材料力学考研复习笔记
孙训方《材料力学》第6版笔记课后习题考研真题详解
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解
攻重浩精研学习网提供资料
第1章绪论及基本概念
1.1复习笔记
材料力学是固体力学的一个分支,是研究结构构件和机械零件承载能力的基础学科。
其主要任务是研究材料及构件在外力作用下的变形、受力和失效的规律,为合理设计构件提供有关强度、刚度、稳定性分析的理论和方法。
本章主要介绍了材料力学的基本概念,是整个材料力学内容的一个浓缩,后面章节的叙述都是本章的展开和延伸。
一、材料力学的任务(见表1-1-1)
表1-1-1材料力学的任务
二、可变形固体的性质及其基本假设(见表1-1-2)
表1-1-2可变形固体的性质及其基本假设
三、杆件变形的基本形式(见表1-1-3)
表1-1-3杆件变形的基本形式。
材料力学考研复习笔记
材料力学考研复习笔记第一章绪论及基本概念一、材料力学的任务构件正常工作要求:强度、刚度、稳定性;合理选材、降低消耗、节约资金、减轻自重;材料力学要合理解决以上两方面的矛盾。
二、基本假设连续性假设:变形后(正常工作状态下)材料的主要性质不变,仍满足几何相容条件;均匀性假设:可取相应的单元体代替整体;各向同性假设:可以用简单的函数表达所要研究的问题。
材料力学的力学模型应满足以上三个假设。
另外在初级材料力学阶段,还有小变形假设、弹性变形假设。
三、研究的基本方法力的研究:静力学方面的知识运动(变形)的研究:几何学方面力与运动的关系研究:物理学方面四、杆件变形的基本形式轴向拉伸和压缩、剪切变形、扭转变形、弯曲变形。
五、体会绪论是一本书最显层次的部分,要完整地涵盖整本书或学科的最主要内容,虽然看不出什么具体的东西,但是已经讲清楚了学科的各个方面,之后的任何一章都是以此为出发点的。
因此这是全书最重要的三个章节之一,这一章是通过给出该学科的宏观的概念来起作用的,这与第二章不同。
所以对材料力学的学习,建议要从绪论开始再从绪论结束,这样才能使自己的把握具有层次。
第二章轴向拉伸和压缩首先要说明一点,根据前面知识框架的叙述,本章是《材料力学》最重要的章节之一,希望引起读者的重视。
这一章通过最简单的变形形式(轴向拉压)的介绍,给出了材料力学的大部分“微观”概念,这些概念对于其他的变形来说是大同小异的,所以介绍其他几种变形的章节就没有最重要章节的身份。
鉴于本章的重要性,记述时比较详细,以后各种变形大致均可按照这一章的思路进行学习。
一、基本概念及关系1、外力内力(轴力(图))应力强度条件以上公式所涉及的概念也是材料力学各种基本变形所共有的,区别只是计算方法和具体的意义有所不同,但统统可以归为同一种概念。
箭头则表示有已知条件推出未知条件(所求)。
其中所用到的截面法也是材料力学中的重要方法,可以代表一定的材料力学的思想,也可以反映材料力学的精度要求。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(弯曲应力)【圣才出品】
对于圆形截面
W Iz πd 4 / 64 πd 3 d / 2 d / 2 32
对于环形截面
W D3 1 4 32
式中,α=d/D,d为内径,D为外径。
2.弯曲正应力强度条件 σmax=Mmax/W≤[σ] 强度条件的应用: ①强度校核 Mmax/W≤[σ] ②截面设计 W≥Mmax/[σ] ③确定许可载荷 Mmax≤W[σ]
8 / 71
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 5-1-5 2.选择合理的截面(提高抗弯截面系数) (1)合理的截面形状应该是截面面积 A 较小,而抗弯截面系数 W 较大,常见截面的 W/A 值如表 5-1-2 所示。
FS I z b0
bh2 8
bh02 8
(3)翼缘主要承担了作用于工字形截面梁上的弯矩,通常不计算翼缘上的切应力。
5 / 71
圣才电子书 十万种考研考证电子书、题库视频学习平台
3.圆形截面梁 (1)切应力分布特点 边缘各点的切应力与圆周相切;y 轴上各点的切应力沿 y 轴,如图 5-1-3 所示。 (2)计算假设 AB 弦上各点的切应力作用线通过同一点 p;AB 弦上各点的切应力沿 y 轴的分量 y 相 等。
(1)变形几何关系:服从平面假设 应变分布规律:直梁纯弯曲时纵向纤维的应变与它到中性层的距离成正比。 (2)物理关系:满足胡克定律 应力分布规律:直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。 (3)静力关系 纯弯曲时,梁轴线变形后的曲率 1/ρ=M/(EIz)。由于曲率 1/ρ 与 EIz 成反比,因此称 EIz 为梁的抗弯刚度。联立胡克定律:σ=Ey/ρ 可得纯弯曲时正应力计算公式 σ=My/Iz 式中,M为梁横截面上的弯矩;y为梁横截面应力计算点到中性轴的距离;Iz为梁横截 面对中性轴的惯性矩。 适用范围:①适用于任何横截面具有纵向对称面,且载荷作用在对称面内的情况;②公 式由等直梁得到,对缓慢变化的变截面梁和曲率很小的曲梁也近似成立。
刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第1~2章【圣才出品】
图 1-2-5 解:(1)应用截面法,叏 1-1 截面以下部分迚行叐力分枂,如图 1-2-6(a)所示。 由平衡条件可得:∑MA=0,FN1lsinα-Fx=0; 解得:FN1=Fx/(lsinα); 故当 x=l 时,1-1 截面内力有最大值:FN1max=F/sinα。 (2)应用截面法,叏 1-1 截面以下,2-2 截面右侧部分迚行叐力分枂,如图 1-2-6(b) 所示。 由平衡条件可得 ∑Fx=0,FN2-FN1cosα=0 ∑Fy=0,FS2-FN1sinα-F=0 ∑MO=0,FN1(l-x)sinα-M2=0 解得 2-2 截面内力:FN2=Fxcotα/l,FS2=(1-x/l)F,M2=xF(l-x)/l。 综上可知,当 x=l 时,FN2 有最大值,且 FN2max=Fcotα;当 x=0 时,FS2 有最大值, 且 FS2max=F;当 x=l/2 时,弯矩 M2 有最大值,且 M2max=Fl/4。
Δx 的比值为平均正应发,用 εm 表示,即
εm=Δs/Δx 平均正应发的枀限值即为正应发,用 ε 表示,也即
lim s
x0 x
3 / 161
圣才电子书 十万种考研考证电子书、题库规频学习平台
微体相邻棱边所夹直角改发量,称为切应发,用 γ 表示,单位为 rad,若 α 用表示发 形后微体相邻棱边的夹角,则
十万种考研考证电子书、题库规频学习平台
由平衡条件可得
∑Fy=0,F-FS=0
∑MC=0,Fb-M=0
则 n-n 截面内力为:FS=F,M=Fb。
图 1-2-2 1.2 试求图 1-2-3 所示结极 m-m 和 n-n 两截面上的内力,并挃出 AB 和 BC 两杆的 发形属于何类基本发形。
6 / 161
江苏省考研力学工程复习资料材料力学与结构力学重要知识点归纳
江苏省考研力学工程复习资料材料力学与结构力学重要知识点归纳江苏省考研力学工程复习资料——材料力学与结构力学重要知识点归纳一、材料力学重要知识点材料力学是力学的一个重要分支,研究材料内部的结构与力学性能之间的关系。
以下是江苏省考研力学工程复习中的材料力学重要知识点:1. 应力与应变应力是介质内部的内力与单位面积的比值,分为正应力和剪应力。
应变是介质发生形变的程度,分为正应变和剪应变。
常见的应力应变关系有胡克定律和柯西方程。
2. 弹性力学弹性力学是研究材料在外力作用下发生弹性变形的力学学科。
研究材料的弹性行为可以通过应力-应变曲线来描述。
常见的弹性力学模型有胡克弹性模型和剪切弹性模型。
3. 塑性力学塑性力学是研究材料在外力作用下发生塑性变形的力学学科。
塑性行为的特点是在应力超过一定临界值后会发生塑性变形,且变形后不可逆。
常见的塑性力学模型包括屈服准则和切线刚度。
4. 蠕变蠕变是材料在长时间恒定应力下发生渐进性的变形。
蠕变主要分为高温蠕变和低温蠕变,常见的蠕变模型有安尼斯模型和意式蠕变模型。
5. 断裂力学断裂力学研究材料在外力作用下发生断裂的力学学科。
常见的断裂理论有线弹性断裂力学和断裂韧性理论。
二、结构力学重要知识点结构力学是研究工程结构的力学性能和稳定性的学科。
以下是江苏省考研力学工程复习中的结构力学重要知识点:1. 静力学基础静力学研究物体处于平衡状态下的力学学科。
常见的平衡条件有力的平衡条件和力矩的平衡条件。
2. 梁的力学性能分析梁是一种常见的结构元件,其受力性能的分析是结构力学的重要内容。
常见的梁受力分析方法有叠加原理、位移法和力矩法。
3. 杆的力学性能分析杆是一种常见的结构元件,其受力性能的分析也是结构力学的重要内容。
常见的杆受力分析方法有拉压杆稳定性分析和弯扭杆的分析。
4. 钢结构力学钢结构是一种常见的工程结构形式,其结构力学性能的分析是工程实践中的重要内容。
常见的钢结构分析方法有刚度法和弹性折算法。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(应力和应变分析强度理论)【圣才出品】
平面的外法线方向。
7 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、三向应力状态分析 1.三向应力圆 如图 7-1-4 所示,以三个主应力表示的单元体,由三个相互垂直的平面分别作应力圆, 将三个平面的应力圆绘在同一平面上得到三向应力状态下的应力圆,如图 7-1-5 所示。与 每一主应力所对应的应力圆可由与该主平面相正交的其余面上的应力作出。 注意:作三向应力圆应至少知道一个主应力的大小和方向。
1 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。 二、二向应力状态分析 1.解析法 如图 7-1-1(a)所示,一单元体 abcd 处于平面应力状态,采用截面法取左边部分单 元体 eaf 为研究对象,如图 7-1-1(b)所示。
5 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 7-1-3(a)
图 7-1-3(b) ③求主应力数值和主平面位置 a.求主应力数值的方法 如图 7-1-3(b)所示,点 A1 和点 B1 分别为代表最大主应力和最小主应力,其大小为
6 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
7.1 复习笔记
一、应力状态 一点的应力状态:过一点不同方向面上应力的集合。 应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀 分布;②任意一对平行平面上的应力相等。 主单元体是指各侧面上切应力均为零的单元体。其中,单元体上切应力为零的面称为主 平面,主平面上的正应力称为主应力。 说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直 的主应力分别记为 σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即 σ1≥σ2≥σ3。 应力状态分类及实例 (1)单向应力状态:也称为简单应力状态,三个主应力 σ1、σ2、σ3 中只有一个不等 于零。 实例:简单的拉伸或压缩。 (2)平面(二向)应力状态:三个主应力 σ1、σ2、σ3 中有两个不等于零。 实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。 (3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力 σ1、 σ2、σ3,均不等于零。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】
所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸
材料力学考研重点总结
材力基本考试就那几块,从第一册开始第二章第三章轴向拉压,扭转,一般只出选择,通常与第二册第一章弯曲中心结合着考,每年两个选择差不多,注意一下基础知识,仔细看一下书,总结一下基础知识就可以,把拉压和扭转的能量公式记住,在第二册能量法计算位移和力的时候会用到,第四章弯曲要出两道大题,主要是画剪力弯矩图和杆件的强度校核,强度校核一般与第七章强度理论和主应力还有第二册主应变结合在一起考,这章是重点要把课后的五十八道习题仔细做一遍,做会了。
第五章挠度和转角只看叠加法,记住书后附表中的每一个基本图示,把书上的例题和课后几道题看透了就行,第六章一般与第二册能量法结合起来考一个用能量法解超静定的题,要是时间不够的话就不要看了,直接等看第二册能量法的时候再一起看,第七章很重要,要出选择和大题,强度理论不用说每年都是重点,应力应变计算那主要看一类题就行,就是:用应变片测得在三十度的应变是多少多少,告诉你弹模,泊松比,让你求应力一类题,我忘记是课后哪个题了,我记得课后给的一般是30或者45度角的,总之看这一类题就行了,第八章主攻弯剪扭组合变形,只要这一个弄懂,其他什么弯扭组合,斜弯曲就迎刃而解了,对于铆钉连接计算看一下书上的例题就行,剪切和挤压也是以例题为主。
第九章通常与第二册动应力结合起来,考一个压杆稳定的大题,这部分以真题为主,看一下真题就知道他的具体类型和具体形式了。
接下来是第二册,第一章主看开口薄壁界面的弯曲中心和切应力流,第二章不看,第三章能量法必看,从头看到尾,遇题就做,遇知识点就背,可以说这章是真正花时间的,一定要看好,理解透。
第四章看一下应变片的贴法和主应变和应变圆的画法,这里会与第七章结合出大题,但是有一点,凡是用应变圆可以解决的都可以用应力圆解决,接下来就是看一下动荷载和疲劳验算,疲劳不出大题,动荷载只需要记住匀加速上升,水平冲击,自由落体,向下匀速冲击几种情况下的动荷载系数Kd就行。
基本就是这些,其他就没什么了,等我再回去看看有什么落下的,我再给你补充,哦对了我QQ是344963551,你可以直接加我QQ,我们再聊也材力下册重点概括材力第二册,第一章主看开口薄壁界面的弯曲中心和切应力流,第二章不看,第三章能量法必看,从头看到尾,遇题就做,遇知识点就背,课后题自己选三分之二来做,可以说这章是真正花时间的,一定要看好,理解透。
刘鸿文《材料力学》(第6版)笔记和课后习题(含考研真题)详解(15-18章)【圣才出品】
第 15 章 平面曲杆
15.1 复习笔记
一、曲杆纯弯曲时的正应力 轴线为曲线的曲杆,其横截面有对称轴,曲杆轴线在纵向对称面内为平面曲线,则称为 平面曲杆。平面曲杆对称弯曲时,荷载作用于纵向对称面内,变形后曲杆轴线仍在纵向对面 内。 曲杆的纯弯曲是指在曲杆的纵向对称面内,两端作用大小相等、方向相反的两个弯曲力 偶矩。
R1=R0+40=120mm,R2=R0-40=40mm
中性层的曲率半径为
r
A dA A
h
ln
R1 R2
80
ln
120 40
mm
72.8mm
故截面面积对中性轴的静矩为
S=A(R0-r)=80×30×(80-72.8)×10-9m3=1.73×10-5m3
最大拉应力发生在截面离曲率中心最近的内侧边缘,即
1.小曲率曲杆 当曲杆轴线曲率半径 R0 与截面形心到截面内侧边缘的距离 c 的比值 R0/c>10 时,属 于小曲率曲杆,其正应力可近似的用直梁公式σ=My/Iz 计算。
2.大曲率曲杆 当 R0/c≤10 时,为大曲率曲杆,可应用公式σ=My/Sρ计算其正应力。
3.中性层曲率半径的确定 (1)矩形截面
由直梁正应力公式σmax=M/W 可得
σmax=600×6/(2×42×10-6)Pa=112.5MPa
两者误差比较
(σ内-σmax)/σ内=(153.6-112.5)/153.6=26.8%
(σ外-σmax)/σ外=(87.24-112.5)/87.24=-29%
15.3 作用于图 15-2-2 所示开口圆环外周上的均布压力 p=4MPa,圆环的尺寸为 R1 =40mm,R2=10mm,b=5mm。试求其横截面上的最大正应力。
材料力学考研复习笔记
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
小鹿学姐材料力学考研笔记
小鹿学姐材料力学考研笔记好嘞,今天我们来聊聊小鹿学姐的材料力学考研笔记。
这可是一个神奇的世界,跟着小鹿学姐走一趟,肯定能让你脑袋里冒出火花,特别是在这段紧张的复习期间,真心需要一些轻松的调味料。
想象一下,你正在图书馆的角落里,桌子上堆满了书,眼前的字儿像是一群小虫子在跳舞,简直让人头大。
别着急,小鹿学姐的笔记就像是那把钥匙,能帮你打开材料力学的大门,让你轻松闯进去。
先说说材料力学的基本概念吧,听起来好像高大上,其实就是研究材料在不同力量下的表现,简单来说,就是你用力一推,材料会怎样反应。
小鹿学姐说,这就好比你推一推朋友的背,他会向前倾,你要是推得太猛,他可能就摔了。
这种现象在材料力学里,有个专门的名词叫“应力”,听起来就很专业,但实际上就是材料的“压力”。
对了,别忘了“应变”这个小家伙,压力一旦施加,材料就会变形,像橡皮筋一样拉伸、压缩,搞得你哭笑不得。
然后就是那一堆公式了,天哪,公式就像一只大怪兽,让人心里发怵。
不过小鹿学姐的笔记就像是通关秘籍,把这些怪兽统统变成了可爱的小精灵。
她教我们一个诀窍,那就是别死记硬背,搞清楚每个公式背后的故事,仿佛是在听一个个精彩的传奇。
在她的笔记里,每个公式都有它的“身世”,就像唐僧取经一样,遇到的困难和挑战都记录得一清二楚。
再说到材料的特性,哎呀,这可是材料力学的灵魂所在。
小鹿学姐用幽默的语言把这些晦涩的概念解释得生动又形象,比如说,材料的“弹性”就像是小孩儿的调皮捣蛋,虽然经常让人头疼,但只要稍微控制一下,它就会乖乖地回到原来的位置。
相反,材料的“塑性”就像是个小胖子,一旦变形就很难再变回去,搞得你哭笑不得。
讲到这里,我得提提小鹿学姐对“屈服强度”的理解,简直让我佩服得五体投地。
她说,屈服强度就像一个人的底线,过了这个界限,材料就会变得不再听话,像是闹脾气的小孩。
这个形象真的是太形象了,让我一下子就记住了。
记得她还特别强调,考试的时候一定要注意这些细节,千万别让材料“叛变”了。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-第1~3章【圣才出品】
2.根据均匀、连续性假设,可以认为( )。[北京科技大学 2012 研] A.构件内的变形处处相同 B.构件内的位秱处处相同 C.构件内的应力处处相同 D.构件内的弹性模量处处相同 【答案】C
4 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
【解析】连续性假设认为组成固体的物质丌留空隙地充满固体的体积,均匀性假设认为 在固体内各处有相同的力学性能。
5 / 96
圣才电子书
十万种考研考证电子书、题库规频学习平台
第 2 章 轴向拉伸和压缩
2.1 复习笔记
工程上有许多构件,如桁架中的钢拉杆,作用亍杆上的外力(或外力合力)的作用线不 杆轴线重合,这类构件简称拉(压)杆,轴向拉伸不压缩是杆件受力或变形的一种基本形式。 本章研究拉压杆的内力、应力、变形以及材料在拉伸和压缩时的力学性能,幵在此基础上, 分析拉压杆的强度和刚度问题。此外,本章还将研究拉压杆连接件的强度计算问题。
2.拉(压)杆内的应力(见表 2-1-6)
9 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
表 2-1-6 拉(压)杆内的应力
四、拉(压)杆的变形不胡克定律 1.变形(见表 2-1-7)
10 / 96
圣才电子书
12 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
标准试样及材料拉伸和压缩时的力学性能见表 2-1-10。 表 2-1-10 标准试样及材料拉伸和压缩时的力学性能
2.低碳钢试样的拉伸图、应力-应变曲线及其力学性能 (1)低碳钢试样的拉伸图、应力-应变曲线见表2-1-11:
一、轴向拉伸和压缩概述 拉(压)杆的定义、计算简图和特征见表 2-1-1。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(弯曲变形)【圣才出品】
4 / 105
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 6-1-3
(1)对各段梁,都是由坐标原点到所研究截面之间的梁段上的外力来写弯矩方程的,
所以后一段梁的弯矩方程包含前一段梁的弯矩方程,只增加了(x-a)的项;
1 / 105
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 6-1-1
2.挠曲线微分方程
(1)由纯弯曲变形和横力弯曲变形忽略剪切应力的情况下,弯矩与曲率间的关系式
1
x
M x
EI
并根据数学计算得挠曲线的微分方程
d2w
dx2
3
1
dw dx
2
2
M x
确定的挠度和转角,在中间铰两侧虽然转角不同,但挠度却是唯一的。
三、用叠加法求弯曲变形
1.叠加原理
梁的变形微小,且梁在线弹性范围内工作时,梁在几项载荷(可以是集中力,集中力偶
或分布力)同时作用下的挠度和转角,就分别等于每一载荷单独作用下该截面的挠度和转角
的叠加。当每一项载荷所引起的挠度为同一方向(如均沿 y 轴方向),其转角是在同一平面
(2)对(x-a)的项作积分时,应该将(x-a)项作为积分变量,从而简化了确定积
分常数的工作;
(3)凡载荷有突变处(包括中间支座),应作为分段点;
(4)凡截面有变化处,或材料有变化处,应作为分段点;
(5)中间铰视为两个梁段间的联系,此种联系体现为两部分之间的相互作用力,故应
作为分段点;
(6)凡分段点处应列出连续条件,根据梁的变形的连续性,对同一截面只可能有唯一
内(如均在 xy 平面内)时,则叠加就是代数和,即
结构力学,材料力学考研复习内容
主要内容:交变应力和疲劳强度的概念,对称循环材料持久极限的测定,影响材料持久极限的因素,对称循环构件疲劳强度计算,非对称循环构件疲劳强度计算,弯扭组合交变应力构件的疲劳强度计算,提高构件疲劳强度的措施。
基本要求:交变应力和疲劳强度的概念,对称循环材料持久极限的测定,影响材料持久极限的因素,对称循环构件疲劳强度计算,非对称循环构件疲劳强度计算。
基本要求:应力状态概念,二向应力状的解析法及图解法。三向应力状态结论,广义虎克定律,四个常用的强度理论。
7组合变形
主要内容:斜弯曲,拉(压)与弯曲的组合变形,扭转与弯曲的组合变形。
基本要求:组合变形概念及迭加法,斜弯曲,拉(压)与弯曲的组合变形,偏心拉压,扭转与弯曲的组合变形。
8变形能法
主要内容:杆件的变形能计算,莫尔定理,图乘法,卡氏定理,功的互等定理和位移互等定理。
4截面的几何性质
主要内容:截面的静矩和形心,惯性矩、惯性积和惯性半径,平行移轴公式,转角公式、主惯性矩。
基本要求:截面形心的计算、组合截面惯性矩的平行移轴公式,主惯性矩、形心主惯矩。
5平面弯曲
主要内容:平面弯曲概念,计算简图,梁的内力(剪力、弯矩),剪力方程、弯矩方程,剪力图、弯矩图,载荷集度、剪力、弯矩关系,横截面正应力、弯曲剪应力,梁的强度计算,非对称截面平面弯曲,弯曲中心,梁的转角、挠度,挠曲线、挠曲线方程,挠曲线微分方程,求解挠曲线微分方程的积分法迭加法,简单超静定梁。
2.要求考生熟练掌握虚功原理,位移互等定理.
五、力法和位移法
1.要求熟练掌握荷载作用下的超静定结构的求解.
2.要求掌握支座移动和温度改变时的超静定结构的求解.
六、渐进法和矩阵位移法
1.要求熟练掌握力矩分配法的基本概念和计算.
刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第3~4章【圣才出品】
2.切应力互等定理
2 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等,都垂直于两个平面 的交线,方向则共同挃向或共同背离这一交线。
3.剪切胡克定律
(1)纯剪切
若单元体的各个侧面上只有切应力并无正应力,这种情况称为纯剪切。
4.剪切应变能
在应力小于剪切比例枀限的情况下,单位体积内的剪切应变能密度为
ν
1
2
2
2G
上述公式主要用于线弹性范围内纯剪切应力状态下剪切应变能密度的计算。
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、囿轴扭转时的应力和变形 1.囿轴扭转时的应力 (1)应力计算公式 推导囿轴扭转时的应力计算公式,需同时考虑变形几何、物理和静力三方面的关系。 ①变形几何关系:囿轴扭转的平面假设; ②物理关系:剪切胡克定律; ③静力关系:横截面上的内力系对囿心的力矩合成为扭矩。 如图 3-1-2 所示,横截面上任一点的切应力为 τρ=Tρ/Ip 囿截面边缘的最大切应力 τmax=TR/Ip=T/Wt 式中,ρ 为应力点到囿心的距离;Ip 为横截面的枀惯性矩;Wt 为扭转截面系数。
4c 1 4c 4
0.615 c
8FD πd 3
k
8FD πd 3
式中,c 为弹簧挃数,c=D/d;k 为曲度系数
k 4c 1 0.615 4c 4 c
(3)强度条件
τmax≤[τ]
2.弹簧的变形计算
在作用点在弹簧圀中心的力 F 的作用下,沿力的作用方向的位秱
8FD3n 64FR3n F
图 3-1-2 对于直徂为 D 实心囿形截面 Ip=πD4/32,Wt=πD3/16 对于内徂为 d,外徂为 D 的空心囿截面
材料力学考研刘鸿文《材料力学》考研真题与考点笔记
材料力学考研刘鸿文《材料力学》考研真题与考点笔记一、选择题真题解析1根据均匀、连续性假设,可以认为()。
[北京科技大学2012年研] A.构件内的变形处处相同B.构件内的位移处处相同C.构件内的应力处处相同D.构件内的弹性模量处处相同【答案】D @@【解析】连续性假设认为组成固体的物质不留空隙地充满固体的体积,均匀性假设认为在固体内到处有相同的力学性能。
均匀、连续的构件内的各截面成分和组织结构一样,弹性模量处处相同。
2反映固体材料强度的两个指标一般是指()。
[北京科技大学2010年研] A.屈服极限和比例极限B.弹性极限和屈服极限C.强度极限和断裂极限D.屈服极限和强度极限【答案】D @@【解析】衡量塑性材料的强度指标为屈服极限,衡量脆性材料强度的指标为强度极限。
3根据小变形假设,可以认为()。
[西安交通大学2005年研]A.构件不变形B.构件不破坏C.构件仅发生弹性变形D.构件的变形远小于构件的原始尺寸【答案】D @@【解析】小变形假设即原始尺寸原理认为无论是变形或因变形引起的位移,其大小都远小于构件的最小尺寸。
4对于没有明显屈服阶段的塑性材料,通常以产生()所对应的应力值作为材料的名义屈服极限。
[西安交通大学2005年研]A.0.2的应变B.0.2%的应变C.0.2的塑性应变D.0.2%的塑性应变【答案】D @@【解析】对于没有屈服阶段的塑性材料,是将卸载后产生的0.2%的塑性应变所对应的应力值作为屈服极限,称为名义屈服极限或条件屈服极限,用σ0.2表示。
5韧性材料应变硬化之后,经卸载后再加载,材料的力学性能发生下列变化()。
[北京科技大学2010年研]A.比例极限提高,弹性模量降低B.比例极限提高,韧性降低C.比例极限不变,弹性模量不变D.比例极限不变,韧性不变【答案】B @@【解析】材料冷作硬化后,比例极限得到了提高,但塑性变形和伸长率却有所降低,而弹性模量是材料的特性,与此无关。
6现有钢、铸铁两种棒材,其直径相同(不计失稳可能)。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-绪论及基本概念(圣才出品)
第1章绪论及基本概念1.1 复习笔记材料力学是固体力学的一个分支,是研究结构构件和机械零件承载能力的基础学科。
其主要任务是研究材料及构件在外力作用下的变形、受力和失效的规律,为合理设计构件提供有关强度、刚度、稳定性分析的理论和方法。
本章主要介绍了材料力学的基本概念,是整个材料力学内容的一个浓缩,后面章节的叙述都是本章的展开和延伸。
一、材料力学的任务(见表1-1-1)表1-1-1 材料力学的任务二、可变形固体的性质及其基本假设(见表1-1-2)表1-1-2 可变形固体的性质及其基本假设三、杆件变形的基本形式(见表1-1-3)表1-1-3 杆件变形的基本形式1.2 课后习题详解本章无课后习题。
1.3 名校考研真题详解一、填空题1.强度是指构件抵抗______的能力。
[华南理工大学2016研]【答案】破坏2.构件正常工作应满足______、刚度和______的要求,设计构件时,还必须尽可能地合理选用材料和______,以节约资金或减轻构件自重。
[华中科技大学2006研]【答案】强度;稳定性;降低材料的消耗量二、选择题1.材料的力学性能通过()获得。
[华南理工大学2016研]A.理论分析B.数字计算C.实验测定D.数学推导【答案】C2.根据均匀、连续性假设,可以认为()。
[北京科技大学2012研]A.构件内的变形处处相同B.构件内的位移处处相同C.构件内的应力处处相同D.构件内的弹性模量处处相同【答案】C【解析】连续性假设认为组成固体的物质不留空隙地充满固体的体积,均匀性假设认为在固体内各处有相同的力学性能。
3.根据小变形假设,可以认为()。
[西安交通大学2005研]A.构件不变形B.构件不破坏C.构件仅发生弹性变形D.构件的变形远小于构件的原始尺寸【答案】D【解析】小变形假设即原始尺寸原理认为无论是变形或因变形引起的位移,都甚小于构件的原始尺寸。
4.铸铁的连续、均匀和各向同性假设在()适用。
[北京航空航天大学2005研] A.宏观(远大于晶粒)尺度B.细观(晶粒)尺度C.微观(原子)尺度D.以上三项均不适用【答案】A【解析】组成铸铁的各晶粒之间存在着空隙,并不连续;各晶粒的力学性能是有方向性的。
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-动载荷(圣才出品)
4 / 30
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-6
解:物体突然停止时,产生的向心加速度为:
由此产生的与加速度方向相反的惯性力为:
吊索内最大应力增量为:
1
=
Fa A
=
1275.5 5104
= 2.55MPa
梁内最大弯矩的增加量为:
查型钢表得 14 号工字钢W = 102cm3 ,则梁内最大应力增加量为:
Kd =1+
1+ 2h Δst
其中,对于突然加载的情况,相当于物体自由下落高度 h=0 的情况,此时动荷因数
Kd = 2 ,即杆件的应力和变形均为静载时的 2 倍。 (2)水平冲击
图 10-2 如图 10-2 所示,设冲击物与杆件接触时的速度为 v,此时求解动载荷问题时的动荷因
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
σ (2)按静载荷求解应力 st 、变形 Δst 等;
(3)将所得结果乘以动荷系数 Kd 可得动载荷作用下的动应力和变形分别为:
σd = Kdσst , Δd = KdΔst 。
二、杆件受冲击时的应力和变形
1 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
故由圆孔引起的最大正应力:
。
10.6 在直径为 100 mm 的轴上装有转动惯量 I=0.5 kN•m•s2 的飞轮,轴的转速为 300 r/min。制动器开始作用后,在 20 转内将飞轮刹停。试求轴内最大切应力。设在制动 器作用前,轴已与驱动装置脱开,且轴承内的摩擦力可以不计。
图 10-9
解:刹车前,飞轮的角速度为: 0
。
材料力学笔记整理
a. 数值上等于截面侧所有扭转外力偶矩代数和
分区 第二章 的第 3 页
方向:右手螺旋,外法线方向为正 6) 扭矩图
a. 数值上等于截面侧所有扭转外力偶矩代数和 b. 外力偶矩转向与正扭矩相反为正
3、平面弯曲梁的内力 a. 受力特征:外力垂直于轴线 b. 变形特征:轴线由直线变为曲线 c. 横向荷载 d. 梁:以弯曲变形为主 e. 平面弯曲: i. 对称弯曲 ii. 不对称弯曲 f. 梁的计算简图: i. 梁 ii. 荷载 iii. 支座 1) 滚动铰支座 2) 固定铰支座
分区 第二章 的第 4 页
1) 写平衡方程,求支座约束力 2) 列弯力,弯矩方程 3) 求各控制截面弯力/弯矩值 4) 画图
5、梁的平衡微分方程 1) 导出: 2) 平衡微分方程
q(x):荷载集度
a. 剪力图任一点切线斜率=该点荷载集度 b. 弯矩图任一点切线斜率=该点截面剪力 c. 弯矩图凸向=分布荷载作用方向 3) 推论: a. q(x)=C,剪力图为直线,弯矩图为二次曲线 b. 无载荷,剪力图为水平线,弯矩图为直线 c. 集中力作用点,剪力图突变,(等于集中力的大小),弯矩图有折点 d. 集中力偶,弯矩图突变(等于集中力偶大小),剪力图不变 e. 最大弯矩可能位置:
第一章:材料力学基本概念
一、基本概念 1. 材料力学研究对象是变形杆件,仅研究弹性体的变形 2. 构件 a. 杆件:长度远大于横向尺寸 i. 直杆 ii. 折杆/曲杆 iii. 等截面杆 iv. 变截面杆 b. 板(壳) c. 实体 3. 设计要求 a. 强度:构件抵抗破坏的能力 塑性变形 b. 刚度:构件抵抗变形的能力 弹性变形 c. 稳定性:在荷载作用下保持平衡形式不突然发生转变 4. 可变形固体(变形固体) a. 变形固体的变形: i. 弹性变形 ii. 塑性变形 iii. 只发生弹性变形——弹性体 b. 变形固体的假设 i. 连续性假设:组成固体的物质不留空隙地充满了固体的体积 ii. 均匀性假设:组成固体的物质在物体内均匀分布且在各处具有相同的力学性能 (有助于将小试样测得的力学性能作为材料的力学性能) iii. 各向同性假设:材料沿任何方向力学性能相同 iv. 小变形假设:变形远小于原始 5. 杆件内力与截面法 a. 附加内力(内力):外力引起,与变形同时产生,随外力变化而变化 b. 截面法:一分为二——确定内力——静力平衡 c. 力系的简化理论(内力)——内力主矢,内力主矩 d. 拉力为正,压力为负 6. 杆件变形基本形式 a. 轴向拉伸/压缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
此即小变形条件的叠加法。
(二)内力与截面法内力在外力作用下,构件发生变形,同时,构件内部相连各部分之间产生相互作用力,由于外力作用,构件内部相连两部分之间的相互作用力,称为内力。
截面法将构件假想地截(切)开以显示内力,并由平衡条件建立内力与部分外力间的关系或由部分外力确定内力的方法,称为截面法。
由连续性假设可知,内力是作用在切开面截面上的连续分布力。
称连续分布内力。
将连续分布内力向横截面的形心C简化,得主矢与主矩。
为了分析内力,沿截面轴线建立轴,在所切横截面内建立轴和轴,并将主矢与主矩沿x、y、z三轴分解,得内力分量,以及内力偶矩分量。
这些内力及内力偶矩分量与作用在保留杆段上的部分外力,形成平衡力系,并由相应的平衡方程,建立内力与部分外力间的关系,或由部分外力确定内力。
内力分量及内力偶矩分量,统称为内力分量。
(三)应力正应力与剪应力为了描述内力的分布情况,引入内力分布集度即应力的概念。
平均应力在截面m —m上任一点K的周围取一微面积△A,设作用于该面积上的内力为△P,则△A内的平均应力:单元体(微体)围绕某点(如K).切取一无限小的六面体,称为单元体(或微体)。
为全面研究一点处在不同方位的截面上的应力(称为一点的应力状态)而切取的研究对象之一。
四、轴向拉伸与压缩的力学模型轴向拉伸与压缩是杆件受力或变形的一种最基本的形式。
受力特征作用于等直杆两端的外力或其合力的作用线沿杆件的轴线,一对大小相等、矢向相反。
变形特征受力后杆件沿其轴向方向均匀伸长(缩短)即杆件任意两横截面沿杆件轴向方向产生相对的平行移动。
拉压杆以轴向拉压为主要变形的杆件,称为拉压杆或轴向受力杆。
作用线沿杆件轴向的载荷,称为轴向载荷五、轴力轴力图㈠轴力拉压杆横截面上的内力,其作用线必是与杆轴重合,称为轴力。
用N_表示。
是拉压杆横截面上唯一的内力分量。
轴力N符号规定拉力为正,压力为负。
根据截面法和轴力N正负号规定,可得计算拉压杆轴力N的法则:横截面上的轴力N,在数值上等于该截面的左侧(或右侧)杆上所有轴向外力的代数和。
无论左侧或右侧杆上,方向背离截面的轴向外力均取正值:反之则取负值。
(二)轴力图表示沿杆件轴向各横截面上轴力变化规律的图线。
称为轴力图或N图。
以x轴为横坐标平行于杆轴线,表示横截面位置,以N轴为纵坐标,表示相应截面上的轴力值。
六、拉压杆横截上、斜截面上的应力(一)拉压杆横截上的应力(二)拉压杆斜截面上的应力由拉压杆横截面上的应力均匀分布,可推断斜截面上的应力,也为均匀分布,且其方向必与杆轴平行。
斜截面上剪应力符号规定:将截面外法线,沿顺时方向旋转900,与该方向同向的剪应力为正。
七、材料拉压时力学性能强度条件㈠破坏(失效)许用应力由于脆性材料均匀性较差,且断裂又是突然发生的,其达到极限应力时的危险性要比塑性材料大的多,因此,在普通荷载作用下,比大,一般取 =1.5~2.0;对脆性材料规定取 =2.5~3.0,甚至更大。
㈡强度条件利用上述条件,可解决以下三类问题。
1.校核强度_当已知拉压杆所受外力,截面尺寸和许用应力,通过比较工作应力与许用应力大小,以判断该杆在所受外力作用下能否安全工作。
2.选择截面尺寸若已知拉压杆所受外力和许用应力,由强度条件确定该杆所需截面面积。
对于等截面拉压杆,其所需横截面面积为3.确定承载能力若已知拉压杆截面尺寸和许用应力,由强度条件可以确定该杆所能承受的最大轴力,其值为八、轴向拉压变形轴向拉压应变能当杆件承受轴向载荷后,其轴向与横向尺寸均发生变化,杆件沿轴向方向的变形称为轴向变形或纵向变形;垂直于轴向方向的变形称为横向变形。
与此同时,杆件因变形而贮存的能量,称为应变能。
(一)轴向变形与胡克定律试验表明:轴向拉伸时,轴向伸长,横向尺寸减小;轴向压缩时,轴向缩短,横向尺寸增大,即横向线应变与轴向线应变恒为异号。
且在比例极限内,横向线应变与轴向线应变成正比。
比例系数用表示,称为泊松比。
它是一个常数,其值随材料而异,由试验测定。
材料的弹性模量E、泊松比v与剪变模量G之间存在如下关系:当已知任意两个弹性常数,即可由上式确定第三个弹性常数,可见各向同性材料只有两个独立的弹性常数。
(三)轴向拉压应变能应变能在外力作用下,杆件发生变形,力在相应的位移上作功,同时在杆内贮存的能量称为应变能。
用W表示外力功,用U表示相应应变能。
在线弹性范围内,在静载荷作用下,杆内应变能等于外力功轴向拉压应变能:【例题1】等直杆承受轴向载荷如图,其相应轴力图为()。
A. (A)B. (B)C. (C)D. (D)答案:A【例题5】在相距2m的AB两点之间,水平地悬挂一根直径d=1mm的钢型在中点C 逐渐增加荷载P。
设钢丝在断裂前服从虎克定律,E=2x 1O5MPa,在伸长率达到0.5%时拉断,则断裂时钢丝内的应力和C点的位移分别为( )A.26.5B. 51C. 63.6D. 47.1答案:B【例题8】低碳钢拉伸经过冷作硬化后,以下四种指标中得到提高为在()。
A. 强度极限B. 比例极限C. 断面收缩率D. 伸长率(延伸率)答案:B(二)剪切【内容提要】本讲主要讲连接件和被连接件的受力分析,区分剪切面与挤压面的区别,剪切和挤压的计算分析,剪力互等定理的意义及剪切虎克定律的应用。
【重点、难点】本讲的重点是剪切和挤压的受力分析和破坏形式及其实用计算,难点是剪切面和挤压面的区分,挤压面积的计算。
一、实用(假定)计算法的概念螺栓、销钉、铆钉等工程上常用的连接件及其被连接的构件在连接处的受力与变形一般均较复杂,要精确分析其应力比较困难,同时也不实用,因此,工程上通常采用简化分析方法或称为实用(假定)计算法。
具体是:1.对连接件的受力与应力分布进行简化假定,从而计算出各相关部分的“名义应力”;2.对同样连接件进行破坏实验,由破坏载荷采用同样的计算方法,确定材料的极限应力。
然后,综合根据上述两方面,建立相应的强度条件,作为连接件设计的依据。
实践表明,只要简化假定合理,又有充分的试验依据,这种简化分析方法是实用可靠的。
二、剪切与剪切强度条件当作为连接件的铆钉、螺栓、销钉、键等承受一对大小相等、方向相反、作用线互相平行且相距很近的力作用时,当外力过大;其主要破坏形式之一是沿剪切面发生剪切破坏,如图2-1所示的铆钉连接中的铆钉。
因此必须考虑其剪切强度问题。
连接件(铆钉)剪切面上剪应力r:假定剪切面上的剪应力均匀分布。
于是,剪应力与相应剪应力强度条件分别为(2-1)(2-2)式中:为剪切面上内力剪力;为剪切面的面积;[]为许用剪应力,其值等于连接件的剪切强度极限除以安全系数。
如上所述,剪切强度极限值,也是按式(2-1)由剪切破坏载荷确定的。
需要注意,正确确定剪切面及相应的剪力。
例如图2-1(a)中铆钉只有一个剪切面,而图2-1(b)中铆钉则有两个剪切面。
相应的剪力值均为P。
三、挤压与挤压强度条件在承载的同时,连接件与其所连接的构件在相互直接接触面上发生挤压,因而产生的应力称为挤压应力。
当挤压应力过大时,将导致两者接触面的局部区域产生显著塑性变形,因而影响它们的正常配合工作,连接松动。
为此必须考虑它们的挤压强度问题。
如图2—2所示的铆钉连接中的铆钉与钢板间的挤压。
连接件与其所连接的构件,挤压面上挤压应力。
:假定挤压面上的挤压应力均匀分布。
于是;挤压应力,与相应的挤压强度条件分别为式中:Pc为挤压面上总挤压力;Ac为挤压面的面积。
当挤压面为半圆柱形曲面时取垂直挤压力方向直径投影面积。
如图2—2所示的取Ac=dt。
[]为许用挤压应力其值等于挤压极限应力除以安全系数。
在实用(假定)计算中的许用剪应力[]、许用挤压应力[],与许用拉应力[]之间关系有:对于钢材[]=(0.75~0.80)[][]=(1.70~2.00)[]四、纯剪切与剪应力互等定理(一)纯剪切:若单元体上只有剪应力而无正应力作用,称为纯剪切。
如图2-3(a)所示,是单元体受力最基本、最简单的形式之一。
在剪应力作用下.相邻棱边所夹直角的改变量.称为剪应变,用表示,其单位为rad。
如图2-3(b)所示。
(二)剪应力互等定理:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,而方向则均指向或离开该交线(图2-3),即证明:设单元体边长分别为,单元体顶、底面剪应力为,左、右侧面的剪应力为(图2-4a)则由平衡方程得同理可证,当有正应力作用时(图2-3b),剪应力互等定理仍然成立五、剪切胡克定律试验表明,在弹性范围内,剪应力不超过材料的剪应力比例极限,剪应力与剪应变成正比,即式中G称为材料的剪变模量。