最新数学建模小实例

合集下载

数学建模案例精选

数学建模案例精选

数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。

在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。

下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。

案例一,交通拥堵问题。

在城市交通管理中,交通拥堵一直是一个严重的问题。

如何合理规划道路和交通流量,是一个复杂的问题。

数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。

案例二,股票价格预测。

股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。

数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。

案例三,物流配送优化。

在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。

数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。

案例四,环境污染监测。

环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。

数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。

通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。

数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。

因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。

希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。

数学建模实例

数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

数学建模与应用案例

数学建模与应用案例

数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。

它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。

数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。

案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。

通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。

数学建模可以通过分析历史交通数据,建立交通流量预测模型。

以某城市的交通流量预测为例,可以采用时间序列分析方法,通过对历史交通数据的分析,建立交通流量与时间的关系模型。

然后利用该模型对未来的交通流量进行预测,从而为交通规划和管理提供科学依据。

案例二:股票价格预测股票价格预测是金融领域的重要问题。

通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。

数学建模可以通过分析历史股票数据,建立股票价格预测模型。

以某股票的价格预测为例,可以采用时间序列分析方法,通过对历史股票数据的分析,建立股票价格与时间的关系模型。

然后利用该模型对未来的股票价格进行预测,从而为投资者提供参考。

案例三:疾病传播模型疾病传播是公共卫生领域的重要问题。

通过建立疾病传播模型,可以预测疾病的传播趋势,制定有效的防控策略。

数学建模可以通过分析疾病传播的规律,建立疾病传播模型。

以某传染病的传播为例,可以采用传染病动力学模型,通过对疾病传播的机理进行建模,预测疾病的传播速度和范围。

然后利用该模型对疾病传播进行预测,从而为公共卫生部门提供决策支持。

案例四:物流配送优化物流配送是供应链管理中的重要问题。

通过优化物流配送方案,可以降低物流成本,提高物流效率。

数学建模可以通过分析物流配送的需求和约束条件,建立物流配送优化模型。

以某物流公司的配送问题为例,可以采用线性规划方法,通过对物流配送的需求和约束进行建模,优化配送方案。

然后利用该模型对物流配送进行优化,从而为物流公司提供最佳配送方案。

数学建模案例

数学建模案例

2021/10/10
13
建模示例五:轮廓模型
轮廓模型是以量纲模型为基础,利用量 的比例关系而构造简单数学模型的一种方法。 因为这种比例关系比较粗糙,因而成为轮廓 模型。
(货物的包装成本)在超市中可以看到许 多商品(如面粉、白糖、奶粉等)都以包装 的形式出售,同一种商品的包装也经常有大 小不同的规格,出售的价格也高低不同。下 表是一些例子。
周 期 中 南 北 方 向 亮 红 灯 的 比 率 是 t/T,需 停 车 等 待 的 车 辆
数 是 V t/T.这 些 车 辆 等 待 时 间 最 短 为 0(刚 停 下 ,红 灯 就 转
换 为 绿 灯 ),最 长 为 t(到 达 路 口 时 ,绿 灯 刚 转 换 为 红 灯 ),由 假
设 2"车 流 量 均 匀 "可 知 ,它 们 的 平 均 等 待 时 间 是 t/2.由 此 可
它 也 是 货 物 量 的 减 函 数 .因 而 当 包 装 比 较 大 时 单 位 重 量 货物的成本的减低将越来越慢.
我们来计算总的节省率,即购买单位包装的商品的
花 费 随 着 包 装 的 增 大 而 改 变 的 速 率 r ( ) (q / 3) 1/3 , 它
仍 然 是 的 减 函 数 .这 说 明 总 的 节 省 率 也 是 随 着 所 包 装 的
1588)2 27
27(152 88
882 272
)1588
12
当t
88 30 30 24
48.8889时,ymin
587(秒).
由此可见,我们计算所得的结果和同学们实际观测
到的数据是比较接近的.这也说明此路口红灯与绿灯设
置的时间比较合理.
评 注: 由上述结果可知,两个方向绿灯时间之比恰好等于

数学建模简单13个例子

数学建模简单13个例子

另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,
D
即T 至少应当达到 (L+D)/v。
L
返回
9、砖块延伸
出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
I2 I1
1
方法二
A
在方法一中,两检测点与黑匣子
位于β一α a
直线上,这一点比较容易 点是结果对照度测
量的精C做度到要, 求主 较要 高缺 ,B
很少的误差会造成结果的很大变化,即敏感性很
强,现提出另一方法,在 A点测得黑匣子方向后 ,
到B点再测方向 ,AB 距离为a ,∠BAC=α,

数学建模简单示例

数学建模简单示例
司机的平均反应时间 t1早有测算,反应时间过 长将考不出驾照),而此街道的行驶速度 v 也 是交管部门早已定好的,目的是使交通流量最大, 设想一下黄灯的作用是什么,不难看 可另建模型研究,从而 L1=v*t1。刹车距离 L2 出,黄灯起的是警告的作用,意思是 既可用曲线拟合方法得出,也可利用牛顿第二定 马上要转红灯了,假如你能停住,请 律计算出来立即停车。停车是需要时间的,在这 ( 留作习题)。 黄灯究竟应当亮多久现在已经变得清楚多了。第 段时间内,车辆仍将向前行驶一段距 一步,先计算出 L应多大才能使看见黄灯的司机 离 L。这就是说,在离街口距离为 L 停得住车。第二步,黄灯亮的时间应当让已过线 处存在着一条停车线(尽管它没被画 的车顺利穿过马路,即 T 至少应当达到 (L+D) 在地上),见图 1-4。对于那些黄灯亮 /v。 时已过线的车辆,则应当保证它们仍 能穿过马路。
否则一处的车辆将会越积越多。
例4 飞机失事时,黑匣子会自动打开,发射 出某种射线。为了搞清失事原因,人们必须 尽快找回匣子。确定黑匣子的位置,必须确 定其所在的方向和距离,试设计一些寻找黑 匣子的方法。由于要确定两个参数,至少要 用仪器检测两次,除非你事先知道黑匣子发 射射线的强度。
方法一
点光源发出的射线在各点处的照度与其到点光源的 2 的平方成反比,即
例2 某人第一天由 A地去B地,第二天由 B地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
分析 本题多少 有点象 数学中 解的存在 性条件 及证明,当 然 ,这里的情况要简单得多。 假如我们换一种想法,把第二天的返回改变成另一人在同 一天由B去A,问题就化为在什么条件下,两人至少在途中 相遇一次,这样结论就很容易得出了:只要任何一人的到 达时间晚于另一人的出发时间,两人必会在途中相遇。

简单数学建模100例

简单数学建模100例

“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。

为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。

数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

初中数学建模的若干简要案例

初中数学建模的若干简要案例

初中数学建模的若干简要案例1.找出一个公园内最短游览路径的问题假设一个公园有多个景点,每个景点之间有不同的距离,我们希望找到一条最短的路径,使得可以在最短时间内游览完所有的景点。

我们可以将每个景点表示为节点,距离表示为边,然后利用图论中的最短路径算法(如迪杰斯特拉算法)来解决这个问题。

2.优化一家快递公司的邮件投递路径假设一个快递公司需要投递邮件到不同的区域,每个区域的邮件数不同,我们希望找到一条最优的路径,使得快递员可以在最短时间内投递完所有的邮件。

我们可以将每个区域表示为节点,不同区域之间的距离表示为边,然后利用图论中的最短路径算法或者启发式算法(如A*算法)来解决这个问题。

3.设计一个购物车的最佳装载方案假设一个网上购物平台需要将一些商品装载到购物车中,每个商品有不同的体积和重量,而购物车有一定的容量限制。

我们希望找到一个最佳的装载方案,使得购物车可以装载尽可能多的商品。

我们可以将每个商品表示为节点,商品之间的限制条件(如体积和重量限制)表示为约束条件,然后利用线性规划算法(如简单的背包问题)来解决这个问题。

4.优化一条生产线的生产效率假设一个工厂有多个生产环节,每个生产环节有不同的效率和成本,我们希望找到一个最优的生产线配置方案,使得生产效率最高,成本最低。

我们可以将每个生产环节表示为节点,不同生产环节之间的依赖关系和成本表示为边,然后利用图论中的最优路径算法(如最小生成树算法)来解决这个问题。

5.设计一个最优的课程表假设一个学校有多个班级和多个教师,每个班级需要上不同的课程,每个教师可以同时教授多个班级的课程,我们希望找到一个最优的课程表,使得教师的利用率最高,学生的课程安排最优。

我们可以将每个班级和教师表示为节点,教师的教学能力和班级的需求表示为边的权重,然后利用图论中的最大流算法或者启发式算法(如基因算法)来解决这个问题。

这些案例都是初中数学建模的常见问题,通过数学建模的方法,可以帮助我们解决这些实际问题,提高问题的解决效率和准确性。

数学建模有趣的例子

数学建模有趣的例子

数学建模有趣的例子
1. 嘿,你知道吗?数学建模能帮我们规划最优的快递配送路线呢!就像给快递小哥设计一条超级捷径,让包裹能最快到达我们手中。

这是不是很有趣呀?
2. 哇塞,数学建模还可以用来模拟传染病的传播呢!就如同解开一个神秘疾病扩散的谜团,太奇妙了吧。

3. 哎呀,想想看,用数学建模来优化城市交通信号灯的时间安排,这不就像是给城市的交通脉络做了一次精心梳理嘛,多有意思啊!
4. 嘿,数学建模甚至能帮助农民伯伯确定最佳的种植布局呢!是不是感觉像给田地施了一次神奇的魔法呀。

5. 哇哦,通过数学建模来分析股票的走势,那不就像是在股海里找到正确的航向嘛,这可太引人入胜啦!
6. 天哪,数学建模可以帮助消防员确定最佳的救援路线,这简直就是给生命开辟快速通道啊,太厉害了吧!
7. 哈哈,数学建模能用来给超市设计最合理的货架摆放呢!这不就像是给商品们找到了最舒适的家嘛。

8. 你想想,利用数学建模来预测天气变化,岂不是像拥有了提前知晓大自然秘密的超能力,有趣极了呀!
我觉得数学建模真的是充满了无限可能和乐趣,它在各个领域都能发挥出神奇的作用,让我们的生活变得更加美好和高效。

中学数学建模教育案例(3篇)

中学数学建模教育案例(3篇)

第1篇一、背景随着我国经济的快速发展和社会的进步,数学教育在中学教育中的地位越来越重要。

数学建模作为一种培养学生解决实际问题的能力、提高数学素养的重要手段,越来越受到教育部门的重视。

本文以“疫情数据分析”为背景,探讨中学数学建模教育的实践案例。

二、案例概述本次数学建模教学活动以“疫情数据分析”为主题,旨在让学生通过数学建模的方法,分析疫情数据,预测疫情发展趋势,为疫情防控提供科学依据。

活动分为以下几个阶段:1. 数据收集与整理2. 模型建立与求解3. 模型验证与优化4. 案例分析与应用三、案例实施过程1. 数据收集与整理教师首先向学生介绍疫情数据的相关信息,包括确诊病例、疑似病例、治愈病例、死亡病例等。

然后,引导学生通过互联网、政府官方网站等渠道收集疫情数据,并进行整理和归纳。

2. 模型建立与求解在数据整理完成后,教师引导学生运用数学建模的方法,建立疫情传播模型。

本次案例中,我们选择了SIR模型(易感者-感染者-移除者模型)作为分析工具。

SIR模型将人群分为三个状态:易感者(S)、感染者(I)和移除者(R)。

通过分析疫情数据,确定模型中的参数,如基本再生数、潜伏期、康复率等。

接下来,学生利用计算机软件(如MATLAB、Python等)对模型进行求解,得到疫情发展趋势的预测结果。

3. 模型验证与优化在模型求解完成后,教师引导学生对模型进行验证。

通过对比实际疫情数据与模型预测结果,分析模型的准确性。

若模型预测结果与实际数据存在较大偏差,则需对模型进行优化,调整模型参数或选择更合适的模型。

4. 案例分析与应用在模型验证与优化完成后,教师引导学生对案例进行深入分析,探讨疫情发展趋势的影响因素,如政策、经济、人口等。

同时,引导学生将数学建模方法应用于实际生活,如疫情防控策略的制定、疫情防控物资的调配等。

四、案例总结本次数学建模教学活动取得了良好的效果,主要体现在以下几个方面:1. 培养学生的数学思维:通过数学建模,学生学会了运用数学方法解决实际问题,提高了数学思维能力。

数学建模简单13个例子_2022年学习资料

数学建模简单13个例子_2022年学习资料

7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返

简单数学建模实例

简单数学建模实例

简单数学建模实例随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。

而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。

在此,我们将为大家介绍一些简单的数学建模实例。

(一)瓶子里的气体假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。

现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。

问原瓶子中氧气的百分比是多少?这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。

再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。

(二)小球的弹性碰撞两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。

两个小球弹性碰撞后,速度分别为 u1 和 u2。

问 u1 和 u2 在什么情况下相等?这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。

其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。

(三)植物生长的模拟植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。

因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。

具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。

最后,可以通过改变各个因素来预测植物的生长速度。

(四)自然灾害预测自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。

例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。

在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。

3.数学建模之优化模型实例

3.数学建模之优化模型实例

3.数学建模之优化模型实例3.优化模型实例数学建模资料优化建模例1 钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管都是19米长。

1) 现有一客户需要50根4米长、20根6米长和15根8米长的钢管。

应如何下料最节省?2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要1)中的三种钢管外,还需要10根5米长的钢管。

应如何下料最节省?数学建模资料优化建模问题1)的求解问题分析首先,应当确定哪些切割模式是可行的。

所谓一个切割模式,是指按照客户需要在原料钢管上安排切割的一种组合。

例如,我们可以将19米长的钢管切割成3根4米长的钢管,余料为7米显然,可行的切割模式是很多的。

其次,应当确定哪些切割模式是合理的。

通常假设一个合理的切割模式的余料不应该大于或等于客户需要的钢管的最小尺寸。

在这种合理性假设下,切割模式一共有7种,如表1所示。

数学建模资料优化建模表1 钢管下料的合理切割模式4米钢管根数6米钢管根数8米钢管根数余料(米) 4 0 0 3 3 1 0 1 2 0 1 3模式1 模式2 模式3 模式4 模式5 模式6 模式71 1 0 02 13 00 1 0 23 1 1 3数学建模资料优化建模问题化为在满足客户需要的条件下,按照哪些种合理的模式,切割多少根原料钢管,最为节省。

而所谓节省,可以有两种标准,一是切割后剩余的总余料量最小,二是切割原料钢管的总根数最少。

下面将对这两个目标分别讨论。

数学建模资料优化建模模型建立决策变量用xi 表示按照第i种模式(i=1, 2, 。

, 7) 切割的原料钢管的根数,显然它们应当是非负整数。

决策目标以切割后剩余的总余料量最小为目标,则由表1可得Min Z13x1 x2 3x3 3x4 x5 x6 3x7(32)以切割原料钢管的总根数最少为目标,则有Min Z 2 x1 x2 x3 x4 x5 x6 x7(33)下面分别在这两种目标下求解。

数学建模优化建模实例课件

数学建模优化建模实例课件

6米钢管根数 0 1 0 2 1 3 0
8米钢管根数 0 0 1 0 1 0 2
余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式
切割多少根原料钢管,最为节省?
两种 1. 原料钢管剩余总余量最小 标准 2. 所用原料钢管总根数最少
18
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模型建立
xij--第i 种货物装入第j 个货舱的重量
目标 函数 (利润)
Max Z 3100(x11 x12 x13) 3800(x21 x22 x23) 3500(x31 x32 x33) 2850(x41 x42 x43)
货舱 x11 x21 x31 x41 10 重量 x12 x22 x32 x42 16
3
货机装运
模型建立
xij--第i 种货物装入第j 个货舱的重量
约束
平衡 要求
x11 x21 x31 x41 10
x12 x22 x32 x42 16
10; 6800
16; 8700
8; 5300
条件
x13 x23 x33 x43 8
货物 供应
x11 x12 x13 18 x21 x22 x23 15
如何装运, 使本次飞行 获利最大?
1
货机装运
模型假设
每种货物可以分割到任意小; 每种货物可以在一个或多个货舱中任意分布; 多种货物可以混装,并保证不留空隙;
模型建立
决策 xij--第i 种货物装入第j 个货舱的重量(吨) 变量 i=1,2,3,4, j=1,2,3 (分别代表前、中、后仓)

1-3数学建模的简单实例

1-3数学建模的简单实例

2
≤ (1−δ j )M j ≤ δ5M5
∑x
i=1
i5
∑xi4 ≤ M4
j = 2,3 量 制 (库容 限 )
δ2 +δ3 +δ5 ≤ 2(仓库个数限制)
xij ≥ 0, i =1,2; j =1,2,⋯,55, ykj ≥ 0, k =1,2,3,4,5; j = 6,7,⋯,55,
C n = {( x 1 , x 2 , ⋯ , x n ) ( x 1 , x 2 , ⋯ , x n ) ∈ An & x n ≠ 6}
rn表示 n中所含元素的个数 A , t n表示 n中所含元素的个数 显然 n = Bn = Cn B , t
( 设( x1 , x2 ,⋯, xn−1 ) ∈ An−1 , 欲使 x1 , x2 ,⋯, xn−1 , xn ) ∈ An ,必须:
i xi = 1,2,3,4,5,6, i = 1,2,3,4,5; A = ( x1 , x2 , x3 , x4 , x5 ) xi − xi +1 ≤ 4, i = 1,2,3,4 求A
模型的递推解法
相邻两槽中弹子个数的 差异 问题的工艺要求只牵涉 n n , , 因此 可以考虑前 − 1槽已构成锁具 再添加第 个槽 时仍能构成锁
B′
C′
A
A′
D′
B
θ
C
离地面的高度为: 依次记 A 、 B、 C、 D 离地面的高度为
A
f A fB
fc
fD
A′
D′
设想方桌从BD位置旋转至 设想方桌从 位置旋转至 B ′D ′位置 记转过的角度为 θ
则四脚离地面的高度均 可由θ 唯一确定。 于是这四个高度均

数学建模建模实例

数学建模建模实例
min f = ∑∑ cij xij
s.t.
m n
n
i =1 j =1
∑x
j =1 m i =1
ij
≤ ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
ห้องสมุดไป่ตู้
5.当销量之和大于产量之和时 这类运输问 当销量之和大于产量之和时,这类运输问 当销量之和大于产量之和时 题称为销大于产的运输问题,其数学模型为 销大于产的运输问题 题称为销大于产的运输问题 其数学模型为
min f = ∑∑ cij xij
s.t.
m n
∑x
j =1 m i =1
n
i =1 j =1
ij
= ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
1.产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和 产销平衡运输问题. 问题称为产销平衡运输问题 问题称为产销平衡运输问题 2.约束条件数是产地数与销地数之和 约束条件数是产地数与销地数之和m+n 约束条件数是产地数与销地数之和 3.决策变量数是产地数与销地数之积 决策变量数是产地数与销地数之积m n 决策变量数是产地数与销地数之积 4. 产量之和大于销量之和时 有产大于销的运 产量之和大于销量之和时,有产大于销的运 输问题,其数学模型为 输问题 其数学模型为
f =21x11+25x12+7x13+15x14+51x21+51x2237x23+15x24 约束条件: 约束条件 x11+x12+x13+x14=2000 x21+x22+x23+x24=1100 x11+x21=1700 x12+x22=1100 x13+x23=200 x14+x24=100 xij ≥ 0, i=1,2; j= 1,2,3,4

简单数学建模应用例子

简单数学建模应用例子

2024/1/713Fra bibliotek建模实例
这里是要用数学方法求解,一是为了给出建模 的示例,二是因为这类模型可以解决相当广泛 的一类问题,比逻辑思索的结果容易推广。
由于问题已经理想化了,所以不必再作假设。 安全渡河问题可以视为一个多步决策过程。每 一步即船由此岸驶向彼岸或从彼岸驶回此岸, 都要对船上的人员作出决策,在保证安全的前 题下,在有限步内使人员全部过河,
x(t t) x(t) rx(t)t
2024/1/7
24
建模实例
于是x(t)满足如下方程:
dx rx dt x(0) x0
易知其解为 x(t) x0ert
(2) (3)
2024/1/7
25
建模实例
上式表明了人口增长的指数规律,此时将t离 散化,并认为r较小,则可得(1)式,即(1) 为指数增长模型的一种离散形式的近似表示。 人们发现,在地广人稀的加拿大领土上,法国 移民后代的人口比较符合指数增长模型,而同 一血统的法国本土居民人口的增长却远低于这 个模型。
2024/1/7
7
建模实例
虽然椅子只有四个距离,但是由于正方形的中 心对称性,只要设两个距离函数就行了,记A, C两脚与地面的距离之和为f( ),B,D两脚与 地面的距离之和为g( ), f( ),g ( )≥0,由假设2, f与g均是连续函数。由假设3,椅子在任何位 置至少有三只脚着地,所以对于任意的 , f( ), g( )中至 少有一个为零,当 =0时 不妨设g( )=0, f( )>0。
数学建模
简单建模实例
1
建模实例
实例一:椅子能在不平的地面上放稳吗? 把椅子往不平的地面上放,通常只有三只脚着 地,放不稳,然而只需挪动几次,就可以使四 脚同时着地,放稳了。这看来似乎与数学无关 的现象能够用数学语言以表述,并用数学工具 来证实吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档1、司乘人员配备问题某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:班次时间最少需要人数1 6:00—10:00 602 10:00—14:00 703 14:00—18:00 60418:022:050522:02:02062:06:030设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?x i班应报到第的人员解: 设为i(i?1,2,?,6),建立线性模型如下:6?x min Z?i1i?精品文档.精品文档x?x?60?61?x?x?70?12?x?x?6032?s.t.x?x?50?43?x ?x?2045?x?x?30?65?x,x,...,x?0?162LINGO程序如下:MODEL:min=x1+x2+x3+x4+x5+x6;x1+x6>=60;x1+x2>=70;x2+x3>=60;x3+x4>=50;x4+x5>=20;x5+x6>=30;END得到的解为:x1=60,x2=10,x3=50,x4=0,x5= 30,x6=0;配备的司机和乘务人员最少为150人。

精品文档.精品文档2、铺瓷砖问题要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。

一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。

试问是这人的功夫不到家还是这个问题根本无解呢?解答:0 1 0 1 00 1 0 1 0 1 01 0 1 0 1 0 1精品文档.精品文档棋子颜色问题3、然随机排成一个圆圈。

n在任意拿出黑白两种颜色的棋子共个,在两颗颜色不同的棋后在两颗颜色相同的棋子中间放一颗黑色棋子,再重复以上的放完后撤掉原来所放的棋子,子中间放一颗白色棋子,问这样重复进行下去这样放下一圈后就拿走前次的一圈棋子,过程,各棋子的颜色会怎样变化呢?分析与求解:两颗不同色的棋子中间由于在两颗同色棋子中放一颗黑色棋子,这表示。

表示,白色棋子用-1放一颗白色棋子,故可将黑色棋子用1这代表两颗同色棋子中放一颗黑色棋子;,×1=1,1×(-1)=11是因为-,这代表两颗不同色的棋子中间放一颗白色棋子。

-11×(-1)=为初始状态。

设棋子数为,a,a,a,n n12时当n=3)(舍掉偶次项状态步数a aa0 213aaaaaa 1 133221aa aaaa 2 213132aa aaaa 3 213132精品文档.精品文档aa aaaa 4 132132说明当n=3时,经过3步进入初始状态。

当n=4时步数状态(舍掉偶次项)a aa0 a2341aaaaaa aa 132211443aaaa aa aa 2 33114242aaaaaaaaaaaaaaaa 3 41142134212333422222222222222222aaaaaaaaaaaaaaaa 4 4243121213142334说明当n=4时,经过4步全变为黑色棋子。

既不循环也不全为黑子nnn222时次操作,就可以全部变为黑子,当棋子数不为结论:当棋子数为时,至多经过则一般不能全变为黑子。

Matlab程序:进行实验%棋子颜色问题演示% 1---黑子,-1 -----白子n=4; %定义棋子数times=6;%定义迭代次数x0=zeros(1,n);x1=zeros(1,n); %定义数组for i=1:nk=rand(1,1);if(k>0.5) x0(i)=1;else x0(i)=-1;endend; % 赋初值x0for i=1:timesifor k=1:n-1精品文档.精品文档x1(k)=x0(k)*x0(k+1);endx1(n)=x0(n)*x0(1);x1 %显示各次结果x0=x1;end程序语句解释:1.zeros(m,n),产生一个m×n的0矩阵,通常用于定义一个指定大小的矩阵.zeros(1,n)则产生一个全部为0的行向量。

2.rand(m,n),产生一个m×n的随机矩阵,每个元素都服从[0,1]上的均匀分布.rand(1,1)则产生一个服从[0,1]上的均匀分布的数字。

4. 选修课策略问题某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。

这些课程的编号、名称、学分、所属类别和先修课要求如表1所示。

那么,毕业时学生最少可以学习这些课程中哪些课程。

如果某个学生既希望选修课程的数量少,又希望所获得的学分多,他可以选修哪些课程?表1 课程情况模型的建立不考虑学分情形:11?x0x?表示i表示第门课程选修,门课程的编号。

设表示,…,,记i=1299ii第门课程不选。

问题的目标为选修的课程总数最少,即i9?xZ?mini1?i约束条件包括两个方面:精品文档.精品文档第一方面是课程数量的约束:每个人最少要学习2门数学课,则x?x?x?x?x?252341每个人最少要学习3门运筹学课,则x?x?x?x?x?395683每个人最少要学习2门计算机课,则有:x?x?x?x?29746第二方面是先修课程的关系约束:x?11x?,这,必须如“数据结构”的先修课程是“计算机编程”,这意味着如果74x?xx0x?没有限制)个条件可以表示为时对(注意当。

这样,所有课程的先修课要7474求可表为如下的约束“最优化方法”的先修课是“微积分”和“线性代数”,有:x?x,x?x2313“数据结构”的先修课程是“计算机编程”,有:x?x74“应用统计”的先修课是“微积分”和“线性代数”,有:x?x,x?x2515“计算机模拟”的先修课程是“计算机编程”,有:x?x76“预测理论”的先修课程是“应用统计”,有:x?x58“数学实验”是“微积分”和“线性代数”,有:x?x,x?x2991这样一来,总的0-1规划模型为:9?x min Z?i1?i精品文档.精品文档x?x?x?x?x?2?53214?x?x?x?x?x?3?35689?x?x?x?x?29764?x?x,x?x?2313?x?x?74s..t?x?x,x?x?5521?x?x76?x?x?58?x?x,x?x?9921?x,x,,x?0或1?912解得:x?1,x?1,x?1,x?1,x?1,x?1。

972316即选修课程为:微积分,线性代数.最优化方法,计算机模拟,计算机编程,数学实验。

LINGO程序为:model:sets:item/1..9/:c,x;endsetsdata:c=5,4,4,3,4,3,2,2,3;enddatamin=@sum(item(i):x(i));!课程最少;x(1)+x(2)+x(3)+x(4)+x(5)>=2;x(3)+x(5)+x(6)+x(8)+x(9)>=3;x(4)+x(6)+x(7)+x(9)>=2;x(3)<=x(1);x(3)<=x(2);x(4)<=x(7);x(5)<=x(1);x(5)<=x(2);x(6)<=x(7);x(8)<=x(5);x(9)<=x(1);x(9)<=x(2);@for(item(i):@bin(x(i)));end2 考虑学分情形:c,则增加学分最大的目标函数为:当要求学分最多时,设各门课程学分为i精品文档.精品文档9?c?x max Z iii?1这样总的双目标0-1规划模型为:9?x?min Z i11i?9?xc max Z?i2i1i?x?x?x?x?x?2?53214?x?x?x?x?x?3?35689?x?x?x?x?29674?x?x,x?x?2313?x?x?74s..t?x?x,x?x?2551?x?x76?x?x?58?x?x,x?x?9219?x,x,,x?0或1?921当把选修课程指定为6门时,对学分最大求最优,解得:x?1,x?1,x?1,x?1,x?1,x?1。

最大学分为z=22。

927513即选修课程为:微积分,线性代数.最优化方法, 应用统计,计算机编程,数学实验。

学分达到22分。

LINGO程序为:model:sets:item/1..9/:c,x;endsetsdata:c=5,4,4,3,4,3,2,2,3;enddatamax=@sum(item(i):c(i)*x(i));@sum(item(i):x(i))=6; !课程为6门; x(1)+x(2)+x(3)+x(4)+x(5)>=2;x(3)+x(5)+x(6)+x(8)+x(9)>=3;x(4)+x(6)+x(7)+x(9)>=2;x(3)<=x(1);x(3)<=x(2);x(4)<=x(7);精品文档.精品文档x(5)<=x(1);x(5)<=x(2);x(6)<=x(7);x(8)<=x(5);x(9)<=x(1);x(9)<=x(2);@for(item(i):@bin(x(i)));end精品文档.。

相关文档
最新文档