2019-2020高考数学一模试卷(附答案)

合集下载

2019-2020高考数学一模试题(附答案)

2019-2020高考数学一模试题(附答案)

2019-2020高考数学一模试题(附答案)一、选择题1.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+D .$0.3 4.4y x =-+2.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<3.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的4.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-15.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)7.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A 7B 10C 13D .48.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩B .乙可以知道四人的成绩C.乙、丁可以知道对方的成绩D.丁可以知道四人的成绩10.若双曲线22221 x ya b-=的离心率为3,则其渐近线方程为()A.y=±2x B.y=2x±C.12y x=±D.22y x=±11.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于()A.1318B.322C.1322D.31812.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题13.如图,正方体1111ABCD A B C D-的棱长为1,线段11B D上有两个动点,E F,且2EF=,现有如下四个结论:AC BE①⊥;//EF②平面ABCD;③三棱锥A BEF-的体积为定值;④异面直线,AE BF所成的角为定值,其中正确结论的序号是______.14.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.15.若x,y满足约束条件x y102x y10x0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y2=-+的最小值为______.16.在平行四边形ABCD中,3Aπ∠=,边AB,AD的长分别为2和1,若M,N分别是边BC,CD上的点,且满足CNCDBMBC=u u u u v u u u vu u u v u u u v,则AM AN⋅u u u u v u u u v的取值范围是_________.17.函数()lg12siny x=-的定义域是________.18.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.19.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____. 20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T . 22.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.在△ABC 中,a =7,b =8,cos B = –17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.24.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.25.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.2.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.3.D解析:D 【解析】【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算5.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915-=. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必2,0.过抛物线的焦点()故选B【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.7.A解析:A【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A.8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B.9.A解析:A【解析】【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.10.B解析:B 【解析】双曲线的离心率为223a b a+=,渐进性方程为b y x a =±,计算得2b a =,故渐进性方程为2y x =±.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.11.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++- ⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.二、填空题13.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5, 【解析】 【分析】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围. 【详解】解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A ,132D ⎛ ⎝⎭,设||||||||BM CN BC CD λ==u u u u r u u u ru u u r u u u r ,[]0,1λ∈,则(22M λ+3),5(22N λ-3, 所以(22AM AN λ=+u u u u r u u u r g 35)(22λ-g 22353542544λλλλλλ=-+-+=--+,因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]0,1λ∈时,[]2252,5λλ--+∈.故答案为:[2]5,【点睛】本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.17.【解析】由题意可得函数满足即解得即函数的定义域为解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x <, 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 18.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.19.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计解析:1 【解析】 【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值. 【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去). 【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 故答案为:334或34【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅ 【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =g ,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.(Ⅰ)为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)【解析】 【分析】 【详解】 (1)为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆.(2)当时,,故 的普通方程为,到的距离所以当时,取得最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程. 23.(1) ∠A =π3 (2) AC 边上的高为33 【解析】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高. 详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =43,∴sin A =3.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =3114372⎛⎫⨯-+⨯⎪⎝⎭=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=,∴AC 边上的高为33.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 24.(1) x 2+y 2-2x-2y-2=0 (2) ρsin(θ+)= 【解析】(1)∵ρ=2,∴ρ2=4,即x 2+y 2=4. ∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos +sinθsin )=2.∴x 2+y 2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=. 25.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =I , 由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r,则:()()13333,,,,33022223333,,022m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m⋅===⨯⨯u u u r u ru u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。

2019-2020高考数学一模试卷(附答案)

2019-2020高考数学一模试卷(附答案)
解析:B
【解析】
【分析】
由条件根据函数 的图象变换规律,正弦函数的图象的对称性可得 , ,由此根据 求得 的值,得到函数解析式即可求最值.
【详解】
函数 的图象向右平移 个单位后,
得到函数 的图象,
再根据所得图象关于原点对称,可得 , ,
∵ ,∴ , ,
由题意 ,得 ,
∴ ,
∴函数 在区间 的最大值为 ,
故选B.
【点睛】
本题主要考查函数 的图象变换规律,正弦函数的图象的对称性,考查了正弦函数最值的求法,解题的关键是熟练掌握正弦函数的性质,能根据正弦函数的性质求最值,属于基础题.
二、填空题
13.【解析】【分析】【详解】由得由整数有且仅有123知解得
解析:
【解析】
【分析】
【详解】
由 得
由整数有且仅有1,2,3知 ,解得
7.C
解析:C
【解析】
【分析】
先求出展开式的通项,然后求出常数项的值
【详解】
展开式的通项公式为: ,化简得 ,令 ,即 ,故展开式中的常数项为 .
故选:C.
【点睛】
本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.
8.B
解析:B
【解析】
【分析】
本道题设 ,利用双曲线性质,计算x,结合余弦定理,计算离心率,即可.
4个月
总计
A
20
35
35
10
100
B
10
30
40
20
100
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:
参考公式:回归直线方程 ,其中
【参考答案】***试卷处理标记,请不要删除

2019-2020高考数学一模试题带答案

2019-2020高考数学一模试题带答案

试题分析:由题意,这是几何概型问题,班车每 30 分钟发出一辆,到达发车站的时间总长
度为 40,等车不超过 10 分钟的时间长度为 20,故所求概率为 20 1 ,选 B. 40 2
【考点】几何概型
【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的 测度有长度、面积、体积等.
5.C
解析:C 【解析】 【分析】 在三角形中,利用正弦定理可得结果. 【详解】
解:在 ABC 中, 可得 BC AC ,
sin A sin B
即32 sin 60
32
AC ,即 sin 45
3
2
AC 2,
2
解得 AC 2 3 ,
故选 C.
【点睛】
本题考查了利用正弦定理解三角形的问题,解题的关键是熟练运用正弦定理公式.
的运算,即可求解. 【详解】
∵向量 a , b 满足 a 2 , b a b 3,∴ 22 32 2a b 3 ,解得 a b 2 .
则 a 2b
2
2
a 4b 4a b
22 432 42 4 2 .故选 D.
【点睛】 本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数 量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运 算能力,属于基础题.
8.圆 C1:x2+y2=4 与圆 C2:x2+y2﹣4x+4y﹣12=0 的公共弦的长为( )
A. 2
B. 3
C. 2 2
D. 3 2
9.已知 m, n 是两条不同的直线, , 是两个不同的平面,给出下列命题:
①若 m , m n ,则 n ;

2019-2020数学高考一模试题及答案

2019-2020数学高考一模试题及答案

2019-2020数学高考一模试题及答案一、选择题1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .72.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .25244.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( ) A .1 B .-1C .2D .-25.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-()3f x 2x y x 2x 与=-=-()f x x =与()2g x x =③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④6.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .167.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直8.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .29.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>10.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A .1,0a b <-<B .1,0a b <->C .1,0a b >-<D .1,0a b >->11.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.设25a b m ==,且112a b+=,则m =______. 15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 19.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 20.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲三、解答题21.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --6,求直线PA 与平面EAC 所成角的正弦值.22.已知()f x 是二次函数,不等式()0f x <的解集是0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为g t ,求g t 的表达式. 23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.24.如图,在边长为4的正方形ABCD中,点E,F分别是AB,BC的中点,点M在AD上,且14AM AD=,将AED,DCF分别沿DE,DF折叠,使A,C点重合于点P,如图所示2.()1试判断PB与平面MEF的位置关系,并给出证明;()2求二面角M EF D--的余弦值.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.2.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.3.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 4.B解析:B 【解析】 【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出.∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ), ∴a (a +2b ),=0, 即()2·20a a b += 即a b =﹣2∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.5.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数; ③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()011g x x==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.6.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.解析:D 【解析】解:利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D8.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.9.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例. 【详解】选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.10.C解析:C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得. 【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.11.A解析:A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.12.B解析:B 【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 解析:10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴=. 故答案为:10. 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322zy x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值.由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6.故答案为6.【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a z y xb b =-+,通过求直线的纵截距z b的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距z b取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距z b取最小值时,z 取最大值. 16.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:3+【解析】21a b +=,则1111223+3b a a b a b a b a b +=++=+≥+()()11a b+的最小值为3+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.17.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边 解析:79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈. 18.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为解析:660【解析】【分析】【详解】第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯= 种;第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种,故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为660.19.【解析】【分析】【详解】设AB=2作CO ⊥面ABDEOH ⊥AB 则CH ⊥AB ∠CHO 为二面角C−AB−D 的平面角CH=3√OH=CHcos ∠CHO=1结合等边三角形ABC 与正方形ABDE 可知此四棱锥为 解析:16【解析】【分析】【详解】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角,CH =3√,OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH ANAC AB EM AC AE AN EM====+=-∴⋅= 故EM ,AN 116=,20.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】考查类比的方法,11111222221111314283S h V Sh V S h S h ⋅⨯====,所以体积比为1∶8. 三、解答题21.(1)证明见解析(2)3 【解析】【分析】(1)先证明AC ⊥平面PBC ,然后可得平面EAC ⊥平面PBC ;(2)建立坐标系,根据二面角P AC E --可得PC 的长度,然后可求直线PA 与平面EAC 所成角的正弦值.【详解】(1)PC ⊥平面ABCD ,AC ⊂平面ABCD ,得AC PC ⊥.又1AD CD ==,在Rt ADC∆中,得AC =,设AB 中点为G ,连接CG ,则四边形ADCG 为边长为1的正方形,所以CG AB ⊥,且BC =因为222AC BC AB +=,所以AC BC ⊥,又因为BC PC C ⋂=,所以AC ⊥平面PBC ,又AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)以C 为坐标原点,分别以射线CD 、射线CP 为y 轴和z 轴的正方向,建立如图空间直角坐标系, 则()0,0,0C ,()1,1,0A ,()1,1,0B -.又设()()0,0,0P a a >,则11,,222a E ⎛⎫- ⎪⎝⎭,()1,1,0CA =,()0,0,CP a =,11,,222a CE ⎛⎫=- ⎪⎝⎭,()1,1,PA a =-. 由BC AC ⊥且BC PC ⊥知,()1,1,0m CB ==-为平面PAC 的一个法向量. 设(),,n x y z =为平面EAC 的一个法向量,则0n CA n CE ⋅=⋅=,即00x y x y az +=⎧⎨-+=⎩,取x a =,y a =-,则(),,2n a a =--,有26cos ,2m nm n m n a ⋅===⋅+,得2a =,从而()2,2,2n =--,()1,1,2PA =-. 设直线PA 与平面EAC 所成的角为θ,则sin cos ,n PAn PA n PA θ⋅==⋅22423612-+==⨯. 即直线PA 与平面EAC 所成角的正弦值为23.【点睛】本题主要考查空间平面与平面垂直及线面角的求解,平面与平面垂直一般转化为线面垂直来处理,空间中的角的问题一般是利用空间向量来求解.22.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)见解析;(26 【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==,在图2中,连接BD 交EF 于N ,连接MN ,在DPB 中,有14BN BD =,14PM PD =, MN PB ∴. PB ⊄平面MEF ,MN ⊂平面MEF ,故PB 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE 与Rt CDF ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND 中,12PM PN =,=,则22PM PN 3MN =+=.在MND 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.25.(1);(2);(3).【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望.。

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2y x =+ C . 1.234ˆyx =+ D . 1.235ˆy x =+ 2.若圆与圆222:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-113.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r4.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( ) A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈ C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈5.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞ B .(,2)-∞ C .(,0)-∞ D .(0,2)6.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .2524 7.函数2||()x x f x e -=的图象是( )A .B .C .D .8.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( )A .53B .35C .37D .57 9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1 B .1 C .2 D .410.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥;②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥;④若,m n 不平行,则m 与n 不可能垂直于同一平面.其中为真命题的是( )A .②③④B .①②③C .①③④D .①②④11.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .12.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π, B .4,33ππ⎛⎫ ⎪⎝⎭ C .45,33ππ⎛⎫ ⎪⎝⎭ D .5,23ππ⎛⎫ ⎪⎝⎭二、填空题13.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.14.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________15.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 17.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求: (1)a 和c 的值;(2)cos()B C -的值. 22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月用水量的中位数.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.25.已知0,0a b >>.(1)211ab a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A .【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.C解析:C【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,根据圆与圆外切的判定(圆心距离等于半径和)可得1=9m ⇒=,故选C. 考点:圆与圆之间的外切关系与判断3.D解析:D【解析】【分析】【详解】 试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.4.D解析:D【解析】【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D . 点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+ (0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.5.D解析:D【解析】【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<Q ,所以函数的单调减区间为(0,2),故本题选D.【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.6.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 7.A解析:A【解析】【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A .【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B ,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.8.A解析:A【解析】由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项. 9.C解析:C【解析】【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值.【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tan tan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-, 则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C .【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.10.A解析:A【解析】【分析】根据空间中点、线、面位置关系,逐项判断即可.【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行;④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题.综上,为真命题的是②③④.故选A【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.11.B解析:B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.12.C解析:C【解析】【分析】根据正弦函数的图象和性质,即可得到结论.【详解】解:在[0,2π]内,若sin x32-<,则43π<x53π<,即不等式的解集为(43π,53π),故选:C.【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.14.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z|==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭复数为a bi -.15.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使 解析:34【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案一、选择题1.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.993 4 5.16.12y1.5 4.04 7.5 1218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2xy =C .2y log x =D .()2112y x =- 2.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 45.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种B .30种C .40种D .60种6.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤7.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,8.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 9.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u uv u u u vB .1142AB AD +u u uv u u u vC .1132AB DA +u u uv u u u vD .1223AB AD -u u uv u u u v .10.已知236a b ==,则a ,b 不可能满足的关系是()A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +> 11.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .212.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.设函数()212log,0 log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.15.i是虚数单位,若复数()()12i a i-+是纯虚数,则实数a的值为 .16.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.17.设正数,a b满足21a b+=,则11a b+的最小值为__________.18.已知(13)nx+的展开式中含有2x项的系数是54,则n=_____________.19.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.20.高三某班一学习小组的,,,A B C D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.三、解答题21.如图,在四棱锥P−ABCD中,AB//CD,且90BAP CDP∠=∠=o.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,90APD∠=o,求二面角A−PB−C的余弦值.22.已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,e]x ∈恒成立 注:e 为自然对数的底数24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值.25.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)己知直线l 与曲线C 交于A 、B 两点,且7AB =a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.2.D解析:D 【解析】 【详解】 由题意可得 :22435z =+=,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.4.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.5.A解析:A 【解析】 【分析】 【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法, 甲在星期二有A 32=6种安排方法, 甲在星期三有A 22=2种安排方法, 总共有12+6+2=20种; 故选A .6.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.7.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意; 当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C .8.B解析:B 【解析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案xx.12.21一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.2. 已知抛物线的顶点在平面直角坐标系原点,焦点在轴上,若经过点,则 其焦点到准线的距离为3. 若线性方程组的增广矩阵为,解为,则4. 若复数满足:(是虚数单位),则5. 在的二项展开式中第四项的系数是 (结果用数值表示)6. 在长方体中,若,,则异面直线与所成角的大小为7. 若函数的值域为,则实数的取值范围是8. 如图,在△中,若,,,则9. 定义在上的偶函数,当时,,则在上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在与的位置,那么不同的停车位置安排共有 种(结果用数值 表示)11. 已知数列是首项为1,公差为的等差数列,前项和为,设,若数列是递减数列,则实数的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数的取值 范围是二. 选择题(本大题共4题,每题5分,共20分)13. “”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若(是虚数单位)是关于的方程的一个复数根,则( )A. ,B. ,C. ,D. ,15. 已知函数为上的单调函数,是它的反函数,点和点均在函数的图像上,则不等式的解集为( )A. B. C. D.16. 如图,两个椭圆、内部重叠区域的边界记为曲线,是曲线上的任意一点,给出下列三个判断:(1)到、、、四点的距离之和为定值(2)曲线关于直线、均对称(3)曲线所围区域面积必小于36上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知平面,,,,是的中点;(1)求与平面所成角的大小;(结果用反三角函数值表示)(2)求△绕直线旋转一周所构成的旋转体的体积;(结果保留)18. 已知函数2sin ()1x xf xx-=;(1)当时,求的值域;(2)已知△的内角的对边分别为,若,,,求△的面积;19. 某创业团队拟生产、两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2);(注:利润与投资额的单位均为万元)(1)分别将、两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10万元资金,并打算全部投入、两种产品生产,问:当产品的投资额为多少万元时,生产、两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线的左、右焦点、,过作直线交轴于点;(1)当直线平行于的一条渐近线时,求点到直线的距离;(2)当直线的斜率为1时,在的右支上是否存在点,满足?,若存在,求点的坐标,若不存在,说明理由;(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程;21. 正数数列、满足:,且对一切,,是与的等差中项,是与的等比中项;(1)若,,求、的值;(2)求证:是等差数列的充要条件是为常数数列;(3)记,当,,指出与的大小关系并说明理由;参考答案一. 填空题1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12.二. 选择题13. C 14. D 15. C 16. C三. 解答题17.(1);(2);18.(1);(2);19.(1),;(2)对投资3.75万元,对投资6.25万元,可获得最大利润万元;20.(1);(2)不存在;(3);21.(1),;(2)略;(3);。

2019-2020高考数学一模试卷含答案

2019-2020高考数学一模试卷含答案

2019-2020高考数学一模试卷含答案一、选择题1.已知在ABC V 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .34.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 5.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r7.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)8.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B C D .2 9.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .5710.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v 则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .011.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .31812.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________16.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.17.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.18.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.19.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.20.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.三、解答题21.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.23.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③ (33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?24.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.25.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项.由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.B解析:B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4.A解析:A 【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A5.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.9.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.10.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点,则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.11.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++-⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.B解析:B 【解析】 【分析】本题首先可以根据两个事件能否同时发生来判断出它们是不是互斥事件,然后通过两个事件是否包含了所有的可能事件来判断它们是不是对立事件,最后通过两个事件是否可能出现来判断两个事件是否是不可能事件,最后即可得出结果., 【详解】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件, 因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B . 【点睛】本题考查了事件的关系,互斥事件是指不可能同时发生的事件,而对立事件是指概率之和为1的互斥事件,不可能事件是指不可能发生的事件,考查推理能力,是简单题.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为解析:3【解析】【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.15.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.16.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.17.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案xx.12.21一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.2. 已知抛物线的顶点在平面直角坐标系原点,焦点在轴上,若经过点,则 其焦点到准线的距离为3. 若线性方程组的增广矩阵为,解为,则4. 若复数满足:(是虚数单位),则5. 在的二项展开式中第四项的系数是 (结果用数值表示)6. 在长方体中,若,,则异面直线与所成角的大小为7. 若函数的值域为,则实数的取值范围是8. 如图,在△中,若,,,则9. 定义在上的偶函数,当时,,则在上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在与的位置,那么不同的停车位置安排共有 种(结果用数值 表示)11. 已知数列是首项为1,公差为的等差数列,前项和为,设,若数列是递减数列,则实数的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数的取值 范围是二. 选择题(本大题共4题,每题5分,共20分)13. “”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若(是虚数单位)是关于的方程的一个复数根,则( )A. ,B. ,C. ,D. ,15. 已知函数为上的单调函数,是它的反函数,点和点均在函数的图像上,则不等式的解集为( )A. B. C. D.16. 如图,两个椭圆、内部重叠区域的边界记为曲线,是曲线上的任意一点,给出下列三个判断:(1)到、、、四点的距离之和为定值(2)曲线关于直线、均对称(3)曲线所围区域面积必小于36上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知平面,,,,是的中点;(1)求与平面所成角的大小;(结果用反三角函数值表示)(2)求△绕直线旋转一周所构成的旋转体的体积;(结果保留)18. 已知函数2sin ()1x xf xx-=;(1)当时,求的值域;(2)已知△的内角的对边分别为,若,,,求△的面积;19. 某创业团队拟生产、两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2);(注:利润与投资额的单位均为万元)(1)分别将、两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10万元资金,并打算全部投入、两种产品生产,问:当产品的投资额为多少万元时,生产、两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线的左、右焦点、,过作直线交轴于点;(1)当直线平行于的一条渐近线时,求点到直线的距离;(2)当直线的斜率为1时,在的右支上是否存在点,满足?,若存在,求点的坐标,若不存在,说明理由;(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程;21. 正数数列、满足:,且对一切,,是与的等差中项,是与的等比中项;(1)若,,求、的值;(2)求证:是等差数列的充要条件是为常数数列;(3)记,当,,指出与的大小关系并说明理由;参考答案一. 填空题1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12.二. 选择题13. C 14. D 15. C 16. C三. 解答题17.(1);(2);18.(1);(2);19.(1),;(2)对投资3.75万元,对投资6.25万元,可获得最大利润万元;20.(1);(2)不存在;(3);21.(1),;(2)略;(3);。

2019-2020数学高考一模试题(及答案)

2019-2020数学高考一模试题(及答案)

2019-2020数学高考一模试题(及答案)一、选择题1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2xy =C .2y log x =D .()2112y x =- 2.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<3.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<4.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件5.2532()x x -展开式中的常数项为( ) A .80 B .-80C .40D .-406.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组7.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,48.在ABC ∆中,60A =︒,45B =︒,BC =AC =( )A .2B C .D .9.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 10.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( )A .513x <<B .135x << C.25x <<D .55x <<11.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭ 12.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .3222± 二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.若9()a x x-的展开式中3x 的系数是84-,则a = .18.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 19.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).20.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.三、解答题21.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,0,离心率为53.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.24.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED V ,DCF V 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.25.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.2.D解析:D 【解析】 【分析】 【详解】 因为,,所以,,且,所以,,所以,故选D.3.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.4.C解析:C 【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴=所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C.5.C解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r =,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.6.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.7.B解析:B 【解析】 【分析】先求出(1)(2)0,f f <根据零点存在性定理得解. 【详解】由题得()21ln 2=ln 2201f =--<, ()22ln3=ln3102f =-->,所以(1)(2)0,f f <所以函数()()2ln 1f x x x=+-的一个零点所在的区间是()1,2. 故选B 【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.8.C解析:C 【解析】 【分析】在三角形中,利用正弦定理可得结果. 【详解】 解:在ABC ∆中, 可得sin sin BC ACA B=,即sin 60sin 45AC 鞍==解得AC = 故选C.【点睛】本题考查了利用正弦定理解三角形的问题,解题的关键是熟练运用正弦定理公式.9.A解析:A 【解析】 【分析】根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 【详解】根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件. 故选:A 【点睛】本题考查充分条件与必要条件的判断,属于基础题.10.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.11.C解析:C 【解析】 【分析】根据正弦函数的图象和性质,即可得到结论. 【详解】解:在[0,2π]内,若sin x 32-<,则43π<x 53π<, 即不等式的解集为(43π,53π), 故选:C . 【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.12.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r ,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个 解析:322+【解析】21a b Q +=,则1111223+322b a a b a b a b a b +=++=+≥+()()11a b+的最小值为322+点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.17.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二 解析:1 【解析】 【分析】先求出二项式9()a x x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭,令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令解析:22(2)10x y -+=. 【解析】 【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程. 【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径22(52)(10)10-+-=,故圆的方程为22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.19.390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390解析:390 【解析】 【分析】 【详解】 用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法. 故答案为:39020.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.三、解答题21.(1)2nn a =,21n n b =-;(2)证明见解析.【解析】 【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可.【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2), ∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q , ∴a 1q 2=8,∴q =2 ∴a n =2×2n ﹣1=2n∴()1231212222222212n nn nb +-=++++==--L ,∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++.∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.22.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知553a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用. 23.(1)方式一(2)35【解析】 【分析】(1)用总的受训时间除以60,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组2人,乙组4人.再利用列举法求得“从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率”.【详解】解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时)2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人, 则这6人中来自甲组的人数为:610230⨯=, 来自乙组的人数为:620430⨯=, 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,b c b d b e b f ,()()(),,,,,c d c e c f ,()()(),,,,,d e d f e f ,共15种,其中至少有1人来自甲组的有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,,b c b d b e b f共9种,故所求的概率93155P ==. 【点睛】本题主要考查平均数的计算,考查分层抽样,考查古典概型的计算方法,属于中档题. 24.(1)见解析;(2)13【解析】 【分析】(1)在正方形ABCD 中,有AB AD ⊥,CD BC ⊥,在三棱锥M DEF -中,可得MD MF ⊥,MD ME ⊥,由线面垂直的判定可得MD ⊥面MEF ,则MD EF ⊥; (2)由E 、F 分别是AB 、BC 边的中点,可得1BE BF ==,求出三角形MEF 的面积,结合()1及棱锥体积公式求解. 【详解】(1)证明:Q 在正方形ABCD 中,AB AD ⊥,CD BC ⊥,∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ⋂=,MD ∴⊥面MEF ,则MD EF ⊥;(2)解:E Q 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点, 1BE BF ∴==,111122MEF BEF S S V V ∴==⨯⨯=,由(1)知,111123323M DEF MEF V S MD -=⋅=⨯⨯=V .【点睛】本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题. 25.(1)证明见解析;(2)112. 【解析】 【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ; (2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积. 【详解】 连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点, ∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点, ∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F , ∴AD ⊥平面PBF ,∵PB ⊂平面PBF , ∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD , ∴BF ⊥平面PAD ,又BF ⊂平面ABCD , ∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD , 此时CG=13CP, ∴四面体D CEG -的体积11131122338312D CEG G CED CED V V S GH PF V --==⋅=⨯⨯⨯=.所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.。

2019-2020数学高考一模试题(及答案)

2019-2020数学高考一模试题(及答案)

2019-2020数学高考一模试题(及答案)一、选择题1.2532()x x-展开式中的常数项为( )A .80B .-80C .40D .-402.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .193.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形4.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .425.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±6.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④7.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确8.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<9.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .0 10.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .211.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-12.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件B .互斥但不对立事件C .不可能事件D .以上都不对二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 14.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .15.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.16.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.17.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.20.已知向量a r与b r的夹角为60°,|a r|=2,|b r|=1,则|a r+2 b r|= ______ .三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.22.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案

2019-2020数学高考一模试题附答案一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A .12B .13C .23D .343.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对4.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r5.设函数()()21,04,0x log x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )A .9B .11C .13D .15 6.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .77.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .138.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值09.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>10.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x …或2x -„C .0x <或2x >D .12x -„或3x …11.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A .–4B .–2C .4D .212.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.在ABC V 中,60A =︒,1b =3sin sin sin a b cA B C++=++________.15.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)16.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.18.函数2()log 1f x x =-________.19.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.23.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 24.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模.详解:()()()()1i1i1i2i2i 1i1i1iz---=+=+ +-+i2i i=-+=,则1z=,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B【解析】试题分析:由题意知本题是一个古典概型概率的计算问题.从这4张卡片中随机抽取2张,总的方法数是246C=种,数学之和为偶数的有13,24++两种,所以所求概率为13,选B.考点:古典概型.3.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x坐标相同,而y、z坐标互为相反数,所以两点关于x轴对称.考点:空间两点间的距离.4.D解析:D【解析】【分析】【详解】试题分析:A项中两直线a b,还可能相交或异面,错误;B项中两直线a b,还可能相交或异面,错误;C项两平面αβ,还可能是相交平面,错误;故选D.5.B解析:B【解析】【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案.【详解】∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩, ∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B . 【点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.6.B解析:B 【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.7.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.8.D解析:D 【解析】 【分析】 【详解】因为()f x 为奇函数,且在[1,3]上为增函数,且有最小值0, 所以()f x 在[3,1]--上为增函数,且有最大值0,选D.9.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x …,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.D解析:D试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.12.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在解析:3【解析】【分析】由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】60A=︒Q,1b=11sin1222bc A c==⨯⨯⨯,解得4c=,由余弦定理可得:a===,所以sin sin sin sin3a b c aA B C A++===++,故答案为:3【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为解析:660【解析】【分析】【详解】第一类,先选1女3男,有316240C C=种,这4人选2人作为队长和副队有2412A=种,故有4012480⨯=种;第二类,先选2女2男,有226215C C=种,这4人选2人作为队长和副队有2412A=种,故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为660.16.2【解析】试题分析:因为四边形是正方形所以所以直线的方程为此为双曲线的渐近线因此又由题意知所以故答案为2【考点】双曲线的性质【名师点睛】在双曲线的几何性质中渐近线是其独特的一种性质也是考查的重点内容解析:2【解析】试题分析:因为四边形OABC 是正方形,所以45AOB ∠=︒,所以直线OA 的方程为y x =,此为双曲线的渐近线,因此a b =,又由题意知22OB =,所以22222(22)a b a a +=+=,2a =.故答案为2.【考点】双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.17.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使解析:34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)

2019-2020数学高考一模试题(带答案)一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1123.若43i z =+,则zz=( )A .1B .1-C .4355i + D .4355i - 4.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+D .$0.3 4.4y x =-+5.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)6.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④7.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)8.函数2||()x x f x e -=的图象是( )A .B .C .D .9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 310.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<< 11.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 12.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .﹣2C .6D .2二、填空题13.复数()1i i +的实部为 .14.已知复数z=1+2i (i 是虚数单位),则|z|= _________ . 15.371()x x+的展开式中5x 的系数是 .(用数字填写答案)16.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .17.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2AB BC =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.20.已知1OA =u u u r ,3OB =u u u r ,0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB =+u u u r u u u r u u u r ,(,)m n R ∈,则mn =__________.三、解答题21.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.22.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.23.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C --的余弦值为63,求PF 的长度. 24.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3.D解析:D 【解析】 【详解】 由题意可得 :22435z =+=,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.4.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.5.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.7.D解析:D 【解析】 【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<Q ,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.8.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.9.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.10.B解析:B 【解析】 【分析】根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.【详解】由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为正,()()032f f ''∴<<,()()()()323232f f f f --=-Q ,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线的斜率,由图象可知()()()()3322f f f f ''<-<,()()()()03322f f f f ''∴<<-<.故选:B . 【点睛】本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.11.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.12.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.二、填空题13.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.14.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.15.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用 解析:35【解析】由题意,二项式371()x x+展开的通项372141771()()r rr r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.考点:1.二项式定理的展开式应用.16.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积 解析:2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.17.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.18.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A在跳舞B 在打篮球∵③C在散步是A在跳舞的充分条件∴C在散步则D在画画故答案为画画解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画19.5﹣【解析】【分析】设圆心为OAB中点为D先求出再求PM的最小值得解【详解】设圆心为OAB中点为D由题得取AC中点M由题得两方程平方相减得要使取最小值就是PM最小当圆弧AB的圆心与点PM共线时PM最解析:5﹣13【解析】【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,再求PM 的最小值得解.【详解】设圆心为O,AB 中点为D, 由题得22sin 2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC ⎧+=⎨-=⎩u u u v u u u v u u u u v u u u v u u u v u u u v , 两方程平方相减得2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r , 要使PC PA ⋅u u u r u u u r 取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,22DM ∴==, 所以PM 有最小值为2, 代入求得PC PA ⋅u u u r u u u r 的最小值为5﹣故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 20.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3【解析】 因为30AOC ∠=o,所以cos cos30OC OA AOC OC OA⋅∠===⋅o u u u r u u u r u u u r u u u r,从而有2=u u u r u u u r u u u r.因为1,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r=,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3m n= 三、解答题21.见解析.【解析】试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证.试题解析:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x a a x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x a x -=+,且001x a <<,所以002011x x -<<+,即0122x <<, 与假设00x <矛盾,故方程()0f x =没有负根.考点:函数单调性的定义及反证法等有关知识的综合运用.22.(1)2n n a =,21n n b =-;(2)证明见解析.【解析】【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可. 【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q ,∴a 1q 2=8,∴q =2∴a n =2×2n ﹣1=2n∴()1231212222222212n n n nb +-=++++==--L , ∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++.∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.23.(1)见解析;(2)3【解析】【分析】(1)先证明AB AF ⊥,又平面ABEF ⊥平面ABCD ,即得AF ⊥平面ABCD ;(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系,由题得cos ,m AB m AB m AB⋅===u u u v u u u v u u u v ,解方程即得解.【详解】 (1)证明:∵90BAF ∠=︒,∴AB AF ⊥,又平面ABEF ⊥平面ABCD ,平面ABEF I 平面ABCD AB =,AF ⊂平面ABEF , ∴AF ⊥平面ABCD .(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系, 则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D ,()0,0,1F ,∴()0,2,1FD u u u v =-,()1,2,0AC =u u u v ,()1,0,0AB =u u u r由题知,AB ⊥平面ADF , ∴()1,0,0AB =u u u r 为平面ADF 的一个法向量,设()01FP FD λλ=≤<u u u v u u u v ,则()0,2,1P λλ-,∴()0,2,1AP λλ=-u u u v , 设平面APC 的一个法向量为(),,x y z =m ,则00m AP m AC ⎧⋅=⎨⋅=⎩u u u v u u u v , ∴()21020y z x y λλ⎧+-=⎨+=⎩,令1y =,可得22,1,1m λλ⎛⎫=- ⎪-⎝⎭,∴cos ,m AB m AB m AB ⋅===u u u v u u u v u u u v ,得13λ=或1λ=-(舍去),∴PF =【点睛】本题主要考查空间垂直关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.24.(1)见解析; (2)见解析.【解析】【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明.【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC.又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP.(2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG 为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG 为矩形.【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题.25.(1)见证明;(2)见解析【解析】【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CM CP =λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解.【详解】(1)证明:因为四边形ABCD 为直角梯形,且//AB DC , 2AB AD ==,2ADC π∠=, 所以22BD = 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面(2)由(1)得平面ABCD ⊥平面PBD ,设E 为BD 的中点,连结PE ,因为6PB PD ==, 所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,平面ABCD I 平面PBD BD =, PE ⊥平面ABCD .如图,以A 为原点分别以AD u u u r ,AB u u u r 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P ,假设存在(,,)M a b c 满足要求,设(01)CM CP λλ=≤≤,即CM CP λ=u u u u r u u u r , 所以(2-,4-3,2)λλλM , 易得平面PBD 的一个法向量为(2,2,0)BC =u u u v .设(,,)n x y z =r 为平面ABM 的一个法向量,(0,2,0)AB =u u u r , =(2-,4-3,2)λλλu u u u r AM由00n AB n AM ⎧⋅=⎨⋅=⎩u u u v v u u u u v v 得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-r . 因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-, 解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.。

2019-2020年高三第一次考试数学 含答案

2019-2020年高三第一次考试数学 含答案

2019-2020年高三第一次考试数学含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,集合,则A. B. C. D.2.已知函数的定义域为,则函数的定义域为A. B. C. D.3.下列函数中,在其定义域内,既是奇函数又是减函数的是A. B. C. D.4.已知点在角的终边上,且,则的值为A. B. C. D.5.下列说法错误的是A.若,则;B.“”是“”的充分不必要条件;C.命题“若,则”的否命题是:“若,则”;D.已知,,则“”为假命题.6.设函数的定义域为,是的极小值点,以下结论一定正确的是A.B.是的极大值点C.是的极小值点D.是的极大值点7.设,函数的导数是,若是偶函数,则A. 1B. 0C.D.8.已知函数,若,则实数A. B. C. D. 或9.已知函数的图像是下列四个图像之一,且其导函数的图像如右图所示,则该函数的图像是10.函数()sin()(0)f x x ωϕω=+>的图象如图所示,为了得到函数的图象,只需将的图象A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度11.定义在上的函数,是它的导函数,且恒有成立,则A .B .C .D .12.函数与函数的图象所有交点的横坐标之和为A .8B .9C .16D .17第Ⅱ卷二、填空题 (本大题共4小题,每小题5分,共20分.把答案填在答题中横线上)13.已知,且,则 .14.已知奇函数的图象关于直线对称,当时,,则 .15.一物体沿直线以速度的单位为:秒,的单位为:米/秒的速度做变速直线运动,则该物体从时刻秒至时刻秒间运动的路程是 .16.若实数满足222(3ln )(2)0b a a c d +-+-+=,则的最小值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知.(Ⅰ)求的值;(Ⅱ)若是第二象限的角,化简三角式,并求值.18.(本小题满分12分)提高立交桥的车辆通行能力可改善整个城市的交通状况。

2019-2020数学高考一模试卷及答案

2019-2020数学高考一模试卷及答案

2019-2020数学高考一模试卷及答案一、选择题1.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1 C .2 D .32.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 4.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A .43y x =±B .34y x =?C .35y x =±D .53y x =± 5.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A .310 B .310-C .433-D .343- 6.已知向量()3,1a =r ,b r 是不平行于x 轴的单位向量,且3a b ⋅=r r ,则b =r ( ) A .31,2⎛⎫ ⎪ ⎪⎝⎭ B .13,2⎛⎫ ⎪ ⎪⎝⎭ C .133,4⎛⎫ ⎪ ⎪⎝⎭ D .()1,07.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 8.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( )A .甲B .乙C .丙D .丁9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

2019-2020高考数学一模试卷及答案

2019-2020高考数学一模试卷及答案

2019-2020高考数学一模试卷及答案一、选择题1.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r2.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .33.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙4.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1005.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ0 1 2P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小7.下列四个命题中,正确命题的个数为( ) ①如果两个平面有三个公共点,那么这两个平面重合; ②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ=I ,则M l ∈; ④空间中,相交于同一点的三直线在同一平面内. A .1B .2C .3D .48.若,αβvv 是一组基底,向量γv=x αu v +y βu v(x,y ∈R),则称(x,y)为向量γv在基底αu v ,βuv 下的坐标,现已知向量αu v 在基底p u v =(1,-1), q v =(2,1)下的坐标为(-2,2),则αu v 在另一组基底m u v=(-1,1), n v=(1,2)下的坐标为( ) A .(2,0) B .(0,-2) C .(-2,0) D .(0,2) 9.下列各组函数是同一函数的是( )①()f x =与()f x =()f x y ==()f x x =与()g x =③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④10.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件11.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定12.在ABC ∆中,A 为锐角,1lg lg()lgsin b A c+==-,则ABC ∆为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形二、填空题13.设25a b m ==,且112a b+=,则m =______.14.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.若9()a x x-的展开式中3x 的系数是84-,则a = .17.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.18.若,满足约束条件则的最大值 .19.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是2sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值.24.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.25.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.2.C解析:C 【解析】函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥Q 故选C3.A解析:A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.5.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915-=. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q , 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++,1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑7.A解析:A 【解析】 【分析】 【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确; 若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的, 故选A .8.D解析:D 【解析】 【分析】 【详解】由已知αu r=-2p u r +2q r =(-2,2)+(4,2)=(2,4), 设αu r =λm u r +μn r=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得02λμ=⎧⎨=⎩∴αu r =0m u r +2n r ,∴αu r在基底m u r , n r 下的坐标为(0,2). 9.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数; ③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()011g x x==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.10.A解析:A 【解析】 【分析】当3λ=-时,两条直线是平行的,但是若两直线平行,则3λ=-或1λ=,从而可得两者之间的关系. 【详解】当3λ=-时,两条直线的方程分别为:6410x y ++=,3220x y +-=,此时两条直线平行;若两条直线平行,则()()2161λλλ⨯-=--,所以3λ=-或1λ=,经检验,两者均符合,综上,“3λ=-”是“直线()211x y λλ+-=与直线()614x y λ+-=平行” 的充分不必要条件,故选A. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.11.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.12.D解析:D 【解析】 【分析】 【详解】试题分析:由1lg lg()lgsin b A c+==-lglg 22b bc c =⇒=且sin A =A 为锐角,所以45A =o ,由b =,根据正弦定理,得sin sin sin(135)cos sin 22B C B B B ==-=+o ,解得cos 090B B =⇒=o ,所以三角形为等腰直角三角形,故选D. 考点:三角形形状的判定.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴=. 故答案为:10. 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.15.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去解析:【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二解析:1 【解析】 【分析】先求出二项式9()ax x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.17.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使解析:.【解析】()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-Q 函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2ax g x a x x-=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a <<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a=时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 18.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx 是可行域内一点与原点连线的斜率由图可知点A (13)与原点连线的斜率最大故yx 的最大值为3考点:线性规划解法 解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法19.【解析】【分析】作出立体图利用直角三角形中的三角函数关系求得对应的边长再利用余弦定理求解即可【详解】如图所示在中∵∴在中∵∴在中∴故答案为:【点睛】本题主要考查了解三角形求解实际情景中的角度问题依据 解析:30°【解析】 【分析】作出立体图,利用直角三角形中的三角函数关系求得对应的边长,再利用余弦定理求解cos ACB ∠即可. 【详解】如图所示,在Rt ACD V 中,∵10,45AC m DAC =∠=︒,∴10DC m = 在Rt DCB △中,∵30DBC ∠=︒,∴103BC m =. 在ABC V 中,)22210103103cos 210103ACB +-∠==⨯⨯,∴30ACB ∠=︒.故答案为:30° 【点睛】本题主要考查了解三角形求解实际情景中的角度问题,依据题意正确画出立体图形,确定边的关系再利用余弦定理求解即可.属于基础题.20.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同解析:16【解析】 【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果. 【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =g ,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n n n n n n n n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n n n n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.见解析. 【解析】试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证. 试题解析:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x aa x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x ax -=+,且001x a <<,所以002011x x -<<+,即0122x <<, 与假设00x <矛盾,故方程()0f x =没有负根.考点:函数单调性的定义及反证法等有关知识的综合运用. 23.(110y --=,22(1)(1)2x y -+-=;(2)1. 【解析】 【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin x y x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果. 【详解】(1)将直线l 的参数方程消去参数t 并化简,得 直线l10y --=.将曲线C的极坐标方程化为2sin 22ρθθ⎛⎫=+ ⎪⎪⎝⎭. 即22sin 2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=. (2)将直线l 的参数方程代入()()22112x y -+-=中,得2211222t⎫⎛⎫-+-=⎪⎪⎪⎝⎭⎝⎭.化简,得(2130t t-++=.∵Δ>0,∴此方程的两根为直线l与曲线C的交点A,B对应的参数t1,t2.由根与系数的关系,得121t t+=,123t t=,即t1,t2同正.由直线方程参数的几何意义知,12121PA PB t t t t+=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cosρθ和sinρθ换成x和y即可.24.(1)min()3f x=,此时x∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R+-=表示x R∀∈,()1f x ax>-+,令()1g x ax=-+,根据几何意义可得()y f x=的图像恒在()y g x=图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x-++≥--+=,当且仅当()()210x x-+≤,即12x-≤≤时,上式“=”成立,故函数()21f x x x=++-的最小值为3,且()f x取最小值时x的取值范围是[]1,2-.(2)因为(){}10x f x ax R+-=,所以x R∀∈,()1f x ax>-+.函数()21f x x x=-++化为()21,13,1221,2x xf x xx x-+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax=-+,其图像为过点()0,1P,斜率为a-的一条直线.如图,()2,3A,()1,3B-.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<, 所以a 的范围为()1,2-. 【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用. 25.(Ⅰ)0.55;(Ⅱ)详见解析 【解析】 【分析】 【详解】解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5===P D P E P F ,()0.4,()0.5,()0.5∴===P D P E P F . 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()ξ==++P P DEF P DEF P DEF(1)0.40.50.50.40.50.50.60.50.50.35ξ==⨯⨯+⨯⨯+⨯⨯=P (3)()0.60.50.50.15P P DEF ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+== 所以ξ的分布列为:因此。

2019-2020年高三第一次模拟考试数学试题 含答案

2019-2020年高三第一次模拟考试数学试题  含答案

2019-2020年高三第一次模拟考试数学试题含答案一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得满分,否则一律得零分.】1.复数的虚部为.2.设函数,则.3.已知,,则等于.4.抛物线上一点M到焦点的距离为1,则点M的纵坐标为.5.已知无穷数列满足,且,记为数列的前n项和,则.6.已知,且,则的最大值为.7.已知圆锥的母线,母线与旋转轴的夹角,则圆锥的表面积为.8.若的二项展开式中的第9项是常数项,则.9.已知A,B分别是函数在轴右侧图像上的第一个最高点和第一个最低点,且,则该函数的最小正周期是.10.将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.11.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数的图像恰好经过k个格点,则称函数为k阶格点函数.已知函数:①;②;③;④.其中为一阶格点函数的序号为(注:把你认为正确论断的序号都填上)12.已知AB为单位圆O的一条弦,P为单位圆O上的点.若的最小值为,当点P在单位圆上运动时,的最大值为,则线段AB的长度为.二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.下列函数在其定义域内既是奇函数又是增函数的是A.B.C.D.14.设,则“”是“且”的A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件15.如图,已知椭圆C的中心为原点O,为的左焦点,为上一点,满足且,则椭圆的方程为A.B.C.D.16.实数a、b满足且,由a、b、、按一定顺序构成的数列A.可能是等差数列,也可能是等比数列B.可能是等差数列,但不可能是等比数列C.不可能是筹差数列,但可能是等比数列D.不可能是等差数列,也不可能是等比数列三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分.在正三棱柱中,,求:(1)异面直线与所成角的大小;(2)四棱锥的体积.18.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.在一个特定时段内,以点D为中心的7海里以内海域被设为警戒水域.点D正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距海里的位置B处,经过40分钟又测得该船已行驶到点A北偏东(其中,)且与点A相距海里的位置C处.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.19.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知点、为双曲线的左、右焦点,过作垂直于x轴的直线,在轴上方交双曲线C于点M,且.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为、,求的值.20.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分7分.设(为实常数).(1)当时,证明:不是奇函数;(2)若是奇函数,求a与b的值;(3)当是奇函数时,研究是否存在这样的实数集的子集D,对任何属于D的、c,都有成立?若存在试找出所有这样的D;若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列,满足,其中是数列的前n项和.(1)若数列是首项为,公比为的等比数列,求数列的通项公式;(2)若,,求证:数列满足,并写出数列的通项公式;(3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.崇明县xx第一次高考模拟考试试卷参考答案及评分标准一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 2;2. -2;3. 1-1,1];4. ;5. 4;6. ;7. 8. 12; 9. ; 10. 24; 11. ; 12..二、选择题(本大题共有4题,满分20分)13. C; 14.B; 15.C; 16.B.三、解答题(本大题共有5题,满分76分)17.解:(1),是异面直线与所成角............................2分在中,111,BC A B AC ===2221111cos 2BC CA BA BCA BC CA +-∴∠==⋅,........................5分异面直线与所成角大小为................7分(2)111ABC A B C ABC V S AA -=⋅=分1113A ABC ABC V S AA -=⋅=.........................................13分所以111111A B BCC ABC A B C A ABC V V V ---=-=分18.解:(1)因为,,所以cos θ==分(2)如图所示,以为原点建立平面直角坐标系,设点的坐标分别是 , 由题意,得............................8分22cos(45)30sin(45)20x AC y AC θθ=⋅︒-=⎧⎨=⋅︒-=⎩..................................10分 所以直线的方程为.........................12分所以船会进入警戒水域...............................14分19.解:(1)设的坐标分别为 因为点在双曲线上,所以,所以...........2分中,因为,所以,...........5分由双曲线定义,得:...........5分所以双曲线的方程为:...........6分(2)由(1)知,双曲线的两条渐近线分别为120,0l y l y -=+=.......8分 设,则到两条渐近线的距离分别为,.......10分设两条渐近线的夹角为,则两个向量夹角也为,其中..........12分又点在双曲线上,所以 所以12122||||cos 9PP PP PP PP θ⋅=⋅=..................................14分 20.解:(1)证明:,,所以,所以不是奇函数............................3分 (2)是奇函数时,,即对定义域内任意实数都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数都成立...........................................5分所以所以或 .经检验都符合题意........................................8分(3)当时,121212212)(1++-=++-=+x x x x f , 因为,所以,,所以.......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数成立; 所以可取=对任何、c 属于,都有成立........12分 当时,)0211212212)(1≠-+-=---=+x x f x x x (, 所以当时,;当时, .............14分1)因此取,对任何、c 属于,都有成立.2)当时,,解不等式得:.所以取,对任何属于的、c ,都有成立.....16分21.(1)解:因为数列是首项为,公比为的等比数列所以,.......................3分所以.......................................4分(2)若,则,所以所以112(1)2n n n a n a na ++=+-+,即........5分所以所以211(1)(1)n n n n na n a n a na +++--=+-所以.......................................7分又由,得:..............................8分所以数列是首项为2公差为1的等差数列所以.......................................10分(3)证明:由(2)知,对于给定的,若存在,且,使得,只需.......................................12分只需......................................14分取,则......................................16分所以对于数列中的任意一项,都存在与,使得,即数列中的任意一项总可以表示成该数列其他两项之积................18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.C
解析:C 【解析】 【分析】
当 x 0 时, y f (x) ax b x ax b (1 a)x b 最多一个零点;当 x 0 时,
y f (x) ax b 1 x3 1 (a 1)x2 ax ax b 1 x3 1 (a 1)x2 b ,利用导数研
34
81
35
84
36
77
37
81
38
76
39
85
40
89
用系统抽样法从 40 名用户中抽取容量为 10 的样本,且在第一分段里随机抽到的评分数据 为 92. (1)请你列出抽到的 10 个样本的评分数据;
(2)计算所抽到的 10 个样本的均值 x 和方差 s2 ;
(3)在(2)条件下,若用户的满意度评分在 x s, x s 之间,则满意度等级为“ A
32
32
y x2 (a 1)x ,
当 a 1 0 ,即 a 1时, y 0 , y f (x) ax b 在[0 , ) 上递增,
y f (x) ax b 最多一个零点.不合题意;
当 a 1 0 ,即 a 1时,令 y 0 得 x [a 1 , ) ,函数递增,令 y 0 得 x[0 , a 1) ,函数递减;函数最多有 2 个零点;
x2
的项为 C62x2
1 x2
C64
x4
则 1
1 x2
1
x6
展开式中
x2
的系数为 C62
C64
15 15
30
故选:C
【点睛】
本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.
3.A
解析:A
【解析】
【分析】
利用逐一验证的方法进行求解.
【详解】
若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故 3 人成绩由高到
2019-2020 高考数学一模试卷(附答案)
一、选择题
1.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是 ()
A.①③④
B.②④
C.②③④
D.①②③
2. 1
1 x2
1
x6 展开式中
x2
的系数为(

A.15
B.20
C.30
D.35
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
解析:A 【解析】 【分析】
确定函数在定义域内的单调性,计算 x 1 时的函数值可排除三个选项.
【详解】
x 0 时,函数为减函数,排除 B, 1 x 0时,函数也是减函数,排除 D,又 x 1 时, y 1 ln 2 0 ,排除 C,只有 A 可满足.
故选:A. 【点睛】 本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调 性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最 后剩下的一个即为正确选项.
32
32
究函数的单调性,根据单调性画函数草图,根据草图可得.
【详解】
当 x 0 时, y f (x) ax b x ax b (1 a)x b 0 ,得 x b ; 1 a
y f (x) ax b 最多一个零点;
当 x 0 时, y f (x) ax b 1 x3 1 (a 1)x2 ax ax b 1 x3 1 (a 1)x2 b ,
19.从 2 位女生, 4 位男生中选 3 人参加科技比赛,且至少有1位女生入选,则不同的选法
共有_____________种.(用数字填写答案)
20.若函数 f (x) x2 x 1 a ln x 在 (0, ) 上单调递增,则实数 a 的最小值是
__________.
三、解答题
21.在 ABC 中,内角 A,B,C 的对边 a,b,c,且 a c ,已知 BA BC 2 , cos B 1 , b 3 ,求:
级”。试应用样本估计总体的思想,根据所抽到的 10 个样本,估计该地区满意度等级为
“ A 级”的用户所占的百分比是多少? (参考数据: 30 5.48, 33 5.74, 35 5.92 )
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】 【分析】 分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面 既不过体对角线也不平行于任一侧面时,进行判定,即可求解.
【详解】 由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时
得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得 ②.故选 A. 【点睛】 本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征 是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.
3
(1)a 和 c 的值;
(2) cos(B C) 的值.
22.在平面直角坐标系
xOy
中,已知直线
l
的参数方程为
x 1t 2
( t 为参数).在以
y
3 t 1 2
坐标原点 O 为极点, x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲
线 C 的极坐标方程是 2
2sin
4
数字是________.
14.已知圆锥的侧面展开图是一个半径为 2cm ,圆心角为 2 的扇形,则此圆锥的高为 3
________ cm .
15.函数 f x sin2x
3cosx
3 4

x
0,
2
)的最大值是__________.
16.等边三角形 ABC 与正方形 ABDE 有一公共边 AB ,二面角 C AB D 的余弦值为
【解析】
【详解】
由题设可知该函数的最小正周期 T 8 2 6 ,结合函数的图象可知单调递减区间是
[ 2 4 6k, 4 8 6k](k Z ) ,即[3 6k, 6 6k](k Z) ,等价于6k 3,6k ,应选答
2
2
案 D.
点睛:解答本题的关键是充分利用题设中的有效信息“函数 f x Asin x
用户编号 评分
用户编号 评分
用户编号 评分
用户编号 评分
1
78
2
73
3
81
4
92
5
95
6
85
7
79
8
84
9
63
10
86
11
88
12
86
13
95
14
76
15
97
16
78
17
88
18
82
19
76
20
89
21
79
22
83
23
72
24
74
25
91
26
66
27
80
28
83
29
74
30
82
31
93
32
78
33
75
( A 0, 0) 的图象与直线 y a(0 a A) 的三个相邻交点的横坐标分别是
2,4,8”.结合图像很容易观察出最小正周期是 T 8 2 6 ,进而数形结合写出函数的
单调递减区间,从而使得问题获解.
5.B
解析:B 【解析】
等比数列的性质可知 a2 a6 a42 16 ,故选 B . 6.A
7.B
解析:B 【解析】
1 3 3
3 , cos A 3 ,
sin A sin B sin 2 A 2sin Acos A
2
所以12
2
3 c2 2c 3
3 ,整理得 c2 3c 2 0, 求得 c 1或 c
2.
2
若 c 1,则三角形为等腰三角形, A C 300 , B 600 不满足内角和定理,排除.
3 , M,N 分别是 AC,BC 的中点,则 EM,AN 所成角的余弦值等于 . 3 17.在极坐标系中,直线 cos sin a(a 0) 与圆 2cos 相切,则 a __________.
18.已知直线 :
与圆
交于 两点,过 分别作 的垂线与
轴交于 两点.则
_________.
【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.
当求出 cos A 3 后,要及时判断出 A 300, B 600 ,便于三角形的初步定型,也为排 2
除 c 1提供了依据.如果选择支中同时给出了1或 2 ,会增大出错率. 8.C
解析:C 【解析】 由条件得:PA⊥BC,AC⊥BC 又 PA∩AC=C, ∴BC⊥平面 PAC,∴∠PCA 为二面角 P-BC-A 的平面角.在 Rt△PAC 中,由 PA=AC 得 ∠PCA=45°,故选 C. 点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平 面角所在平面.
ACB 2 3
(I)求证: QB1 / / 平面 A1ACC1
(Ⅱ)求二面角 A1 BB1 C 的余弦值.
24.若不等式 ax2
5x 2
0 的解集是 x
1 2
x
2
,求不等式 ax2
5x a2
1
0

解集.
25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营 公司为了了解某地区用户对其所提供的服务的满意度,随机调查了 40 个用户,得到用户的 满意度评分如下:
.
(1)求直线 l 的普通方程与曲线 C 的直角坐标方程;
(2)设点 P0, 1 .若直 l 与曲线 C 相交于两点 A, B ,求 PA PB 的值.
相关文档
最新文档