
S R2 B
3 2
R
S0 30
L
S
B
14.下列说法正确的是 ( )
一个同心圆形闭合回路L,则由安培环路定理
可知
(A)
B
d
l
0
,且环路上任意一点B = 0.
I
L O
(B)
L
B
d
l
0
,且环路上任意一点B≠0.
L
(C) B d l 0 ,且环路上任意一点B≠0.
(D)
L B
dl 0
,且环路上任意一点B =常量.
L
解: I 0, B 0
B
16、取一闭合积分回路 L ,使三根载流导线穿过它所围成的面,
而 的从 积Ad分.端L流0BI出 d l,等则于磁B.感13应0强I 度沿图中闭合1路2I0b径a L

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4小为πR 2c Wb。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

稳恒磁场

稳恒磁场

三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00. (C) 1.11 (D) 1.22. [ C ]2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l Iπ420μ. (B)l I π220μ.(C) l Iπ02μ. (D) 以上均不对. [ A ]3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .]120B B +=4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ B ]5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然,但B 3≠ 0.[ C ]120B B +≠6. 电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B及3B ,则O 点的磁感强度的大小(A)B = 0,因为B 1 = B 2 = B 3 = 0. (B) (B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0. (E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ C ]7. 电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B、2B 、3B ,则圆心处磁感强度的大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但 [ B ]120B B +≠8. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B) 22202R r a aI -⋅πμ(C)22202r R a a I-⋅πμ (D) )(222220a r R a a I -πμ [ C ]9.一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为_____ πR 2c _______Wb .10. 在匀强磁场B 中,取一半径为R 的圆,圆面的法线n 与B成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲_____221R B π-面S 的磁通量__________________.11.一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动,该带电质点在轨道中心所产生的磁感强度B =____ 6.67×10-7 T ______________,该带电质点轨道运动的磁矩p m =______ 7.20×10-7a R r OO ′I任意曲面d m SB S ==⋅⎰⎰ΦA ·m 2 _____________.(μ0 =4π×10-7H ·m -1)12.载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时, (1)圆线圈中心点(即圆心)的磁场____减小 __________________. (2) 圆线圈轴线上各点的磁场__在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) ________________________.13. 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则 (1) AB 中点(P 点)的磁感强度=p B __0___________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll B d __I 0μ-_________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为___ 4×10-6 T ___________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为_____ 5 A _____________________.15. 两根长直导线通有电流I ,图示有 三种环路;在每种情况下,等于:d B l ⋅⎰_______________I 0μ_____________________(对环路a ). ___________0_________________________(对环路b ). _______________2I 0μ_____________________(对环路c ).16. 设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ==因为电子带负电,电流i 的流向与 v 方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.17.2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B+++= ∵ 1B 、4B 均为0,故 32B B B+= 2分)2(4102R I B μ= 方向 ⊗ 2分242)s i n (s i n 401203RIaIB π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分 其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/s i n (s i n1-=π-=β ∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分18. 如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy 平面内,导线2、3在Oyz 平面内.试指出电流元1d l I 、2d l I 、3d l I 在O 点产生的Bd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向). 18. 解:电流元1d l I 在O 点产生1d B的方向为↓(-z 方向)电流元2d l I 在O 点产生2d B的方向为⊗(-x 方向)电流元3d l I 在O 点产生3d B的方向为⊗ (-x 方向) 3分kR I i R I B π-+ππ-=4)1(400μμ 2分19. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,y d l I 3l如图所示。

稳恒磁场习题答案

稳恒磁场习题答案

稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。

稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。

下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。

1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。

这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。

3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。

即磁场强度随着电流的增加而增加。

4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。

即磁场强度随着线圈的面积的增加而增加。

5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。

即磁场强度随着距离的增加而减小。

6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。

这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。

7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。

这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。

8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。

稳恒磁场习题

稳恒磁场习题

稳恒磁场复习题一 判断题1 一带电粒子作匀速直线运动通过某区域,所以该区域的磁场为零。

2 一闭合回路中有两条通有大小相同、方向相反电流的两条导线,则闭合回路上各点的磁感应强度为零。

3 一对相同带电量和相同质量的正、负电子同时在同一点入射一均匀磁场,已知他们的速度非别为2v 和v ,都和磁场垂直,若只考虑磁场作用,则他们同时回到出发点。

4 若闭合曲线上各点的H 为零,则该曲线所包围的传导电流的代数和为零二选择题1 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 0024I IR Rμμπ+; (C) 004I I R R μμπ+; (D) 0I R μπ. 2 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 002I I R R μμπ-; (C) 0022I IR Rμμπ-; (D) 0I R μπ. 3 一条无限长直导线在一处弯折为半径为R 的圆弧,如图。

已知导线电流强度为I ,圆心O 处的磁感应强度为(A)08IRμ; (B) 04I R μ; (C) 02I R μ; (D) 0.4 两根长直导线沿半径方向连接到粗细均匀的铁环上的A 、B 两点,并与很远处的电源相连,两段弧AB 的长度和电流分别为L 1、L 2和I 1、I 2,则圆环中心的磁感应强度为(A)01124I L R μπ; (B) 02224I L R μπ; (C) 022*******I L I LR Rμμππ+; (D) 0. 5、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的 ( )(A) H仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零. (C) 若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D) 以闭合曲线L为边缘的任意曲面的H通量均相等.6、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为a ,则通过半球面S 的磁通量(取弯面向外为正)为(A) SB (B) 2SB (C) -SBsina (D) -SBcosa7、六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域. (D) Ⅳ区域.8 边长为L 的一个导线方框上同有电流I ,则此框中心的磁感应强度( ) (A)与L 无关. (B) 正比于L 2.(C) 与L 成反比. (D) 与I 2有关域.9 无限长通电流扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片最近边缘为b 处的P 点的磁感应强度B 的大小为( ) (A) ()02Ia b μπ+; (B)0ln()2I a ba b μπ+; (C) 0ln()2I a b b aμπ+; (D)()02/2I a b μπ+.三 填空题1 三根直载流导线A 、B 和C 平行地放置于同一平面内,分别载有恒定电流I 、2I 和3I 。

稳恒磁场习题(包含答案)

稳恒磁场习题(包含答案)

练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。

稳恒磁场练习题及答案

稳恒磁场练习题及答案

稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。

问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。

5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。

(B) 回路L 内可能有电流,且代数和不为零。

(C) 回路L 内一定无电流。

(D) 回路L 内可能有电流,但代数和为零。

6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。

(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。

(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。

(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。

大学物理试卷答案稳恒磁场

大学物理试卷答案稳恒磁场

M O P
K
第五题图
二、填空题
7、图中所示的一无限长直圆筒,沿圆周方向上的面电流密 度单位垂直长度上流过的电流为i,则圆筒内部的磁感强度的 大小为B =_____ _0 i__,方向___沿__轴__线__方__向_朝__右_.
iHale Waihona Puke 8、有一同轴电缆,其尺寸如图所示,它的内外两导体中的电 流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则
解:取x轴向右,那么有
B1
2[R12
(0bR12Ix1)2]3/2沿x轴正方向
I1 R1
I2
OP x
B2
2[R22
0R22I2
(bx)2]3/2
沿x轴负方向
2b
BB1B2
0 2
[
0R12I1
[R12 (bx)2]3/2
0R22I2
]
[R22 (bx)2]3/2
若B > 0,则 B方向为沿x轴正方向.若B < 0,B 则
R2 x
的方向为沿x轴负方向.
13、螺绕环中心长L= 10 cm,环上均匀密绕线圈N = 200匝,
线圈中通有电流I = 0.1 A.管内充满相对磁导率 的磁介质.求管内磁场强度和磁感强度的大小.
= 4r 200
解: H n IN/lI200 A/m
BH0rH1.06 T
14、一铁环中心线周长L = 30 cm,横截面S = 1.0 cm2,环上 紧密地绕有N = 300 匝线圈.当导线中电流I = 32 mA 时,通 过环截面的磁通量 = 2.0×10-5 Wb.试求铁芯的磁化率 Xm .
6、用细导线均匀密绕成长为L、半径为a L>> a、总匝数为N 的螺线管,管内充满相对磁导率为 的r 均匀磁介质.若线圈中 载有稳恒电流I,则管中任意一点的 . D

稳恒电流的磁场习题与解答

稳恒电流的磁场习题与解答

稳恒电流的磁场1、边长为 a 的正方形线圈载有电流 I ,试求在正方形中心点的磁感应强度B分析:正方形四边产生的磁感应强度大小相等,方向相同,与电流方向符合右手螺旋定则。

每一边产生的磁感应强度为)cos (cos 24210θθπμ-a I其中41πθ=,πθ432=。

解:由分析得a I a IB πμπππμ428)43cos 4(cos 24400=-=2、如图所示的无限长载流导线,通以电流 I ,求图中圆心O 分析:根据磁感应强度的叠加原理,本题可以看作无限长直导线在O 点的磁感应强度B 1减去弦直导线在O 点的磁感应强度B 2再加上弧形导线在O 点的磁感应强度B 3。

解:由分析得 B = B 1 - B 2 + B 3=r I r Ir I231)65cos 6(cos 2422000μπππμπμ+--rI021.0μ=3、如图所示,两条无限长载流直导线垂直而不相交,其间最近距离为d=,电流分别为I 1=,I 2 = ,一点P 到两导线距离都是 d ,求点P 的磁感应强度的大小分析:电流I 1在P 点产生的磁感应强度B 1大小为dI πμ210,方向垂直纸面向里,电流I 2在P 点产生的磁感应强度B 2大小为dI πμ220,方向向右。

两矢量求和即可。

解:T d I B 57101100.402.020.41042--⨯=⨯⨯⨯==πππμ T d I B 57202100.602.020.61042--⨯=⨯⨯⨯==πππμ T B B B 522211021.7-⨯=+=4、一边长为 b=的立方体如图放置,有一均匀磁场 B =(6i +3j +T 通过立方体所在区域,试计算:(1)通过立方体上阴影面积的磁通量(2)通过立方体六面的总磁通量分析:磁感应线是闭合曲线,故通过任一闭合曲面的磁通量为零。

对于闭合曲面,通常规定外表面的法线方向为正,所以阴影面的正法线方向沿x 轴正向。

解:(1)Wb i k j iS B 135.0ˆ)15.0()ˆ5.1ˆ3ˆ6(2=⋅++=⋅=ϖϖφ (2)0=⋅=⎰⎰S B sϖϖφ5、一密绕的圆形线圈,直径为,线圈中通有电流时,在线圈中心处的B=×10 -4T ,问线圈有多少匝o rI题2图..ddP题3图I题1图分析:N 匝密绕圆形线圈在圆心处的磁感应强度为单匝密绕圆形线圈在圆心处的磁感应强度的N 倍。

稳恒磁场习题

稳恒磁场习题

B
的大小:
0 ,电流 I 2
0 I 2 0 Ir 2 B2 2a 2a R 2 r 2
B0
2a( R r )
2 2
0 Ir
2
(2)空心部分轴线上 O 点 B 的大小 :
电流 I 2 产生的 B2 0
电流 I 1产生的
0 I 1r 0 a IR B1 2 2R 2R 2 R 2 r 2 0 Ia 2 ( R 2 r 2 )
a a
可见,起点与终点一样的曲导线和直导线,只要处在 均匀磁场中,所受安培力一样.
例题11、如图在无限长直电流I1的磁场中, 有一通有电流I2,边长为a的正三角形回路 (回路与直电流共面)。求回路所受合力
解:由安培定律
dF I 2dl B
I1
A
0 I1 B 2x
B FAC
B
0 I

R
I
无限长直螺线管内部的磁场
磁通量
B 0 nI
磁场中的高斯定理 m B dS B cos dS
B dS 0
安培环路定理
B dl 0 I
L L
安培定律
dF Idl B
F
均匀磁场对载流线圈
0 Idl sin dB 2 4 r
B dB
载流直导线的磁场:
2
I
0 I B (cos 1 cos 2 ) 4a
0 I 无限长载流直导线: B 2a
直导线延长线上: 载流圆环 载流圆弧
a
1 2 R 2
b

解:
B B1 B2 B3

大物稳恒磁场习题

大物稳恒磁场习题

= 4×10-5×1×0.5
= 2×10-5 Wb
(2) Φ ´= B . S = BS cos 300
= 4×10-5×1×
3 2
= 3.46×10-5 Wb
Φ ´´= 3.46×10-5 Wb
11-2 设一均匀磁场沿x 轴正方向,其磁 感应强度值B =1 Wb/m2。求:在下列情况 下,穿过面积为2m2的平面的磁通量。
=1×2×
2 2
= 1.41Wb z
y n
450 x
11-3 一边长为l =0.15m 的立方体如图 放置,有一均匀磁场B = (6i +3j +1.5k) T 通过立方体所在区域,计算
(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总通量。
y B
ol
lx
z
l
已知:l =0.15m B = ( 6i +3j +1.5k ) T
求:Φ
y
解:(1) B = ( 6i +3j +1.5k )
B
S = l 2 i = 0.15 2 i Φ =B.S
o
l lx
z
l
=( 6i +3j +1.5k ). ( 0.15 2 i )
= 0.135Wb
(2) Φ ´= 0
11-4 两根长直导线互相平行地放置在 真空中,如图所示,其中通以同向的电流 I1 = I2 =10A 。试求:P点的磁感应强度。 已知 PI1 =PI2 =0.5m ,PI1垂直于PI2。
2πl
×4m
R 0I
=
8
π
2
2
l
I
P1 (b)
11-12 A和B为两个正交放置的圆形线 圈,其圆心相重合。A线圈半径 RA=0.2m, NA=10匝,通有电流 IA =10A。B线圈半径 为RB=0.1m, NB= 20匝。通有电流IB =5A。 求两线圈公共中心处的磁感应强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 稳恒磁场设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。

解:如图所示令 110A I H e r = 220A IH e r= 由稳恒磁场的边界条件知,12t t H H = 12n n B B = 又 B μ= 且 n H H =所以 1122H H μμ= (1) 再根据安培环路定律H dl I ⋅=⎰得 12IH H rπ+= (2) 联立(1),(2)两式便解得,21120I I H r rμμμμπμμπ=⋅=⋅++012120I I H r rμμμμπμμπ=⋅=⋅++ 故, 01110IB H e r θμμμμμπ==⋅+ 02220IB H e rθμμμμμπ==⋅+ 212()M a n M M n M =⨯-=⨯ 220()B n H μ=⨯-00()0In e rθμμμμπ-=⋅⋅⨯=+ 222()M M M J M H H χχ=∇⨯=∇⨯=∇⨯0000(0,0,)zJ Ie z μμμμδμμμμ--=⋅=⋅++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。

?解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。

由2A ∇的柱坐标系中的表达式可知,只有一个分量,即 210A J μ∇=- 220A ∇= 此即101()A r J r r r μ∂∂=-∂∂21()0A r r r r∂∂=∂∂ 通解为 21121ln 4A Jr b r b μ=-++212ln A c r c =+ 当0r =时,1A 有限,有10b =由于无限长圆柱导体上有恒定电流J 均匀分布于截面上,设r a =时, 120A A ==,得202121ln 04Ja b c a c μ-+=+=)又r a =时,12011e A e A ρρμμ⨯∇⨯=⨯∇⨯,得 112c Ja a μ-=所以 2221220111,,224c Ja c Ja b Ja μμμ=-=-=所以, 22101()4A J r a μ=--221ln 2a A Ja rμ=写成矢量形式为 22101()4A J r a μ=--221ln 2a A Ja rμ=设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应B 。

解:建立坐标系如图所示,电流分布为 0,z J a rJ =- r a ≤ 0= , r a > 从电流分布可以知道磁矢位仅有z 分量,即 z z A A a = 且满足方程 20A J μ∇=-~设在圆柱体内磁位是1A 圆柱体外磁位是2A ,则 当r a ≤时,1001()A r rJ r r rμ∂∂=+∂∂ 当r a ≥时,21()0A r r r r∂∂=∂∂ 所以 3100121ln 9A J r C r C μ=++234ln A C r C =+ 其中1234,,,C C C C 是待定常数。

由于0r =处磁矢位不应是无穷大,所以10C =。

利用边界条件,有 320019C J a μ=-;330013C J a μ=;34001ln 3C J a a μ=-最后得: 3311000011()99z z A a A J r J a a μμ==-33001()9z J r a a μ=-—322001ln 3z z rA a A J a a aμ==由B A =∇⨯得: 21110013A B A a J r a r ϕϕμ∂=∇⨯=-=-∂ 32220013z A B A a J a a r rϕμ∂=∇⨯=-=-∂载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。

试求圆弧中心点处的磁感应强度。

解: 对圆弧中心点O 的磁感应强度,可认为是半圆弧电流与两条半直线电流,分别在O 点产生的磁感应强度的叠加。

:对于半圆弧在O 点产生的磁感应强度1B ,可用毕奥-萨伐定律求得为014IB Rμ=方向沿垂直纸面向外。

同样一根半长直线在O 点产生的磁感应强度'2B 为 '024IB Rμπ= 方向沿垂直纸面向外。

故O 点处的磁感应强度'122B B B =+⨯ 00244I IB R Rμμππ=+⨯ 代入数值得】55.110()B T -=⨯ 方向沿垂直纸面向外。

两根无限长直导线,布置于1,0x y =±=处,并与z 轴平行,分别通过电流I 及I -,求空间任意一点处的磁感应强度B 。

解:无限长直导线产生的矢量磁位为 00ln 2z I r A a rμπ=0r 为有限值。

对于本题,可利用叠加原理,p 点的矢量磁位可看做是位于1x =-处的长直导线产生的矢量磁位和位于1x =+处的长直导线产生的矢量磁位的叠加,即 00012(ln ln )2z I r rA a r r μπ=- 021ln 2zI r a r μπ= <20212cos ln()212cos zI r r a r r μϕπϕ++=+- 根据1()z zz z r A A B A a A a a r r φφ∂∂=∇⨯=∇⨯=-+∂∂ 有202212(1)sin r I r B r r μφπ+=-202212(1)cos I r B r r ϕμφπ-=0z B =半径的磁介质球,具有磁化强度为2()z M a Az B =+ 求磁化电流和磁荷。

解: 球内:等效磁化电流体密度为@等效磁荷体密度为m J M =∇⨯221()()0r a Az B a Az B r rϕϕ∂∂=+-+=∂∂ 等效磁荷密度为2m z M M Az zρ∂=-∇⋅=-=-∂ 球表面:磁化面电流密度为sm z r J M n a M a =⨯=⨯ 因球面上 cos z a θ=故 2[(cos )]sin sm J a A a B ϕθθ=+ 其磁荷面密度为 2[(cos )]cos m n M a A a B ϕσθθ=⋅=+已知两个相互平行,相隔距离为d ,共轴圆线圈,其中一个线圈的半径为a ()a d <,另一个线圈的半径为b ,试求两线圈之间的互感系数。

】解:如图所示,设1C 中电流为1I ,在轴线上产生的磁场为 21132222()z I b B b d μ=+因da ,可认为B 在包围的面积2S 上是均匀的,所以2201211232222()I b B S a b d μϕπ==+根据互感系数的定义,得/22021322212()a b M I b d μπϕ==+两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。

解: 一根无限长直导线电流的磁场 0112I B a rϕμπ= 另一根直导线电流的电流元22I dl 受到磁场力 221dF I dl B =⨯ 01222I I dl a ϕμπ=⨯01222x I I a dl dμπ=- 故单位长受力 0122m xI I F a dμπ=- "一个薄铁圆盘,半径为a ,厚度为b ()b a ,如题图所示。

在平行于z 轴方向均匀磁化,磁化强度为M 。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

解 由于铁盘均匀磁化,且磁化方向沿z 正向,故令z M Me =,其中M 为常数。

由此可知磁化电流面密度0m J M =∇⨯=铁盘上、下底面的磁化电流线密度()10m n z z K M e Me e =⨯=⨯±=题图铁盘侧面周边边缘上的磁化电流线密度m n z K M e Me e Me ρφ=⨯=⨯=这样可将圆盘视为相当于m I K b =的圆形磁化电流,求此电流在各处产生的磁场。

又由于ba ,可视为圆环电流产生的磁场。

在铁盘轴线上产生的磁场为()()22003232222222Ia Mba B z az aμμ==++()2322202BMba H z aμ==+B 、H 的方向沿z 方向。

铁盘内由于0μμ,可得001B M μμμ⎛⎫-= ⎪⎝⎭0B M μ≈ 在铁盘内是均匀分布的磁场。

均匀磁化的无限大导磁媒质的磁导率为μ,磁感应强度为B ,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。

试求两空腔中心处磁场强度的比值。

解 此题由于空腔的形状可以利用边界条件确定空腔内的场分布。

对空腔1其中心处的场强与侧边界的场强相同。

由于B 在其法线方向,由分界面上的边界条件12n n B B =,可得到中心点的磁感应强度1B B =,10H H μμ=。

题 图对空腔2侧面是沿B 的方向,由分界面上的边界条件12t t H H =,可得中心点处的磁场强度2H H =,02B B μμ=。

两空腔中心处磁场强度的比值为120H H H Hμμμμ==两个无限大且平行的等磁位面D 、N ,相距h ,10mD ϕ=A ,0mN ϕ=。

其间充以两种不同的导磁媒质,其磁导率分别为10μμ=,202μμ=,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。

解 根据m H ϕ=-∇则10mD mNH hhϕϕ-==,方向沿分界面切线方向。

利用分界面上的边界条件,1210t t H H h==,则 010110B H h μμ==202202B H hμμ==利用磁感应线管,沿分界面法向受到侧压力,故单位面积受力的大小为0012112251122f f f B H B H hμ=-=-=- 00f <,说明作用力沿媒质2指向媒质1,即从磁导率大的媒质指向磁导率小的媒质。

题图长直导线附近有一矩形回路,回路与导线不共面,如题图()a 所示。

证明:直导线与矩形回路间的互感为()012122222ln 22aRM b R C b R μπ=-⎡⎤-++⎢⎥⎣⎦题图()a题图()b解 设长直导线中的电流为I ,则其产生的磁场为 02I B rμπ=由题图()b 可知,与矩形回路交链的磁通ψ为1000121ln 222R SRI aI aI RB dS dr r R μμμψπππ===⎰⎰其中 (12122212R C b R b ⎡⎤⎡=++=++⎢⎥⎣⎣⎦故直导线与矩形回路间的互感为12200122ln ln 22R b a a R M I R R μμψππ⎡++⎣⎦===()012122222ln 22aRb R C b R μπ=-⎡⎤-++⎢⎥⎣⎦一环形螺线管的平均半径015r cm =,其圆形截面的半径2a cm =,铁芯的相对磁导率1400r μ=,环上绕1000N =匝线圈,通过电流0.7I A =。

相关文档
最新文档